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ABSTRACT 

The prey-predator model in this article reviews the interaction of two populations with a type III Holling -type 

III functional response and anti-predator behavior. Dynamic analysis starts by determining the basic model 

construction assumptions, equilibrium and stability points, and numerical simulations using Python. Dynamic 

analysis results obtained four equilibrium points with types of stability, namely 𝑬𝟎(𝟎, 𝟎) which is unstable, 

𝑬𝟏(𝒌, 𝟎)  which is asymptotically stable 𝑬𝟐 , and  𝑬𝟑. Which is stable under certain conditions. The numerical 

simulation results show double stability at the equilibrium points. 𝑬𝟏 and 𝑬𝟐 with the anti-predator behavior 

parameter value 𝜼 = 𝟎. 𝟎𝟏. The anti-predator parameter value 𝜼 = 𝟎. 𝟒𝟕𝟑 indicates a change in stability that 

is only the 𝑬𝟏  equilibrium point. Differences in the values of the anti-predator behavior parameters affect 

changes in system solutions and impact reducing predator populations. 
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Introduction 

All populations on Earth cannot live alone but need and interact with each other. The interaction process 

includes the process of eating and being eaten by one animal species with another animal. Animals that eat 

other animals are called predators, while animals that other animals hunt are called prey [1]. The purpose of 

interaction between predators and their prey is to control the density of prey populations to maintain their lives 

[2], [3].  

Alfred Lotka and Vito Volterra introduced the prey-predator interaction model, namely the Lotka-Voltera 

model [4]. In 1953, Holling introduced an expanded Lotka-Voltera model of predation called the response 

function Holling proposed four types of response functions: type I, type II, type III, and type IV response 

functions [5], [6]. 

In general, the interaction process between prey and predators is assumed to be that the prey group is 

always caught and eaten by predators  [7], [8]. Not all prey can be captured and eaten by predators, but some 

can attack or eat other individuals. In this case, some prey could fight and escape the predator. Such is the case 

with the Red Colobus Monkey (Piliocolobus), which protects itself by shouting alarm calls for its group when 

threatened by Chimpanzees  [9]. Therefore, pressure from predators that causes prey to escape and fight back 

from predators is known as anti-predator behavior [10]. 

Researchers developed the Lotka Volterra prey-predator model, which involves anti-predator behavior. 

Until now, few studies have discussed the dynamic analysis of the prey-predator system with the Type III 

Holling response function and anti-predator behavior. This research refers to two studies, including [11] studied 

a predator-prey model with a Holling Type IV response function and anti-predator behavior. Supported by 

other studies,[12]–[14] examines the interaction model of prey-predator with ratio-dependent function and anti-

predator behavior. The complex dynamics of the model with the phenomenon of anti-predator behavior in 

nature have also been discussed [15]–[17]. 
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Inspired by these two studies, researchers still consider anti-predator behavior by modifying it using the 

Holling type III functional response. Holling type III active response is suitable because it has the problem of 

predators that tend to look for other prey populations when the prey population continues to decrease due to 

self-protection, namely anti-predator behavior. 

 

Research Method 

 

            

Figure 1.Research Flow Chart 

Based on Figure 1, the stages begin with a literature study, constructing a model related to assumptions, 

dynamic analysis, which includes equilibrium points, determining the type of stability, determining parameters 

for numerical simulations with a Python program illustrated with phase portraits, and drawing conclusions 

based on the results of the analysis. 

 

Result and Discussion 

 

Construction of a Prey-Predator Model  

Based on the same assumption in [6], [11], the prey-predator interaction model obtained uses a different 

functional response, namely Holling type III and anti-predator behavior. The growth rate of the prey population 

follows the logistic equation. Construction is denoted.  

                
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 (1 −

𝑥

𝐾
) −

𝑏𝑥2𝑦

𝑛2+𝑥2, 

𝑑𝑦

𝑑𝑡
=

𝛿𝑏𝑥2𝑦

𝑛2+𝑥2 − 𝑐𝑦 − 𝜂𝑥𝑦.             (1) 

The dynamical system (1) has been analysed in the region {(𝑥, 𝑦) ∈ ℝ+
2

: 𝑥 ≥ 0, 𝑦 ≥ 0} with the initial 

conditions 𝑥(0) > 0, 𝑦(0) > 0. Here, 𝑥(𝑡) dan 𝑦(𝑡) denote the numbers of prey and predator. The predators 

consume the prey with Holling type III functional response 
𝑥2𝑦

𝑛2+𝑥2 for the capture rate 𝑏, and continue their 

growth with conversion rate 𝛿. Parameter 𝐾 represents environmental carrying capacity, 𝛼 is the maximum per 

capita prey growth rate, 𝑐 is a mortality rate of a predator in the absence of prey, 𝑛 namely the level of predator 

saturation, and 𝜂 anti-predator behavior. 
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Dynamic Analysis of Prey-Predator Models  

a. The Equilibrium Point 

The equilibrium point in a model (1) is obtained by solving the system of equations that makes  
𝑑𝑥

𝑑𝑡
= 0 dan  

𝑑𝑦

𝑑𝑡
= 0 [18]. System (1) has different points of equilibrium. 𝐸0, 𝐸1, and 𝐸2. 

1. 𝐸0(0,0) declared the extinction of prey and predator populations. 

2. 𝐸1(𝑘, 0) declared the predator population to be extinct. 

3. 𝐸2(𝑥∗, 𝑦∗) the interior equilibrium point that both predator and prey populations exist. 

Let's say 𝑥 = 𝑥∗ with 𝑥 as the value of the equilibrium point 𝑥∗ which is obtained by simplifying the equation 

(1) so the value of 𝑦∗ must be positive as follows. 

  𝑦∗ = − 
𝑎

𝑏𝑘𝑥∗ (𝑘𝑛2 +  𝑛2𝑥∗ + 𝑘𝑥∗2 + 𝑘𝑥∗3).    (2) 

Considering the presence of positive roots from equation (2) according to Formula Cardano [19], [20]. The 

value 𝑥∗ is the positive solution of the following cubic equation. 

𝑥∗3 + 3𝜔1𝑥∗2 + 3𝜔2𝑥∗ + 𝜔3 = 0.    (3) 

Here is the value of each component. 

𝜔1 =  
𝑐−𝛿𝑏

3𝜂
, 

𝜔2 =  
𝑛2

3
, 

𝜔3 =
𝑐𝑛2

𝜂
. 

Hence, system (1) has a unique positive equilibrium. 𝐸2
∗(𝑥∗, 𝑦∗). 

 

b. Local Stability of Equilibrium 

Stability analysis is determined by the linearization process on the system arranged in the form of a matrix 

[21]. The linearization results use the following Jacobian matrix: 

 𝐽(𝑥, 𝑦) =  [
𝛼−

2𝛼𝑥

𝑘
−

2𝑏𝑥𝑦

𝑛2+𝑥2+
2𝑏𝑥3𝑦

(𝑛2+𝑥2)2

2𝛿𝑏𝑥𝑦

𝑛2+𝑥2−
2𝛿𝑏𝑥3𝑦

(𝑛2+𝑥2)2−𝜂𝑦

−
𝑏𝑥2

𝑛2+𝑥2

𝛿𝑏𝑥2

𝑛2+𝑥2−𝑐−𝜂𝑥
].     (4) 

We obtain the following theorem of the stability of the system's equilibrium (1). 

Theorem 1. Equilibrium point 𝑬𝟎(𝟎, 𝟎) is unstable (saddle point) 

Proof. The Jacobian matrix in equation (4) at 𝐸0(0,0) is as follows: 

𝐽𝐸0
=  [𝛼

0
   0

  −𝑐
].      (5) 

The eigenvalues Jacobian matrix (5) is. 

𝜆1 = 𝛼, and  𝜆2 = −𝑐. 

It's evident that  𝛼 > 0, so as  𝜆1 > 0 and  𝑐 < 0 so as  𝜆2 < 0. Therefore, 𝐸0 is unstable (saddle point)[22]. 

Theorem 2. Equilibrium point 𝑬𝟏(𝒌, 𝟎) is asymptotically stable (node) if the following conditions are 

satisfied  
𝜹𝒃𝒌𝟐

𝒏𝟐+𝒌𝟐 <  𝒄 + 𝜼𝒌. 

Proof. At the point 𝐸1(𝐾, 0),  the Jacobian matrix in equation (4) becomes  

𝐽𝐸1
=  [

−𝛼
0

   
−

𝑏𝑘2

𝑛2+𝑥2

    
𝛿𝑏𝑘2

𝑛2+𝑘2−𝑐−𝜂𝑘
].     (6) 

The eigenvalues of the Jacobian matrix 𝐽𝐸1
 (6) are. 
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𝜆1 = −𝛼, dan 𝜆2 =
𝛿𝑏𝑘2

𝑛2+𝑘2 − 𝑐 − 𝜂𝑘. 

Therefore, both eigenvalues of the Jacobian matrix 𝐽𝐸1
 have negative genuine parts  𝛼 < 0 so as 𝜆1 < 0, and 

to conditions is satisfied if 𝜆2 < 0  

𝛿𝑏𝑘2

𝑛2+𝑘2 <  𝑐 + 𝜂𝑘. 

in that  𝜆1 < 0 and  𝜆2 < 0, then the equilibrium point 𝐸1 is asymptotically stable (node) with conditions   
𝛿𝑏𝑘2

𝑛2+𝑘2 <  𝑐 + 𝜂𝑘. 

Theorem 3. Equilibrium point 𝑬𝟐(𝒙∗, 𝒚∗)  is asymptotically stable (node) if the condition: 

(i) (𝒎𝟏𝟏 + 𝒎𝟐𝟐) < 𝟎, 

(ii) 𝒎𝟏𝟏
𝟐 + 𝒎𝟐𝟐

𝟐 +  𝟒𝒎𝟏𝟐𝒎𝟐𝟏 > 𝟐𝒎𝟏𝟏𝒎𝟐𝟐. 

 Proof. We evaluate the Jacobian matrix at 𝐸2(𝑥∗, 𝑦∗) to obtained: 

𝐽𝐸2
=  [

𝑚11

𝑚21

    𝑚12

      𝑚22
]. 

The respective components are given by: 

𝑚11 = 𝛼 −
2𝛼𝑥∗

𝑘
−

2𝑏𝑥∗𝑦∗

𝑛2+𝑥∗2 +
2𝑏𝑥∗3

𝑦∗

(𝑛2+𝑥∗2)2, 

𝑚12 = −
𝑏𝑥∗2

𝑛2+𝑥∗2, 

𝑚21 =
2𝛿𝑏𝑥∗𝑦∗

𝑛2+𝑥∗2 −
2𝛿𝑏𝑥3𝑦∗

(𝑛2+𝑥∗2)2 − 𝜂𝑦∗, 

𝑚22 =
𝛿𝑏𝑥∗2

𝑛2+𝑥∗2 − 𝑐 − 𝜂𝑥∗. 

The characteristic equation of 𝐽𝐸2
 is given by: 

𝜆2 + 𝜏𝜆 + 𝜎 = 0,               (7) 

From characteristic equation (7), the eigenvalue of 𝐽𝐸2
 are given by: 

𝜆1,2 =
(𝜏)±√(𝜏)2−4(𝜎)

2
, 

if 𝜏 = (𝑚
11

+ 𝑚22) < 0    and 𝜎 = (𝑚11 + 𝑚22)2 − 4(𝑚11𝑚22 − 𝑚12𝑚21) > 0, then the equilibrium point 

𝐸2 is asymptotically stable with conditions (𝑚11 + 𝑚22) < 0,  and  𝑚11
2 + 𝑚22

2 +  4𝑚12𝑚21 > 2𝑚11𝑚22. 

 

c. Numerical Simulation 

Numerical simulations show dynamic behavior changes around the equilibrium point  [23]. To perform a 

numerical simulation, the values of the following parameters are required. 

Table 1.  System Parameter Value. 

Parameter Value Reference 

𝛼 6.8 Assumptions 

k 7.5 Assumptions 

𝛿 0.31 Assumptions 

c 0.015 Tang & Xiao [11] 

b 0.4 Tang & Xiao [11] 

n 0.1 Ayah [24] 

𝜂 0.1 Tang & Xiao [11] 

 

Based on parameters in Table 1, with 𝜂 = 0.1 four equilibrium points exist from the eigenvalue results to know 

the type of stability. 
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Table 2. Parameter Stability 

Equilibrium Points Eigen Values Stability Type 

𝐸0(0,0) 𝜆1 = −0.015 < 0, 𝜆2 = 6.8 > 0 Unstable (saddle point) 

𝐸1(7.5,0) 𝜆1 = −6.8 < 0, 𝜆2 = −0.641 < 0 Asymptotic Stability (node) 

𝐸2(0.042, 4.66) 𝜆1 = −4.65 < 0, 𝜆2 = −0.04 < 0 Asymptotic Stability (node) 

𝐸3(1.079, 15.84) 𝜆1 = 4.87 > 0, 𝜆2 = −0.126 < 0 Unstable (saddle point) 

 

In Table 3, two equilibrium points are obtained that meet the conditions for the existence of stability, namely, 

the equilibrium point at 𝐸1 and equilibrium point 𝐸2.  Therefore, a system with stability at two equilibrium 

points is called bistable. Stability changes of system behavior in equations (1) and (2) are shown through 

numerical simulations by increasing the value of the anti-predator behavior parameter the first 𝜂 = 0.1 with 

𝜂 = 0.473. The initial values used for the numerical simulations are the same as those [17,17] and [1, 17], 

which produce phase portraits. 

Numerical simulation results based on the parameter values in Table 2 with different parameter values on 

anti-predator behavior 𝜂 = 0.1 illustrated in Figure 2 and Figure 3. 

         

Figure 2. Phase Portrait Convergent to 𝐸1    Figure 3. Phase Portrait Convergent to 𝐸2  

The system (1) can exhibit bistability at η = 0.1.  In Figure (2) and Figure (3), the system has double stability, 

namely bistable at 𝐸1 and 𝐸2 influenced by differences in initial values. Figure (2) shows the solution from a 

convergent system to an equilibrium point 𝐸1(7.5,0) using initial values 𝑁1[17,17] so that the equilibrium point 

𝐸1 is stable. Figure 3 shows the solution from a convergent system to an equilibrium point 𝐸3(0.04, 4.66) using 

initial values 𝑁2[1,17] so that the equilibrium point 𝐸2 is stable. 

              

 

 

Figure 4. Stable Time Series Graphs at 𝐸1 with 

Initial Values [17, 17] 

Figure 5. Stable Time Series Graphs at 𝐸2 with 

Initial Values [1, 17] 
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Numerical simulation with increasing parameter values on anti-predator behavior is 𝜂 = 0.473 as illustrated 

in the figure below:  

          
             Figure 7. Phase Portrait Convergent to 𝐸2  

Figure 6 and Figure 7 show that parameter anti-predator behavior is 𝜂 = 0.473 produce system has 

stability only at 𝐸1 with the difference in the initial value 𝑁1[17,17] and 𝑁2[1, 17]. Both show a solution from 

a convergent system to an equilibrium point. 𝐸1(7.5,0) so that the equilibrium point  𝐸1 are stable.  

The results of the two simulations show that anti-predator behavior can affect a change in the system's 

stability. When the parameter is anti-predator behavior 𝜂 = 0.1 results in a bistable system that is at the 

equilibrium point 𝐸1 which states the population of predators experiencing extinction and the equilibrium point 

𝐸2 states that both populations exist. The appearance of a bistable system indicates that the system solution is 

influenced by the initial values of the two people. When the parameter of anti-predator behavior increases to 

𝜂 = 0.473  it produces stability, namely at the equilibrium point 𝐸1 the predator population is experiencing 

extinction because they cannot live without predation. 

 

Conclusion 

Construction of a prey-predator model with a Holling type III response function and anti-predator behavior 

is. 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 (1 −

𝑥

𝐾
) −

𝑏𝑥2𝑦

𝑛2 + 𝑥2
, 

𝑑𝑦

𝑑𝑡
=

𝛿𝑏𝑥2𝑦

𝑛2+𝑥2 − 𝑐𝑦 − 𝜂𝑥𝑦. 

The results of the Dynamic Analysis produce three equilibrium points, namely.  𝐸0(0,0)  declaring extinction 

in two populations, 𝐸1(𝑘, 0) declared prey populations to extinction, and 𝐸2 as well as 𝐸3 states that both 

populations exist. Stability analysis of the equilibrium points with the type of stability of each, namely  𝐸0 

unstable. Except for 𝐸1, 𝐸2, and  𝐸3 stable under certain conditions of existence. Differences in the parameter 

values of anti-predator behavior are carried out to determine the effect of anti-predator behavior on changes in 

system solutions. The numerical simulation results show a bistable system when the parameter anti-predator 

behaviour is 𝜂 = 0.1, which means that both prey populations can coexist and the predator populations 

experience extinction. When the parameter anti-predator behaviour is 𝜂 = 0.473 to produce a stable system, 

then it means that the predator population has experienced demise. 

 

 

 

Figure 6. Phase Potrait Convergent to 𝐸1 
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