ADDITIONAL MENU
Identifying Characteristics of Households Recipient of the Government’s Social Protection Program
Abstract
According to Statistics Indonesia, the number of poor people increased by 1,12 million people in March 2020. In March 2021, the percentage of poor people increased by 0,36 points compared to March 2020. The percentage of poor people in Banten Province has increased in the last three years (2019-2021). One way to reduce poverty by the government is to increase social protection programs. The characteristics of households receiving social protection programs were identified by modeling the classification of households using the random forest technique, obtaining important variables using the permutation feature importance and Shapley additive explanations interpretation techniques, and analyzing the most important variables from the two interpretations methods. Handling the imbalance data on the response variables using SMOTE technique and evaluating the classification model obtained an AUC value of 0,718. The important variables were selected from the permutation feature importance and Shapley additive explanation methods based on a consistent ranking at the top. Shapley’s additive explanation was more consistent than permutation feature importance. Six important, namely capita expenditure, education of the head of household, age of head of household, source of drinking water, floor area, and the number of household members.
Keywords
Permutation feature importance; Random forest; SHAP; SMOTE; Social protection
Full Text:
PDFReferences
Muhamad FI. Pengaruh Bantuan Sosial terhadap Kemiskinan di Indonesia. Undergraduare Thesis. Bogor: IPB University; 2021.
Irawan H. Faktor-Faktor Rumah Tangga yang Mencirikan Tingkat Kerawanan Pangan. Master Thesis. Bogor: Postgraduate IPB University; 2019.
Irfani R. 2021. Pendekatan Eksploratif untuk Melihat Peubah Penciri Rumah Tangga Berdasarkan Kemiskinan dan Kerawanan Pangan. Master Thesis. Bogor: Postgraduate IPB University; 2021.
Suswanto D. Analisis Perbandingan Metode Machine Learning pada Prediksi Khasiat Jamu. Undergraduare Thesis. Bogor: IPB University; 2016.
Farel F. Pemodelan Klasifikasi Keterlambatan Pembayaran UKT Mahasiswa IPB dengan Random Forest dan AdaBoost. Undergraduare Thesis. Bogor: IPB University; 2021.
Albasia MAY. Klasifikasi Keberhasilan Melanjutkan Pendidikan Jenjang SMA di Provinsi Banten dengan Metode CART dan Random Forest. Undergraduare Thesis. Bogor: IPB University; 2018.
Rosita, AA. Evaluasi Metode Ensemble untuk Klasifikasi Multi Kelas Data Tak Seimbang. Undergraduare Thesis. Bogor: IPB University; 2021.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research. 16(1):321-357.
Molnar, C. Interpretable Machine Learning. A Guide for Making Black Box Models Explanaible. https://christophm.github.io/. 2021.
Breiman L, Friedman J, Stone C, Olshen R. Classification and Regression Trees (Wadsworth Statistics/Probability). New York CRC Press. 1984.
Agresti A. Categorical Data Analysis. New Jersey (US); Wiley. 2002.
Lundbergunberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems. Volume ke-2017-Desember: 4768-4777, arXiv: 1705.07874v2. 2017.
Burnaev E, Erofeey P, Papanov A. Influence of Resampling on Accuracy of Imbalanced Classification. Eighth International Conference on Machine Vision (ICMV). 9875. 2015.
Bappenas (Badan Perencanaan Pembangunan Nasional). Perlindungan Sosial di Indonesia: Tantangan dan Arah ke Depan. Cetakan I. Jakarta; Bappenas. 2014.
BPS (Badan Pusat Statistik). Profil Kemiskinan di Indonesia. Jakarta; BPS RI. 2021.
Breiman L. Random Forest. Mach Learn. 45(1):5-32. https://doi.org/10/1023/A:1010933404324. 2001.
James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning with Applications in R. Springer; Network. DOI: https://doi.org/10.1007/978-1-4614-7138-7. 2013.
Katsuya F, Fukazawa Y, Kapoor N, Kito T. Pairwise acquisition prediction with SHAP value interpretation. The Journal of Finance and Data Science 7 (2021) 22-24. 2021.
Marie AG, Kaufmann T, Quintana DS, Winterton A, Andreassen OA, Westlye LT, Ebmeier KP. Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study. DOI: 10.1016/j.bbr.2021.113510. 2021.
Mattjik AA, Sumertajaya IM. Sidik Peubah Ganda dengan Menggunakan SAS. Bogor; IPB University. 2011.
Raquel R, Bajorath J. Chemistry-centric Explanation of Machine Learning Models, Artificial Intelligence in the Life Sciences. DOI: https://doi.org/10.1016/j.ailsci.2021.100009. 2021.
DOI: http://dx.doi.org/10.24014/ijaidm.v5i1.18579
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats