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ABSTRACT

The decline in Heavy Oil (HO) production at PT XYZ is strongly influenced by unplanned well down
events, which generate significant Loss Production Opportunity (LPO) and disrupt the achievement of
production targets. This study aims to develop and compare two time series forecasting methods, ARIMA and
Holt-Winters Exponential Smoothing (HWES), to predict future well down incidents caused by Mechanical
Pumping Unit (MPU) failures. Model accuracy was evaluated using the Mean Absolute Percentage Error
(MAPE), and the Seasonal ARIMA (2,2,1) Model was identified as the most accurate, achieving a MAPE value
0f 4.56 percent, significantly outperforming both HWES variants, which produced much higher errors (highest
MAPE 27.37 percent). Using this model, the estimated financial loss in the Base Case scenario is projected at
Rp 13.35 billion per year, with the worst sase scenario potentially reaching Rp 41.80 billion. The forecasting
results provide substantial managerial value by supporting informed operational decision-making. Three key
strategic implications are obtained. First, financial risk control can be strengthened by using the Upper Bound
95 percent as a basis for justifying MPU upgrade budgets. Second, production target planning becomes more
realistic by incorporating predicted LPO values. Third, integrating LPO-based thresholds into KPI monitoring
establishes an early warning system that shifis operational control from reactive to anticipatory.

Keywords: ARIMA, Heavy Oil, Holt Winters Exponential Smoothing, Time Series Forecasting, Unplanned
Well Down.

Introduction

The demand for crude oil in Indonesia is critically high, but national oil production continues to face a
sustained annual decline. This trend reflects a substantial challenge within the upstream oil and gas sector [1].
One of the oil and gas companies experiencing the impact of this production decline is PT XYZ. This company
is one of the largest oil and gas corporations in Indonesia, managing a highly strategic oil and gas working
area. One of the products from this working area is Heavy Oil (HO), which is a crude defined by its elevated
viscosity and inherently poor flow characteristics [2]. In producing petroleum products, equipment called the
Mechanical Pumping Unit (MPU) is required. The MPU is the most widely utilized artificial lift method in the
petroleum industry for raising reservoir fluids to the surface [3]. The type of MPU utilized at PT XYZ is the
Sucker Rod Pump (SRP). This system consists of two main components: the surface unit, which is the driving
mechanism, and the downhole pump. SRPs are generally used in wells with low-to-medium flow rates and
varying depths, making them a dominant technology in oil production operations across many oils field [4].

One factor contributing to the production decline is well-down incidents, where wells are temporarily
shut due to technical or non-technical issues. These incidents create Loss Production Opportunity (LPO),
representing potential oil output lost during downtime. Figure 1 presents a comparison between HO production
and well down cases caused by MPU failures, showing a clear inverse relationship from January 2024 to May
2025. MPU failures fluctuate sharply while oil production consistently declines, indicating that MPU failures
are a major source of LPO. The high uncertainty of these events also complicates operational planning,
highlighting the need for a robust predictive model to assess future risks.
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Production Vs Welldown MPU Issue
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Figure 1. Production & well down trend of PT XYZ

This research develops and compares two time series forecasting methodologies, the Autoregressive
Integrated Moving Average (ARIMA) and the Holt-Winters Exponential Smoothing (HWES). The ARIMA is
a time series forecasting model that integrates elements from both the Moving Average (MA) and
Autoregressive (AR) techniques. This model utilizes historical and current data to generate accurate short-term
predictions [5]. Whereas the HWES method is a type of exponential smoothing utilized when the data exhibits
both trend and seasonality in its pattern. The HWES method analyzes three distinct data components: it assigns
greater weight to recent data or the data level, estimates the pattern of tendency or data trend, and estimates the
seasonal pattern of the data, consequently yielding forecasts with a low error rate [6]. The combination of
ARIMA and HWES is selected to address the complex characteristics of MPU-related well down data. ARIMA
is used for its strength in modeling stationery and transformed non-stationary data, effectively capturing linear
and short-term patterns. HWES complements this by handling data with trend and potential seasonality,
producing adaptive forecasts for non-stationary and recurring patterns.

Research on predicting MPU-induced well down events, particularly in Indonesian heavy-oil operations,
remains limited, with most studies focused on equipment reliability and maintenance rather than time-series
forecasting. This gap indicates the absence of a predictive framework capable of converting historical data into
reliable forecasts to reduce LPO.

This study compares ARIMA and HWES based on MAPE to determine the most accurate model for
supporting data-driven mitigation strategies. As MPU failures are a major and increasing cause of well down
incidents, and fall under the Production HO Department’s operational scope, the need for this analysis is
critical. The results are expected to clarify failure dynamics, forecast future incidents, and guide proactive
efforts to improve MPU reliability and overall production performance.

Research Methods

The research methods will be illustrated in the conceptual framework diagram in Figure 2.

Collect historical well down and production data (2022-2025), and clean

Data Collection - — — — - the data from errors or duplicates.
Qutput: Ready-to-Process Dataset.

L4 Create a time series forecasting model using ARTMA and HWES to
predict potential future well down incidents. Data processing is
conducted using the R language within R Software 4.5.1.

Output: Forecasting Model and Prediction of Potential Well Down
Incidents.

Explamn the main findings from the forecasts (ARTMA and Holt-Winters),

Interp emtmn zikzn compare the accuracy of both models, and analyze potential future well
Processing Rf:sult & I~~~ down incidents.
Analysis Output: Insights regarding Forecasting Results and Managerial
Implications
End

Figure 2. Conceptual framework
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This research aims to identify and obtain the best and most accurate forecasting model (between the
ARIMA and HWES methods) to predict future well down caused by MPU failure. Furthermore, it aims to
formulate and recommend data-driven mitigation strategies derived from the results of the best and most
accurate model, as an effort to enhance MPU reliability and optimize overall production performance. Based
on Figure 2, the research methods comprise in four main stages.

Data Collecting
Data Collection involves gathering and cleaning historical well down and production data (2022-2025). The
dataset prepared for processing is presented in Table 1.

Table 1. Data set of well down events

Month Number of MPU Event
2022 2023 2024 2025
Jan 819 663 1276 642
Feb 500 380 1122 488
Mar 1074 570 1152 637
Apr 877 353 1034 710
May 976 417 1512 479
Jun 608 462 1139 383
Jul 533 599 1201 223
Aug 476 786 1204
Sept 467 910 1342
Oct 537 925 1418
Nov 769 1020 988
Dec 924 1334 987

Table 1 presents the historical time series dataset used in this research, which contains records of well
down events from January 2022 to July 2025. The inclusion of data up to July 2025 reflects the most recent
operational observations available, ensuring that the forecasting models are trained using the latest patterns and
volatility present in the field. This approach strengthens the robustness and relevance of the predictive results.
In addition to the well-down data, Table 1 also incorporates production and Loss Production Opportunity
(LPO) information. These supplementary datasets enable forecasting outputs to be directly linked with actual
production performance and are specifically utilized to evaluate the potential LPO that may arise from MPU
failures.

Table 2. Production data & LPO

Production
q Loss Production Opportunity
(R (ﬁ?};g)l;“ MPU Issue (BOPD) in Monthly
Average 44,900 632
Minimum 33,730 290
Maximum 49,956 993

Table 2 provides a statistical summary of the Production Data and LPO related to MPU events,
measured in Barrels of Oil Per Day (BOPD) in monthly. Over the observed period, the average monthly
production was 44,900 BOPD, with a minimum recorded production of 33,730 BOPD and a maximum
reaching 49,956 BOPD. Concurrently, the LPO attributed specifically to MPU issues averaged 632 BOPD
monthly. This LPO figure fluctuated significantly, ranging from a minimum loss of 290 BOPD to a peak loss
0f 993 BOPD, highlighting the considerable financial and operational impact caused by MPU failures

Data Processing

Data Processing focuses on developing time series forecasting models by implementing both ARIMA
and HWES to predict future well down, following the identification of historical trends and seasonality. Last,
Results Interpretation includes comparing the accuracy of both models and analyzing the best forecast to derive
insights into future well down potential and frequency. This data processing is specifically conducted using the
R language within R Software version 4.5.1. R is software developed to support statistical analysis, data
science, and predictive modeling [7]. The selection of this Software was based on its characteristics and
functionality. R allows users to freely modify, develop, and share code. This characteristic ensures that R
continuously evolves in line with the needs of research and industry. One of R’s main attractions is the
availability of thousands of packages created by both the community and independent developers to support
statistical analysis, data science, and predictive modeling. These packages encompass various functions,
ranging from data processing and visualization to the development of web-based applications [8] [9].
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Therefore, in this research, the process of creating the ARIMA and HWES models, up to the evaluation of both
models, will be processed using this software.

Autoregressive Integrated Moving Average (ARIMA)

The Autoregressive Integrated Moving Average (ARIMA) Model is often also referred to as the Box-
Jenkins time series method. ARIMA demonstrates excellent accuracy for short-term forecasting [10]. The
ARIMA model is one that completely disregards independent variables when generating a forecast. Instead,
ARIMA utilizes the past and present values of the dependent variable to produce accurate short-term forecasts.
ARIMA is suitable when the observations within a time series are statistically dependent on one another [11].
A crucial point to note is that most time series are non-stationary, and the Autoregressive (AR) and Moving
Average (MA) aspects of the ARIMA model only pertain to stationary time series. Stationarity implies the
absence of growth or declines in the data. The data must roughly maintain a horizontal level along the time
axis. In other words, data fluctuations remain around a constant mean value, independent of time, and the
variance of these fluctuations essentially remains constant over time [12]. Seasonality is defined as a pattern
that recurs at fixed time intervals. For stationary data, the seasonal factor can be determined by identifying
autocorrelation coefficients at two or three time-lags that are significantly different from zero. Autocorrelations
that are significantly different from zero indicate the presence of a pattern within the data. To recognize the
presence of a seasonal factor, one must observe high autocorrelation. To address seasonality, the general
shorthand notation is [13]:

ARIMA (p,d,q)(P,D,Q) (1)

Within this notation, the first three parameters, (p, d, q), represent the non-seasonal component of the
model. Conversely, the capital letters, (P, D, Q) denote the seasonal component of the model, which captures
the repeating patterns. Finally, S represents the total number of periods per season (e.g., § = 12 for monthly
data with annual seasonality).

=========== HASIL DPERAMALRN ARIMR

¢ Horizon Peramzlan: 12 bulan (RAgustus 2025 hingga Juni 2028}
h_future <- 12

# Forecast Model SARIMA Terbaik
forecast_sarimal future <- forecast(ml_sarima, h=h future)
forecast_sarima? future <- forecast(m2_sarima, h=h future)

¢ --— Menampilkan Hasil --—-

print("--- Hazil Forecast SRRIMAR] (Rug 2025 - Juni 202&) ---")
print(forecast_sarimal_future)

print ("--- Hasil Forecast SARRIMAZ (Rug 2025 - Juni 202&) -—-")
printiforecast_sarimal_future)

§ Grafik Plot Forecast ARIMR
§ 1. Plot Forecast Model SARIMRI
plot (forecast_sarimal future,
main="Forecast Model SARIMR (2,2,1) (Rug 2025 - Juni 272€)",
xlab="Periode",
ylab="Jumlah Well Down")
§ 2. P1 Forecast Model SRRIMA2
lot{ st_sarimaZ future,
1="Forecast Model ERBIMA (1,2,0) (Bug 2025 - Juni 202g)",
xlab="Periode",
ylab="Jumlah Well Down"}

Figure 3. Snippet of ARIMA data processing using R

Figure 3 provides a computational snippet detailing the preliminary steps and candidate model
selection for the ARIMA process implemented in R. This code segment is presented as an excerpt from the
complete script.

Holt-Winters Exponential Smoothing (HWES)

The Holt-Winters Exponential Smoothing (HWES) is a time-series forecasting method used to
analyze data that exhibits both trend and seasonal patterns. Unlike simpler forecasting methods that only
consider the level component, this method is a combination of the HWES and the Winter method. In the HWES,
primary attention is given to estimating the trend component that develops over time, while the Winter method
focuses on depicting the seasonal variations that recur over a specific period. Based on these two approaches,
the HWES is capable of simultaneously capturing the long-term trend dynamics and the influence of seasonal
cycles present in the time series data [14]. The HWES method is also known by the term Triple Exponential
Smoothing because it involves three primary smoothing parameters. First, the parameter a (alpha) is used to
smooth the level value or the fundamental mean of the data. Second, the parameter  (beta) plays a role in
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refining the trend changes that occur over time. Third, the parameter y (gamma) is responsible for adjusting
the seasonal pattern so that the model can capture periodic variations more accurately [15].

The HWES method essentially has two main forms: the additive model and the multiplicative model
[16]. The Additive HWES Model is generally employed when the seasonal pattern in the time series is constant
or is not influenced by the magnitude of the data values. The amplitude of the seasonal fluctuation tends to
remain fixed and independent of both the average data level and the scale of the data being analyzed [17]. In
contrast to the additive model, which assumes constant seasonal variation, the multiplicative model allows the
magnitude of the seasonal component to adjust relative to the scale of the data [18].

========—=== HASIL PERRMALAN HWES

& Horizon Peramalan: 12 bulan (Agustus 2025 hingga Juni 202&)
h_future <- 12

§ Forecast Model HWES
forecast_hwesl future <- forecast(model hwes mult, h=h future)
foracast_hwesd_future <- forecast (model hwes add, h=h_future)

print("--- Hasil Forecast HWESl (Aug 2025 - Juni 2028) ---")
print(forscast_hwesl_futurs)
print("--- Hasil Forecast HWESl (Aug 2025 - Juni 2028) ---")
print(forecast hwes2_ future)

$ 1. Plot Forecast Model HWES Multiplikatif

plot{forecast_hwesl_ future,
main="Forecast Model HWES Multiplikatif (Rug 2025 - Juni 202&)",
#lab="Periode™,
ylab="Jumlzh Well Down"]

§ 2. Plot Forecast Model HWES Rdditiwve

plot{foracast_hwesd_future,
main="Forecast Modsl HWES Rdditiwve (Rug 2025 - Juni 202&)",
xlab="Periode",
ylab="Jumlzh Well Down"]

Figure 4. Snippet of HWES data processing using R

Figure 4 provides a computational snippet detailing the execution of the HWES forecasting and visualization
process implemented in R. This code segment is presented as an excerpt from the complete script.

Interpretation of Data Processing and Analysis

The Interpretation of Data Processing and Analysis section encompasses the critical process of
comparing the forecasting results generated by both the ARIMA and HWES models. This comparison involves
rigorously evaluating the predictive accuracy of the two models using the error measurement. Error
measurement is used as a benchmark to compare the performance of various forecasting models under the same
conditions [17]. One of the metrics utilized in error measurement is the Mean Absolute Percentage Error
(MAPE). Mean Absolute Percentage Error (MAPE) is a measure widely used in quantitative forecasting to
assess the accuracy level of prediction results. MAPE calculation is performed by taking the average percentage
difference between the actual data and the forecasted value, where this difference is calculated in absolute
terms, meaning it does not distinguish between positive and negative differences [19]. The MAPE formulation
is detailed in the following equation:

Y—F;

_ 1lym
MAPE = _¥ |-~ x 100 @

Where n represents the total number of observations used in the evaluation. ¥, is defined as the actual
value of the time series at time t (where t = 1, 2, ..., n), and F, is the corresponding value predicted by the
forecasting model at time t. The formula computes the average of absolute percentage errors, providing a scale-
independent measure of the model's predictive accuracy [19].

Results and Discussion

This section details the findings derived from the time series forecasting models developed in this
study, followed by a comprehensive discussion of their implications. First, the result of data processing is data
decomposition. Based on Figure 5, the decomposition confirms that the time series consists of three key
components, namely a distinct trend, recurring seasonality, and a randomness component. The trend component
shows a gradual decline at the beginning of 2022, followed by a steady upward movement throughout 2023,
before reaching its peak in early 2024 and slowly declining again toward mid-2025. This pattern indicates that
MPU well down incidents follow a medium-term structural movement rather than short-term fluctuations. The
seasonal component displays repeated monthly variations, although the magnitude of these oscillations is
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relatively moderate, suggesting that recurring operational or environmental cycles contribute to periodic
increases and decreases in MPU failures. The random component exhibits strong irregular fluctuations across
the entire period, characterized by sharp rises and drops that do not follow any systematic pattern. In the context
of MPU events, this randomness likely represents sudden equipment failures, unplanned operational
disruptions, and unpredictable subsurface behaviors that cannot be anticipated using routine operational
patterns.

The presence of a clear and evolving trend demonstrates that the data remain non-stationary in the
mean and therefore requires differentiation for proper modeling. The combination of trend, seasonality, and
substantial random noise confirms that the data are complex and unstable, making simple forecasting
approaches inadequate. Consequently, the ARIMA and HWES methods are validated as suitable for addressing
these characteristics. In addition, identifying the trend and seasonal structures provides operational benefits
because it helps the company anticipate months with an increased likelihood of MPU failures
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Figure 5. Data decomposition

Second, the results of data processing are presented through descriptive statistics. The descriptive
statistics in Table 3 show significant fluctuation and dispersion. The number of monthly incidents spans a very
wide range, from a minimum value of 223 to a maximum of 1,512, indicating a high level of volatility in
MPU-related well down events. The mean value of 812 is slightly higher than the median of 786, suggesting
that the data distribution is relatively symmetrical. Most importantly, the high standard deviation of 333.95, or
approximately 41 percent of the mean, confirms that MPU incidents vary widely and remain unstable from
month to month. This high level of volatility may be attributed to several factors such as instability in MPU
performance, variations in reservoir behavior, fluctuating operational loads, or uneven maintenance
effectiveness across periods. All repair activities are also reactive rather than proactive, which means sudden
surges in failures cannot be prevented earlier and are only addressed after they occur. This condition forces the
production team to operate under considerable uncertainty, increasing the risk of insufficient spare parts
availability, limited manpower, and potential delays in handling sudden rises in MPU failure incidents.

Table 3. Statistic description of well Down caused by MPU failure

Category Value of Statistic Description
Min 223
Max 1,512
Mean 812
Median 786
St.Dev 333.95

The application of the ARIMA model in this research is the Seasonal ARIMA (SARIMA), which is
justified by the strong autocorrelation confirmed in the historical well down data. Initial data decomposition
revealed a clear trend and seasonality, confirming that the time series was non-stationary and unsuitable for
simple forecasting methods. To address this, the Box-Cox Transformation was first applied to stabilize variance
(homoscedasticity) due to a high initial Augmented Dickey-Fuller (ADF) P — value . Subsequently, a Second
Differentiation (d = 2) was performed on the transformed data to eliminate the non-stationary trend. A second
ADEF test confirmed that this differentiated series was mean-stationary (with a P-value = 0.01), thereby setting
the regular differentiation order (d) to 2. Based on the ARIMA model identification process conducted
previously, two models were obtained: SARIMA(2,2,1) and SARIMA(1,2,0).
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Figure 6. SARIMA forecasting output plot graph

The SARIMA Forecasting Output Plot (Figure 6) compares the historical data (black line) with the
forecast (blue line) for the period August 2025 to June 2026. The SARIMA(2,2,1) Model (left) shows that the
point forecast adheres to the historical seasonal pattern with a more stable trend. The blue line (forecast)
remains within the gray area, which represents the confidence interval (CI). This model’s CI is relatively
narrow, indicating superior stability and reliability. Conversely, the SARIMA(1,2,0) Model (right) exhibits
greater historical fluctuation. Most crucially, its confidence interval (CI) is significantly wider, even
encompassing negative values. This extreme CI width verifies the high degree of uncertainty associated with
this model. Therefore, based on its more controlled trend and narrower confidence interval, the SARIMA(2,2,1)
Model is deemed more feasible and reliable for future prediction. narrower confidence interval increases the
reliability of planning decisions, such as estimating LPO exposure, scheduling preventive workover, and
determining realistic production targets.

Third, the HWES model was developed as an alternative to the ARIMA/SARIMA approach. The
HWES Forecasting Output Plot (Figure 7) provides a visual comparison of the historical data against the
forecasts for both HWES variants (August 2025 to June 2026). While the Multiplicative Model (left) shows a
stable point forecast, its Confidence Interval (CI) is extremely wide, reaching from an upper bound near 3000
down to approximately -2000, signifying extreme uncertainty. Conversely, the Additive Model (right) presents
arelatively narrower CI but still exhibits high volatility. Overall, both HWES models resulted in forecasts with
a high degree of uncertainty. Therefore, a subsequent comparison of the MAPE accuracy metric is essential to
determine the most reliable HWES model for future projections. These wide intervals indicate that HWES-
based predictions are less suitable for operational decision-making, especially where precise planning of
production, maintenance, or budgeting is required.
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Figure 7. HWES forecasting output plot graph
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Subsequently, the determination of the best model is carried out through a comparison of in-sample
accuracy metrics (fitting accuracy) such as the Mean Absolute Percentage Error (MAPE). Based on the lowest
MAPE value, the single best model will be selected and utilized as the primary basis for drawing final
forecasting conclusions in this study. Based on Table 4, the smallest MAPE value is 4.5619%, achieved by the
SARIMA(2,2,1) model. This low percentage indicates that the SARIMA(2,2,1) model has the highest fitting
accuracy among all candidates and is therefore selected as the best and most reliable model for forecasting
future well down events. The results of this research are consistent with previous studies, where the error
generated by ARIMA was significantly better than that of HWES [20]. With its high accuracy, the SARIMA
(2,2,1) model provides a dependable foundation for LPO risk quantification, early warning indicators, and
budget allocation strategies.

Table 4. MAPE of forecasting model

Model MAPE (%)
SARIMA (2,2,1) 4.56
SARIMA (1,2,0) 5.22
HWES Multiplicative 27.37
HWES Additive 20.91

Based on the MAPE results, the best Forecasting Results for the SARIMA(2,2,1) model is as follows:

Table 5. The best forecasting result
SARIMA (2,2,1)

. . Lower Upper Lower Upper
Periode F§$:;s " Bound Bound Bound Bound
(80%) (80%) (95%) (95%)

Aug-25 59.906 43.415 76.396 34.685 85.126
Sep-25 41.636 20.983 62.290 10.050 73.223
Oct-25 59.046 27.567 90.524 10.903 107.188
Nov-25 64.163 27.361 100.965 7.879 120.446
Dec-25 89.786 43.967 135.604 19.712 159.859
Jan-26 47.072 -4.049 98.194 -31.111 125.256
Feb-26 24.241 -33.843 82.326 -64.591 113.074
Mar-26 21.962 -39.859 83.783 -72.586 116.510
Apr-26 5972 -62.243 74.187 -98.354 110.298
May-26 3.367 -68.638 75.373 -106.756 113.491
Jun-26 11.608 -66.400 89.615 -107.694 130.909
Jul-26 18.140 -63.704 99.984 -107.030 143.309

The final forecasting results from the selected SARIMA(2,2,1) model project the potential LPO
reduction achievable through proactive mitigation efforts. The forecast reveals a substantial potential average
reduction of 91.719 BOPD under the Conservative Scenario, which translates to a maximum financial risk of
$2.50 Million (or Rp41.80 billion) over the forecast period if well down incidents are not adequately
controlled. These robust predictive outputs form the foundation for four strategic managerial pillars are
Financial Risk Control (by allocating budgets based on the worst-case scenario loss), Production Target
Planning (using the Point Forecast to set realistic targets), KPI Integration for Early Warning (shifting
performance control from reactive to predictive), and Justifying Operational Investment (prioritizing
preventive maintenance in months with the highest forecasted LPO to maximize production gains).

Beyond supporting strategic planning, the forecasting results also provide clear operational benefits.
The predicted LPO values help identify months with higher MPU-failure risk, enabling maintenance teams to
schedule preventive work more effectively and avoid unplanned downtime during high-production periods.
These insights also improve manpower and spare-parts planning, reducing the likelihood of emergency repairs
and operational disruptions. The quantified financial risk strengthens the justification for preventive
maintenance spending, allowing management to prioritize interventions that deliver the greatest cost
avoidance. Incorporating forecast outputs into routine production monitoring enables earlier anomaly
detection, allowing operators to initiate corrective actions before failures escalate. Additionally, aligning
spare-parts procurement with predicted failure patterns improves inventory efficiency and minimizes
stockouts. Overall, the forecasting model enhances coordination across Production, Maintenance, Planning,
and Finance, supporting more proactive decision-making and improving the company’s ability to manage MPU
reliability and mitigate LPO effectively.
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Conclusion

The forecasting of well down incidents caused by MPU failure was successfully performed using both
ARIMA/SARIMA and Holt-Winters Exponential Smoothing (HWES), with the SARIMA(2,2,1) Model proven
to be the most accurate model (MAPE 4.5619%) after significantly outperforming all other candidates (HWES
Multiplicative MAPE: 27.3697%). This accurate model allows for the estimation of LPO and uncertainty (CI
95%) for 12 months, and its results are translated into structured strategic recommendations covering financial
risk control, production target planning, KPI integration for early warning, and the justification for investing
in MPU upgrades or Predictive Maintenance (PdM) programs to mitigate LPO. Future research should build
upon this foundation by comparing the SARIMA(2,2,1) Model with advanced non-linear techniques like LSTM
or Prophet, and by expanding the analysis to model simultaneous losses across multiple MPU locations using
methods like Vector Autoregression (VAR).

In addition to these analytical contributions, the forecasting outcomes also provide practical managerial
value that directly strengthens operational decision-making. The ability to predict monthly well down risks
enables production supervisors to prepare manpower, logistics, and spare parts allocation more efficiently,
reducing emergency responses and minimizing operational disruptions. The quantified LPO risk supports
budget holders in planning cost-avoidance strategies and prioritizing high-impact reliability improvements.
Forecast-based early warning indicators also shift operational control from a reactive posture toward a more
anticipatory one, allowing field teams to take preventive actions before failures escalate. For senior
management, the forecasting model establishes a clear data-driven basis for investment justification, especially
for interventions aimed at improving MPU reliability, optimizing maintenance strategies, and supporting
long-term production stability. Collectively, these managerial implications demonstrate that the forecasting
model is not only technically accurate but also strategically valuable in enhancing decision quality across
operational, financial, and planning functions
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