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ABSTRACT 

 
The decline in Heavy Oil (HO) production at PT XYZ is strongly influenced by unplanned well down 

events, which generate significant Loss Production Opportunity (LPO) and disrupt the achievement of 
production targets. This study aims to develop and compare two time series forecasting methods, ARIMA and 
Holt‑Winters Exponential Smoothing (HWES), to predict future well down incidents caused by Mechanical 
Pumping Unit (MPU) failures. Model accuracy was evaluated using the Mean Absolute Percentage Error 
(MAPE), and the Seasonal ARIMA (2,2,1) Model was identified as the most accurate, achieving a MAPE value 
of 4.56 percent, significantly outperforming both HWES variants, which produced much higher errors (highest 
MAPE 27.37 percent). Using this model, the estimated financial loss in the Base Case scenario is projected at 
Rp 13.35 billion per year, with the worst sase scenario potentially reaching Rp 41.80 billion. The forecasting 
results provide substantial managerial value by supporting informed operational decision‑making. Three key 
strategic implications are obtained. First, financial risk control can be strengthened by using the Upper Bound 
95 percent as a basis for justifying MPU upgrade budgets. Second, production target planning becomes more 
realistic by incorporating predicted LPO values. Third, integrating LPO‑based thresholds into KPI monitoring 
establishes an early warning system that shifts operational control from reactive to anticipatory. 
 
Keywords: ARIMA, Heavy Oil, Holt Winters Exponential Smoothing, Time Series Forecasting, Unplanned 

Well Down. 
 

Introduction 
 

The demand for crude oil in Indonesia is critically high, but national oil production continues to face a 
sustained annual decline. This trend reflects a substantial challenge within the upstream oil and gas sector [1]. 
One of the oil and gas companies experiencing the impact of this production decline is PT XYZ. This company 
is one of the largest oil and gas corporations in Indonesia, managing a highly strategic oil and gas working 
area. One of the products from this working area is Heavy Oil (HO), which is a crude defined by its elevated 
viscosity and inherently poor flow characteristics [2]. In producing petroleum products, equipment called the 
Mechanical Pumping Unit (MPU) is required. The MPU is the most widely utilized artificial lift method in the 
petroleum industry for raising reservoir fluids to the surface [3]. The type of MPU utilized at PT XYZ is the 
Sucker Rod Pump (SRP). This system consists of two main components: the surface unit, which is the driving 
mechanism, and the downhole pump. SRPs are generally used in wells with low-to-medium flow rates and 
varying depths, making them a dominant technology in oil production operations across many oils field [4]. 

One factor contributing to the production decline is well-down incidents, where wells are temporarily 
shut due to technical or non‑technical issues. These incidents create Loss Production Opportunity (LPO), 
representing potential oil output lost during downtime. Figure 1 presents a comparison between HO production 
and well down cases caused by MPU failures, showing a clear inverse relationship from January 2024 to May 
2025. MPU failures fluctuate sharply while oil production consistently declines, indicating that MPU failures 
are a major source of LPO. The high uncertainty of these events also complicates operational planning, 
highlighting the need for a robust predictive model to assess future risks. 
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Figure 1. Production & well down trend of PT XYZ 

 

This research develops and compares two time series forecasting methodologies, the Autoregressive 
Integrated Moving Average (ARIMA) and the Holt-Winters Exponential Smoothing (HWES). The ARIMA is 
a time series forecasting model that integrates elements from both the Moving Average (MA) and 
Autoregressive (AR) techniques. This model utilizes historical and current data to generate accurate short-term 
predictions [5]. Whereas the HWES method is a type of exponential smoothing utilized when the data exhibits 
both trend and seasonality in its pattern. The HWES method analyzes three distinct data components: it assigns 
greater weight to recent data or the data level, estimates the pattern of tendency or data trend, and estimates the 
seasonal pattern of the data, consequently yielding forecasts with a low error rate [6]. The combination of 
ARIMA and HWES is selected to address the complex characteristics of MPU‑related well down data. ARIMA 
is used for its strength in modeling stationery and transformed non‑stationary data, effectively capturing linear 
and short‑term patterns. HWES complements this by handling data with trend and potential seasonality, 
producing adaptive forecasts for non‑stationary and recurring patterns. 

Research on predicting MPU‑induced well down events, particularly in Indonesian heavy‑oil operations, 
remains limited, with most studies focused on equipment reliability and maintenance rather than time‑series 
forecasting. This gap indicates the absence of a predictive framework capable of converting historical data into 
reliable forecasts to reduce LPO. 

This study compares ARIMA and HWES based on MAPE to determine the most accurate model for 
supporting data‑driven mitigation strategies. As MPU failures are a major and increasing cause of well down 
incidents, and fall under the Production HO Department’s operational scope, the need for this analysis is 
critical. The results are expected to clarify failure dynamics, forecast future incidents, and guide proactive 
efforts to improve MPU reliability and overall production performance. 

 

Research Methods 
 
The research methods will be illustrated in the conceptual framework diagram in Figure 2. 

 

 
Figure 2. Conceptual framework 
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This research aims to identify and obtain the best and most accurate forecasting model (between the 
ARIMA and HWES methods) to predict future well down caused by MPU failure. Furthermore, it aims to 
formulate and recommend data-driven mitigation strategies derived from the results of the best and most 
accurate model, as an effort to enhance MPU reliability and optimize overall production performance. Based 
on Figure 2, the research methods comprise in four main stages.  
 
Data Collecting 
Data Collection involves gathering and cleaning historical well down and production data (2022–2025). The 
dataset prepared for processing is presented in Table 1. 
 

Table 1. Data set of well down events 

Month  
 Number of MPU Event  

2022 2023 2024 2025 

Jan 819 663 1276 642 
Feb 500 380 1122 488 

Mar 1074 570 1152 637 

Apr 877 353 1034 710 
May 976 417 1512 479 

Jun 608 462 1139 383 

Jul 533 599 1201 223 
Aug 476 786 1204  
Sept 467 910 1342  
Oct 537 925 1418  
Nov 769 1020 988  
Dec 924 1334 987  

 
Table 1 presents the historical time series dataset used in this research, which contains records of well 

down events from January 2022 to July 2025. The inclusion of data up to July 2025 reflects the most recent 
operational observations available, ensuring that the forecasting models are trained using the latest patterns and 
volatility present in the field. This approach strengthens the robustness and relevance of the predictive results. 
In addition to the well-down data, Table 1 also incorporates production and Loss Production Opportunity 
(LPO) information. These supplementary datasets enable forecasting outputs to be directly linked with actual 
production performance and are specifically utilized to evaluate the potential LPO that may arise from MPU 
failures. 

 
Table 2. Production data & LPO 

Category 

Production 

(BOPD) in 

Monthly 

Loss Production Opportunity 

MPU Issue (BOPD) in Monthly 

Average 44,900 632 

Minimum 33,730 290 

Maximum 49,956 993 

 
Table 2 provides a statistical summary of the Production Data and LPO related to MPU events, 

measured in Barrels of Oil Per Day (BOPD) in monthly. Over the observed period, the average monthly 
production was 44,900 BOPD, with a minimum recorded production of 33,730 BOPD and a maximum 
reaching 49,956 BOPD. Concurrently, the LPO attributed specifically to MPU issues averaged 632 BOPD 
monthly. This LPO figure fluctuated significantly, ranging from a minimum loss of 290 BOPD to a peak loss 
of 993 BOPD, highlighting the considerable financial and operational impact caused by MPU failures 
 
Data Processing 

Data Processing focuses on developing time series forecasting models by implementing both ARIMA 
and HWES to predict future well down, following the identification of historical trends and seasonality. Last, 
Results Interpretation includes comparing the accuracy of both models and analyzing the best forecast to derive 
insights into future well down potential and frequency. This data processing is specifically conducted using the 
R language within R Software version 4.5.1. R is software developed to support statistical analysis, data 
science, and predictive modeling [7]. The selection of this Software was based on its characteristics and 
functionality. R allows users to freely modify, develop, and share code. This characteristic ensures that R 
continuously evolves in line with the needs of research and industry. One of R’s main attractions is the 
availability of thousands of packages created by both the community and independent developers to support 
statistical analysis, data science, and predictive modeling. These packages encompass various functions, 
ranging from data processing and visualization to the development of web-based applications [8] [9]. 
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Therefore, in this research, the process of creating the ARIMA and HWES models, up to the evaluation of both 
models, will be processed using this software. 

 

Autoregressive Integrated Moving Average (ARIMA) 
The Autoregressive Integrated Moving Average (ARIMA) Model is often also referred to as the Box-

Jenkins time series method. ARIMA demonstrates excellent accuracy for short-term forecasting [10]. The 
ARIMA model is one that completely disregards independent variables when generating a forecast. Instead, 
ARIMA utilizes the past and present values of the dependent variable to produce accurate short-term forecasts. 
ARIMA is suitable when the observations within a time series are statistically dependent on one another [11]. 
A crucial point to note is that most time series are non-stationary, and the Autoregressive (AR) and Moving 
Average (MA) aspects of the ARIMA model only pertain to stationary time series. Stationarity implies the 
absence of growth or declines in the data. The data must roughly maintain a horizontal level along the time 
axis. In other words, data fluctuations remain around a constant mean value, independent of time, and the 
variance of these fluctuations essentially remains constant over time [12]. Seasonality is defined as a pattern 
that recurs at fixed time intervals. For stationary data, the seasonal factor can be determined by identifying 
autocorrelation coefficients at two or three time-lags that are significantly different from zero. Autocorrelations 
that are significantly different from zero indicate the presence of a pattern within the data. To recognize the 
presence of a seasonal factor, one must observe high autocorrelation. To address seasonality, the general 
shorthand notation is [13]: 
 

ARIMA (p,d,q)(P,D,Q)s                             (1) 

 

Within this notation, the first three parameters, (𝒑, 𝒅, 𝒒), represent the non-seasonal component of the 

model. Conversely, the capital letters, (𝑷,𝑫, 𝑸) denote the seasonal component of the model, which captures 

the repeating patterns. Finally, 𝑺 represents the total number of periods per season (e.g., 𝑺 = 𝟏𝟐 for monthly 

data with annual seasonality). 

 

 
Figure 3. Snippet of ARIMA data processing using R 

 

Figure 3 provides a computational snippet detailing the preliminary steps and candidate model 

selection for the ARIMA process implemented in R. This code segment is presented as an excerpt from the 

complete script. 

 

Holt-Winters Exponential Smoothing (HWES) 
 The Holt‑Winters Exponential Smoothing (HWES) is a time‑series forecasting method used to 
analyze data that exhibits both trend and seasonal patterns. Unlike simpler forecasting methods that only 
consider the level component, this method is a combination of the HWES and the Winter method. In the HWES, 
primary attention is given to estimating the trend component that develops over time, while the Winter method 
focuses on depicting the seasonal variations that recur over a specific period. Based on these two approaches, 
the HWES is capable of simultaneously capturing the long-term trend dynamics and the influence of seasonal 
cycles present in the time series data [14]. The HWES method is also known by the term Triple Exponential 
Smoothing because it involves three primary smoothing parameters. First, the parameter α (alpha) is used to 
smooth the level value or the fundamental mean of the data. Second, the parameter β (beta) plays a role in 
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refining the trend changes that occur over time. Third, the parameter γ (gamma) is responsible for adjusting 
the seasonal pattern so that the model can capture periodic variations more accurately [15]. 

The HWES method essentially has two main forms: the additive model and the multiplicative model 
[16]. The Additive HWES Model is generally employed when the seasonal pattern in the time series is constant 
or is not influenced by the magnitude of the data values. The amplitude of the seasonal fluctuation tends to 
remain fixed and independent of both the average data level and the scale of the data being analyzed [17]. In 
contrast to the additive model, which assumes constant seasonal variation, the multiplicative model allows the 
magnitude of the seasonal component to adjust relative to the scale of the data [18]. 
 

 
Figure 4. Snippet of HWES data processing using R 

 
Figure 4 provides a computational snippet detailing the execution of the HWES forecasting and visualization 

process implemented in R. This code segment is presented as an excerpt from the complete script. 

 
Interpretation of Data Processing and Analysis 

The Interpretation of Data Processing and Analysis section encompasses the critical process of 
comparing the forecasting results generated by both the ARIMA and HWES models. This comparison involves 
rigorously evaluating the predictive accuracy of the two models using the error measurement. Error 
measurement is used as a benchmark to compare the performance of various forecasting models under the same 
conditions [17].  One of the metrics utilized in error measurement is the Mean Absolute Percentage Error 
(MAPE). Mean Absolute Percentage Error (MAPE) is a measure widely used in quantitative forecasting to 
assess the accuracy level of prediction results. MAPE calculation is performed by taking the average percentage 
difference between the actual data and the forecasted value, where this difference is calculated in absolute 
terms, meaning it does not distinguish between positive and negative differences [19]. The MAPE formulation 
is detailed in the following equation: 
 

𝐌𝐀𝐏𝐄  =  
𝟏

𝒏
∑ |

𝒀𝒕−𝑭𝒕

𝒀𝒕
|𝒏

𝒕=𝟏 × 𝟏𝟎𝟎               (2) 

 

Where 𝒏 represents the total number of observations used in the evaluation. 𝒀𝒕 is defined as the actual 

value of the time series at time 𝒕 (where 𝒕 = 1, 2, …, 𝒏), and 𝑭𝒕 is the corresponding value predicted by the 

forecasting model at time 𝒕. The formula computes the average of absolute percentage errors, providing a scale-

independent measure of the model's predictive accuracy [19]. 

 

Results and Discussion 
 

This section details the findings derived from the time series forecasting models developed in this 

study, followed by a comprehensive discussion of their implications. First, the result of data processing is data 

decomposition. Based on Figure 5, the decomposition confirms that the time series consists of three key 

components, namely a distinct trend, recurring seasonality, and a randomness component. The trend component 

shows a gradual decline at the beginning of 2022, followed by a steady upward movement throughout 2023, 

before reaching its peak in early 2024 and slowly declining again toward mid‑2025. This pattern indicates that 

MPU well down incidents follow a medium‑term structural movement rather than short‑term fluctuations. The 

seasonal component displays repeated monthly variations, although the magnitude of these oscillations is 
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relatively moderate, suggesting that recurring operational or environmental cycles contribute to periodic 

increases and decreases in MPU failures. The random component exhibits strong irregular fluctuations across 

the entire period, characterized by sharp rises and drops that do not follow any systematic pattern. In the context 

of MPU events, this randomness likely represents sudden equipment failures, unplanned operational 

disruptions, and unpredictable subsurface behaviors that cannot be anticipated using routine operational 

patterns. 

The presence of a clear and evolving trend demonstrates that the data remain non‑stationary in the 

mean and therefore requires differentiation for proper modeling. The combination of trend, seasonality, and 

substantial random noise confirms that the data are complex and unstable, making simple forecasting 

approaches inadequate. Consequently, the ARIMA and HWES methods are validated as suitable for addressing 

these characteristics. In addition, identifying the trend and seasonal structures provides operational benefits 

because it helps the company anticipate months with an increased likelihood of MPU failures 

 

 
Figure 5. Data decomposition 

 

Second, the results of data processing are presented through descriptive statistics. The descriptive 

statistics in Table 3 show significant fluctuation and dispersion. The number of monthly incidents spans a very 

wide range, from a minimum value of 223 to a maximum of 1,512, indicating a high level of volatility in 

MPU‑related well down events. The mean value of 812 is slightly higher than the median of 786, suggesting 

that the data distribution is relatively symmetrical. Most importantly, the high standard deviation of 333.95, or 

approximately 41 percent of the mean, confirms that MPU incidents vary widely and remain unstable from 

month to month. This high level of volatility may be attributed to several factors such as instability in MPU 

performance, variations in reservoir behavior, fluctuating operational loads, or uneven maintenance 

effectiveness across periods. All repair activities are also reactive rather than proactive, which means sudden 

surges in failures cannot be prevented earlier and are only addressed after they occur. This condition forces the 

production team to operate under considerable uncertainty, increasing the risk of insufficient spare parts 

availability, limited manpower, and potential delays in handling sudden rises in MPU failure incidents. 

 
Table 3. Statistic description of well Down caused by MPU failure 

Category Value of Statistic Description 

Min 223 
Max 1,512 

Mean 812 

Median 786 
St.Dev 333.95 

 

The application of the ARIMA model in this research is the Seasonal ARIMA (SARIMA), which is 

justified by the strong autocorrelation confirmed in the historical well down data. Initial data decomposition 

revealed a clear trend and seasonality, confirming that the time series was non-stationary and unsuitable for 

simple forecasting methods. To address this, the Box-Cox Transformation was first applied to stabilize variance 

(homoscedasticity) due to a high initial Augmented Dickey-Fuller (ADF) 𝑃 − 𝑣𝑎𝑙𝑢𝑒 . Subsequently, a Second 

Differentiation (𝑑 = 2) was performed on the transformed data to eliminate the non-stationary trend. A second 

ADF test confirmed that this differentiated series was mean-stationary (with a 𝑃-value = 0.01), thereby setting 

the regular differentiation order (𝑑) to 2. Based on the ARIMA model identification process conducted 

previously, two models were obtained: SARIMA(2,2,1) and SARIMA(1,2,0). 
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Figure 6. SARIMA forecasting output plot graph 

 

The SARIMA Forecasting Output Plot (Figure 6) compares the historical data (black line) with the 

forecast (blue line) for the period August 2025 to June 2026. The SARIMA(2,2,1) Model (left) shows that the 

point forecast adheres to the historical seasonal pattern with a more stable trend. The blue line (forecast) 

remains within the gray area, which represents the confidence interval (CI). This model’s CI is relatively 

narrow, indicating superior stability and reliability. Conversely, the SARIMA(1,2,0) Model (right) exhibits 

greater historical fluctuation. Most crucially, its confidence interval (CI) is significantly wider, even 

encompassing negative values. This extreme CI width verifies the high degree of uncertainty associated with 

this model. Therefore, based on its more controlled trend and narrower confidence interval, the SARIMA(2,2,1) 
Model is deemed more feasible and reliable for future prediction. narrower confidence interval increases the 

reliability of planning decisions, such as estimating LPO exposure, scheduling preventive workover, and 

determining realistic production targets. 

 Third, the HWES model was developed as an alternative to the ARIMA/SARIMA approach. The 

HWES Forecasting Output Plot (Figure 7) provides a visual comparison of the historical data against the 

forecasts for both HWES variants (August 2025 to June 2026). While the Multiplicative Model (left) shows a 

stable point forecast, its Confidence Interval (CI) is extremely wide, reaching from an upper bound near 3000 

down to approximately -2000, signifying extreme uncertainty. Conversely, the Additive Model (right) presents 

a relatively narrower CI but still exhibits high volatility. Overall, both HWES models resulted in forecasts with 

a high degree of uncertainty. Therefore, a subsequent comparison of the MAPE accuracy metric is essential to 

determine the most reliable HWES model for future projections. These wide intervals indicate that HWES-

based predictions are less suitable for operational decision-making, especially where precise planning of 

production, maintenance, or budgeting is required. 

 

 
Figure 7. HWES forecasting output plot graph 
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Subsequently, the determination of the best model is carried out through a comparison of in-sample 

accuracy metrics (fitting accuracy) such as the Mean Absolute Percentage Error (MAPE). Based on the lowest 

MAPE value, the single best model will be selected and utilized as the primary basis for drawing final 

forecasting conclusions in this study. Based on Table 4, the smallest MAPE value is 4.5619%, achieved by the 

SARIMA(2,2,1) model. This low percentage indicates that the SARIMA(2,2,1) model has the highest fitting 

accuracy among all candidates and is therefore selected as the best and most reliable model for forecasting 

future well down events. The results of this research are consistent with previous studies, where the error 

generated by ARIMA was significantly better than that of HWES [20]. With its high accuracy, the SARIMA 

(2,2,1) model provides a dependable foundation for LPO risk quantification, early warning indicators, and 

budget allocation strategies. 

 
Table 4. MAPE of forecasting model 

Model MAPE (%) 

SARIMA (2,2,1) 4.56 
SARIMA (1,2,0) 5.22 

HWES Multiplicative  27.37 

HWES Additive 20.91 

 

Based on the MAPE results, the best Forecasting Results for the SARIMA(2,2,1) model is as follows: 

 
Table 5. The best forecasting result 

Periode 

SARIMA (2,2,1) 

Point 

Forecast 

Lower 

Bound 

(80%) 

Upper 

Bound 

(80%) 

Lower 

Bound 

(95%) 

Upper 

Bound 

(95%) 

Aug-25 59.906 43.415 76.396 34.685 85.126 

Sep-25 41.636 20.983 62.290 10.050 73.223 
Oct-25 59.046 27.567 90.524 10.903 107.188 

Nov-25 64.163 27.361 100.965 7.879 120.446 

Dec-25 89.786 43.967 135.604 19.712 159.859 
Jan-26 47.072 -4.049 98.194 -31.111 125.256 

Feb-26 24.241 -33.843 82.326 -64.591 113.074 

Mar-26 21.962 -39.859 83.783 -72.586 116.510 
Apr-26 5.972 -62.243 74.187 -98.354 110.298 

May-26 3.367 -68.638 75.373 -106.756 113.491 

Jun-26 11.608 -66.400 89.615 -107.694 130.909 
Jul-26 18.140 -63.704 99.984 -107.030 143.309 

 

The final forecasting results from the selected SARIMA(2,2,1) model project the potential LPO 

reduction achievable through proactive mitigation efforts. The forecast reveals a substantial potential average 

reduction of 91.719 BOPD under the Conservative Scenario, which translates to a maximum financial risk of 

$2.50 Million (or Rp 41.80 billion) over the forecast period if well down incidents are not adequately 

controlled. These robust predictive outputs form the foundation for four strategic managerial pillars are 

Financial Risk Control (by allocating budgets based on the worst-case scenario loss), Production Target 

Planning (using the Point Forecast to set realistic targets), KPI Integration for Early Warning (shifting 

performance control from reactive to predictive), and Justifying Operational Investment (prioritizing 

preventive maintenance in months with the highest forecasted LPO to maximize production gains).  

Beyond supporting strategic planning, the forecasting results also provide clear operational benefits. 

The predicted LPO values help identify months with higher MPU‑failure risk, enabling maintenance teams to 

schedule preventive work more effectively and avoid unplanned downtime during high‑production periods. 

These insights also improve manpower and spare‑parts planning, reducing the likelihood of emergency repairs 

and operational disruptions. The quantified financial risk strengthens the justification for preventive 

maintenance spending, allowing management to prioritize interventions that deliver the greatest cost 

avoidance. Incorporating forecast outputs into routine production monitoring enables earlier anomaly 

detection, allowing operators to initiate corrective actions before failures escalate. Additionally, aligning 

spare‑parts procurement with predicted failure patterns improves inventory efficiency and minimizes 

stockouts. Overall, the forecasting model enhances coordination across Production, Maintenance, Planning, 

and Finance, supporting more proactive decision‑making and improving the company’s ability to manage MPU 

reliability and mitigate LPO effectively. 
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Conclusion 
 

The forecasting of well down incidents caused by MPU failure was successfully performed using both 

ARIMA/SARIMA and Holt-Winters Exponential Smoothing (HWES), with the SARIMA(2,2,1) Model proven 

to be the most accurate model (MAPE 4.5619%) after significantly outperforming all other candidates (HWES 

Multiplicative MAPE: 27.3697%). This accurate model allows for the estimation of LPO and uncertainty (CI 

95%) for 12 months, and its results are translated into structured strategic recommendations covering financial 

risk control, production target planning, KPI integration for early warning, and the justification for investing 

in MPU upgrades or Predictive Maintenance (PdM) programs to mitigate LPO. Future research should build 

upon this foundation by comparing the SARIMA(2,2,1) Model with advanced non-linear techniques like LSTM 

or Prophet, and by expanding the analysis to model simultaneous losses across multiple MPU locations using 

methods like Vector Autoregression (VAR). 

In addition to these analytical contributions, the forecasting outcomes also provide practical managerial 

value that directly strengthens operational decision‑making. The ability to predict monthly well down risks 

enables production supervisors to prepare manpower, logistics, and spare parts allocation more efficiently, 

reducing emergency responses and minimizing operational disruptions. The quantified LPO risk supports 

budget holders in planning cost‑avoidance strategies and prioritizing high‑impact reliability improvements. 

Forecast‑based early warning indicators also shift operational control from a reactive posture toward a more 

anticipatory one, allowing field teams to take preventive actions before failures escalate. For senior 

management, the forecasting model establishes a clear data‑driven basis for investment justification, especially 

for interventions aimed at improving MPU reliability, optimizing maintenance strategies, and supporting 

long‑term production stability. Collectively, these managerial implications demonstrate that the forecasting 

model is not only technically accurate but also strategically valuable in enhancing decision quality across 

operational, financial, and planning functions 
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