Automatic Car Detection Using Haar Cascade Classifier and Convolutional Neural Network for Traffic Density Estimation

Miftahul Hasanah, Gulpi Qorik Oktagalu Pratamasunu, Ratri Enggar Pawening

Abstract


Based on a survey released by the TomTom Traffic Index in 2018, Indonesia was ranked seventh in the category of the most congested country in the world. One of the factors affecting traffic congestion in Indonesia is an inflexible and conventional traffic management system. In this regard, it is necessary to have a better traffic management system such as a Smart Traffic Light. One way to implement a smart traffic light system is to make a vehicle detection and counting system on the traffic CCTV video automatically. The methods used in this research are Haar Cascade Classifiers and Convolutional Neural Network. Haar Cascade Classifiers have fast computation processes and CNN is applied to validate the detection results of the Haar Cascade method for better accuracy. The average level of accuracy achieved by the system on quiet test data is 82%, normal test data is 69%, and busy test data is 60%. Meanwhile, the average computation time needed by the system for the quiet test data is 0.63 seconds, the normal test data is 0.52 seconds, and the busy test data is 1.05 seconds.

Keywords


Traffic Density Estimation; Haar Cascade; CNN

Full Text:

PDF

References


G. L. Djavendra, S. Aisyah dan E. R. Jamzuri, “Desain Sistem Pengatur Lampu Lalu Lintas Dengan Identifikasi Kepadatan Kendaraan Menggunakan Metode Subtraction,” Jurnal Nasional Teknik Elektro, pp. 130-137, 2018.

R. Adistya dan . M. A. Muslim, “Deteksi dan Klasifikasi Kendaraan menggunakan Algoritma Backpropagation dan Sobel,” Journal of Mechanical Engineering and Mechatronics, pp. 65-73, 2016.

D. A. Priutomo, R. Magdalena dan N. Andini, “Simulasi Dan Analisis Sistem Smart Traffic Light Berbasis Pengolahan Citra Digital Dengan Metode Deteksi Tepi Dan Segmentasi,” e-Proceeding of Engineering, pp. 478-485, 2016.

M. Syarif dan W. , “Deteksi Kedipan Mata Dengan Haar Cascade Classifier Dan Contour Untuk Password Login Sistem,” Techno.COM , pp. 242-249, 2015.

L. Yang, P. Luo, C. C. Loy dan X. Tang, “A Large-Scale Car Dataset for Fine-Grained Categorization and Verification,” dalam Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

L. Fei-Fei dan P. Perona, “A Bayesian Hierarchical Model for Learning Natural Scene Categories,” dalam IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

M. Rezaei, “Creating a Cascade of Haar-Like Classifiers: Step by Step,” pp. 1-8, 2013.




DOI: http://dx.doi.org/10.24014/ijaidm.v4i1.10785

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone./ Hp.: +62 852-7535-9942


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | Journal Factor | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA

IJAIDM Stats