ADDITIONAL MENU
Algorithm Decission Tree C4.5 and Backpropagation Neural Network for Smarthpone Price Classification
Abstract
Smartphones are a necessity in this technological age. In fact, everyone has at least one smartphone, this is because of its role that can help daily activities. There are data smartphone prices from major companies from Kaggle. The data is divided into 2000 training data and 1000 test data, the price range of smartphones based on the features provided. The analysis needed is the relationship between the features of smartphone and the selling price. To get this information, data mining techniques can be used. This study uses the Decission Tree C4.5 algorithms and the Backpropagaition Neural Network algorithm for classification problems. The technique used will be compared to a better algorithm in carrying out the classification process. The classification method consists of predictor variables and one target variable. The software used to process the data is Rapid Miner software. The results of the study get the accuracy of the Backpropagation Neural Network algorithm 96.65% and the same data is also applied to the C4.5 algorithms with an accuracy of 83.75%. From the research results, it can be concluded that the backpropagation neural network algorithm is the best algorithm for smartphone price classification with accuracy 96.65%.
Full Text:
PDFReferences
P. S. A. Dewi and N. W. S. Suprapti, “MEMBANGUN LOYALITAS PELANGGAN MELALUI KEPUASAN YANG DIPENGARUHI OLEH KUALITAS PRODUK, PERSEPSI HARGA DAN CITRA MEREK (Studi Pada Produk Smartphone Merek Oppo),” Matrik J. Manajemen, Strateg. Bisnis dan Kewirausahaan, p. 87, 2018.
O. B. Kumala, “Pengaruh Word Of Mouth Terhadap Minat Beli Konsumen Pada Tune Hotels Kuta-Bali,” Jakarta Univ. Indones., pp. 3642–3658, 2012.
M. Asim, “Mobile Price Class prediction using Machine Learning Techniques Mobile Price Class prediction using Machine Learning Techniques,” no. March, 2018.
E. S. R. Br.Situmorang, M. K. Anam, R. Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma Svm Dan Nbc Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 13, no. 3, p. 169, 2021.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019.
D. P. Utomo, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” vol. 4, no. April, pp. 437–444, 2020.
I. Anggraeni and S. Andriani, “Implementasi algoritma c.45 untuk klasifikasi deteksi serangan pada protokol jaringan,” vol. 18, no. 2, pp. 62–68, 2021.
M. R. Matondang, M. R. Lubis, and H. Satria, “Analisis Data mining dengan Metode C . 45 pada Klasifikasi Kenaikan Rata-Rata Volume Perikanan Tangkap,” vol. 2, no. 2, pp. 74–81, 2021.
R. A. Syahfitri, A. P. Windarto, and H. Okprana, “Klasifikasi Calon Nasabah Baru Menggunakan C . 45 Sebagai Dasar Pemberian Pertanggungan Asuransi di PT Asuransi Central Asia Pematangsiantar,” vol. 1, no. 1, 2021.
A. Zulkifli, “Metode C45 Untuk Mengklarifikasi Pelanggan Perusahaan Telekomunikasi Seluler Akhmad,” vol. 2, no. 1, pp. 65–76, 2016.
F. Izhari, M. Zarlis, and Sutarman, “Analysis of backpropagation neural neural network algorithm on student ability based cognitive aspects,” 2020.
F. Rizal et al., “Penerapan algoritma backpropagation untuk klasifikasi jenis buah rambutan berdasarkan fitur tekstur daun,” vol. 1, no. 2, pp. 2–9, 2020.
F. A. Hizham et al., “Implementasi Metode Backpropagation Neural Network ( BNN ) dalam Sistem Klasifikasi Ketepatan Waktu Kelulusan Mahasiswa ( Studi Kasus : Program Studi Sistem Informasi Universitas Jember ) ( Implementation of Backpropagation Neural Network ( BNN ) Method i,” 2018.
P. D. Putra and D. P. Rini, “Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung,” vol. 5, pp. 208–215, 2021.
S. H. Hasanah and S. M. Permatasari, “Metode Klasifikasi Jaringan Syaraf Tiruan Backpropagation Pada Mahasiswa Statistika Universitas Terbuka,” vol. 14, no. 2, pp. 243–252, 2020.
Rahmaddeni, M. K. Anam, Y. Irawan, S. Susanti, and M. Jamaris, “Comparison of Support Vector Machine and XGBSVM in Analyzing Public Opinion on Covid-19 Vaccination,” Ilk. J. Ilm., vol. 14 No. 1, 2022.
D. H. Kamagi and S. Hansun, “Implementasi Data Mining dengan Algoritma C4 . 5 untuk Memprediksi Tingkat Kelulusan Mahasiswa,” vol. VI, no. 1, pp. 15–20, 2014.
M. Agustin, “Penggunaan Jaringan Syaraf Tiruan Backpropagation untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya,” 2012.
F. Ortega Zamorano, J. M. Jarez, G. E. Juarez, and L. Franco, “FPGA Implementatation of Neurocomputational Models: Camparison Between Standard Backpropagation and C-Mantec Constructive Algorithm,” 2017.
Y. A. Lesnussa, L. J. Sinay, and M. R. Idah, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Penyebaran Penyakit Demam Berdarah Dengue (DBD) di Kota Ambon,” J. Mat. Integr., vol. 13, no. 2, p. 63, 2017.
DOI: http://dx.doi.org/10.24014/ijaidm.v5i2.19064
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats