ADDITIONAL MENU
Clustering Analysis of Financial Distress on Tourism Sector Companies Go-Public Due to LSSR
Abstract
Large-Scale Social Restriction Policy (LSSR) to prevent the spread of COVID-19 has a big impact on economic activities, one of which is activities in the tourism sector. Restrictions on outdoor activities reduce the productivity of companies that can lead to bankruptcy. By knowing the financial condition of the company, we can predict whether the company will experience financial pressures or not. This paper tries to analyze the grouping of 100 companies in the tourism sector before (the first quarter of 2020) and after (the second quarter of 2020) the application of LSSR conditions. This paper uses the K-Means grouping method and the financial ratio of each company. Then, the variables in the analysis are Return on Asset (ROA), Total Asset Turn Over Ratio (TATO), Debt to Equity Ratio (DER), and Price to Earning Ratio (PER). The results showed that in the second quarter of 2020 or after the implementation of LSSR, almost all companies tend to be in a financially depressed condition. The number of companies that are under financial pressure after the implementation of this policy is 98 companies.
Keywords
Cluster Analysis; Financial Ratio; Financial Distress; PSBB; K-Means
Full Text:
PDFReferences
Badan Pusat Statistik. (2018). Cakupan Aktivitas Pariwisata Dalam Klasifikasi Baku Lapangan Usaha Indonesia (KBLI) 2015. Jakarta: BPS.
Budiyanti, E. (2020). Dampak Virus Corona Terhadap Sektor Perdagangan Dan Pariwisata Indonesia. Info Singkat XII,(4).
Christian, Michael and Hidayat, Firman. (2020). Dampak Coronavirus Terhadap Ekonomi Global. Perkembangan Ekonomi Keuangan dan Kerja Sama Internasional - Edisi I: 87-112.
Prastowo, D., & Rifka, J. (2015). Analisis Laporan Keuangan, Yogyakarta. UPP STIM YKPN.
Ediyanto, M. N. M., & Satyahadewi, N. (2013). “Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis”. BIMASTER, 2(02).
Exchange, Indonesia Stock.(2020). "IDX Statistics."
Firdausi, N., Wessiani, N. A., & Santosa, B. (2015). Analisis Financial Distress Dengan Pendekatan Data Mining Pada Industri Manufaktur Go Public Di Indonesia. Jurnal ITS. Surabaya.
Harahap, S. S. (2001). Analisa kritis atas laporan keuangan. RajaGrafindo Persada.
Hasibuan, Rensi. (2019).Penentuan Variabel Pembeda Financial Distress untuk Menggolongkan Perusahaan Green Industry Tahun 2017. Skripsi Politeknik Statistika STIS: tidak dipublikasikan.
Edy, I., & Muhammad, F. (2015). Advanced Clustering: Teori dan Aplikasi. Dee Publish: Jakarta.
Johnson, R. A., & Wichern, D. W. (2002). Applied Multivariate Statistical Analysis (Vol. 5, No. 8). Upper Saddle River, NJ: Prentice hall.
Kasmir, S. E. MM. (2016). Analisis Laporan Keuangan. Jakarta: Rajawali Pers. 2016.
Pramana, S., Yuniarto, B., Mariyah, S., Santoso, I., & Nooraeni, R. (2018). Data Mining dengan R Konsep Serta Implementasi. Jakarta: InMedia.
Platt, H. D., & Platt, M. B. (2002). Predicting Corporate Financial Distress: Reflections on Choice-Based Sample Bias. Journal of Economics and Finance, 26(2), 184-199.
Rodoni, A. Dan Ali, Herni. (2010). Manajemen Keuangan. Edisi Pertama. Jakarta: Mitra Wacana Media.
Whitaker, R. B. (1999). The Early Stages of Financial Distress. Journal of Economics and Finance, 23(2), 123-132.
DOI: http://dx.doi.org/10.24014/ijaidm.v4i1.11303
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats