ADDITIONAL MENU
Application of Data Mining to Group the Spread of Covid-19 in West Java Province, Indonesia Using the K-Means Algorithm
Abstract
Covid-19 cases in Indonesia have not subsided. The spread of COVID-19 cases has reached provinces in Indonesia such as West Java, which is one of the many locations where the virus has been detected. COVID-19 cases have spread to 28 districts and cities in West Java. Researchers must determine the level of distribution of COVID-19 cases which are divided into three clusters, namely high, medium, and low clusters, so that the West Java Regional Government can take action in an effort to prevent the spread of COVID-19 cases. Researchers use data mining and the K-means Clustering algorithm. to examine the distribution of COVID-19 cases. This data set for the study of the spread of COVID-19 in West Java Province, covers data for the period August 1, 2020 to July 15, 2022. To perform K-means Clustering on the data set, researchers used RapidMiner Studio 9.10. The results of this study indicate that in West Java there are two cities with the highest Covid-19 clusters, namely Bekasi and Depok, six cities and district in the medium cluster, namely city of Bogor, Bandung, and Karawang District, Bekasi, Bandung and Bogor, and The twenty district/cities in the lowest cluster for the spread of COVID-19 cases are the cities of Banjar, Cimahi, as well as the districts of West Bandung, Ciamis, Cianjur, Cirebon, Garut, Indramayu, Kuningan, Majalengka, Pangandaran, Purwakarta, Subang, Sukabumi, Sumedang, Tasikmalaya.
Keywords
Data Mining; Covid-19; K-Means; Clustering
Full Text:
PDFReferences
“WHO Resmi Sebut Virus Corona Covid-19 sebagai Pandemi Global Halaman all - Kompas.com.” https://www.kompas.com/sains/read/2020/03/12/083129823/who-resmi-sebut-virus-corona-covid-19-sebagai-pandemi-global?page=all (accessed Jul. 27, 2022).
“Indonesia COVID - Coronavirus Statistics - Worldometer.” https://www.worldometers.info/coronavirus/country/indonesia/ (accessed Jul. 27, 2022).
Elsa Ramadanti and Muhamad Muslih, “ANALISIS PERSEBARAN KASUS COVID-19 DI JAWA BARAT MENGGUNAKAN METODE K-MEANS CLUSTERIN | Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra,” SISMATIK (Seminar Nasional Sistem Informasi dan Manajemen Informatika), 2021. https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/41 (accessed Jul. 18, 2022).
“Protokol Kesehatan 5 M di Masa PPKM – Pusat Studi Lingkungan Hidup UGM.” https://pslh.ugm.ac.id/protokol-kesehatan-5-m-di-masa-ppkm/ (accessed Jul. 27, 2022).
V. Zarikas, S. G. Poulopoulos, Z. Gareiou, and E. Zervas, “Clustering analysis of countries using the COVID-19 cases dataset,” Data in Brief, vol. 31, Aug. 2020, doi: 10.1016/J.DIB.2020.105787.
M. Azarafza, M. Azarafza, and H. Akgün, “Clustering method for spread pattern analysis of corona-virus (COVID-19) infection in Iran,” Journal of Applied Science, Engineering, Technology, and Education, vol. 3, no. 1, pp. 1–6, Apr. 2021, doi: 10.35877/454RI.ASCI31109.
G. D. Rembulan, T. Wijaya, D. Palullungan, K. N. Alfina, and M. Qurthuby, “Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) di Setiap Provinsi di Indonesia Berdasarkan Analisis Klaster,” JIEMS (Journal of Industrial Engineering and Management Systems), vol. 13, no. 2, pp. 74–86, Sep. 2020, doi: 10.30813/JIEMS.V13I2.2280.
A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means,” Fountain of Informatics Journal, vol. 5, no. 2, pp. 52–59, Oct. 2020, doi: 10.21111/FIJ.V5I2.4905.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “ANALISIS DATA MINING UNTUK CLUSTERING KASUS COVID-19 DI PROVINSI LAMPUNG DENGAN ALGORITMA K-MEANS,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
M. N. V. Waworuntu and M. F. Amin, “PENERAPAN METODE K-MEANS UNTUK PEMETAAN CALON PENERIMA JAMKESDA,” KLIK - KUMPULAN JURNAL ILMU KOMPUTER, vol. 5, no. 2, pp. 190–200, Sep. 2018, doi: 10.20527/KLIK.V5I2.157.
L. Maulida et al., “Penerapan Data Mining dalam Mengelompokkan Kunjungan Wisatawan ke Objek Wisata Unggulan di Prov. DKI Jakarta dengan K-Means,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 2, no. 3, pp. 167–174, Mar. 2018, doi: 10.14421/jiska.2018.23-06.
F. Profesio Putra, P. Negeri Bengkalis, J. Bathin Alam, and S. Alam, “K-MEANS UNTUK MENENTUKAN CALON PENERIMA BEASISWA BIDIK MISI DI POLBENG,” INOVTEK Polbeng - Seri Informatika, vol. 1, no. 1, pp. 87–94, Jun. 2016, doi: 10.35314/ISI.V1I1.129.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” Jurnal Tekno Kompak, vol. 15, no. 2, pp. 25–36, Aug. 2021, doi: 10.33365/JTK.V15I2.1162.
Y. F. S. Y. Damanik, S. Sumarno, I. Gunawan, D. Hartama, and I. O. Kirana, “Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Sumatera Utara Menggunakan Algoritma K-Means,” Jurnal Ilmu Komputer dan Informatika, vol. 1, no. 2, pp. 109–132, Nov. 2021, doi: 10.54082/JIKI.13.
R. W. Sari, A. Wanto, and A. P. Windarto, “IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, Oct. 2018, doi: 10.30865/KOMIK.V2I1.930.
“Dashboard Statistik Kasus COVID-19 Provinsi Jawa Barat - Dashboard Jabar.” https://dashboard.jabarprov.go.id/id/dashboard-pikobar/trace/statistik (accessed Jul. 27, 2022).
DOI: http://dx.doi.org/10.24014/ijaidm.v5i2.18721
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats