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ABSTRACT 
 

This paper addresses the problem of production tardiness on five parallel production floors at 

PT Garmen X, each with an identical machine arrangement. The proposed method combines Ant Colony 

Optimization (ACO) and Tabu Search (TS) algorithms for flow shop scheduling problems.  ACO acts as 

the primary method for finding the optimal solution. At the same time, the Tabu Search algorithm is 

applied as a local search to improve the quality of the solution found by ACO. The results show 

significant performance improvement, with a decrease in total tardiness by 88.09% and a reduction in 

total makespan by 5.08% compared to the existing method. 
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Introduction 
 

PT Garmen X is a garment manufacturing company utilizing a First Come. First-served 

scheduling system to manage the production of customer orders. The FCFS method prioritizes tasks 

based on the order in which customer requests are received, ensuring that the earliest orders are processed 

in the production schedule [1]. This approach is straightforward but has limitations, especially in complex 

manufacturing environments. PT Garmen X operates five production floors, all arranged in parallel. This 

setup means that all five floors work simultaneously, each equipped with identical or similar machinery, 

allowing them to handle any assigned job. Despite the uniformity in machinery across the production 

floors, the work assigned to one floor is not transferable to another. In other words, each production floor 

is responsible for its specific tasks, contributing to the overall production workflow independently. 

However, this structure presents challenges, particularly related to total tardiness caused by inefficient 

work sequencing on each production floor. The effectiveness of the scheduling system can be 

significantly impacted by how healthy tasks are sequenced. Poor sequencing can lead to bottlenecks, 

increased waiting times, and overall inefficiencies in the production process [2]. As a result, while the 

FCFS method ensures fairness in order processing, it may not optimize the production workflow, leading 

to total tardiness and reduced performance in meeting production goals. PT Garmen X experienced a 

total tardiness of 52% from 25 jobs, totaling 42 days. These issues may result in decreased client 

satisfaction and decreased recurring business for PT XYZ.  

Flow shop scheduling problem is not unique to PT Garmen X and has been prevalent in various 

industrial sectors, so flow shop production flow has been the focus of research for the past 50 years [3]. 

The primary objectives of this research typically include minimizing the total makespan, total tardiness, 

and total idle time within production processes [4]. A variety of methods have been developed to address 

flow shop scheduling issues. These include branch and bound [5], mixed integer linear programming [6], 

and the Johnson algorithm [7]. Several metaheuristic techniques have been widely employed to address 

the flow shop scheduling problem, producing results close to optimal. Metaheuristic methods are 

particularly advantageous for their ability to handle complex, non-linear problems. Some of the most 

used metaheuristic techniques include Simulated Annealing (SA) [8], Particle Swarm Optimizations 

(PSO) [9], Genetic Algorithm (GA) [10], Firefly Algorithm (FA) [11], Tabu Search (TS) [12], dan Ant 

Colony Optimization (ACO) [13]. However, each metaheuristic method has its advantages and 

disadvantages. Therefore, many studies try to develop a combination of two/more algorithms to improve 

algorithm performance in finding optimal solutions. 
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ACO is a metaheuristic approach modeled after the behavior of ant colonies [14]. It was first 

developed to solve the Traveling Sales Problem and then used to solve combinatorial optimization 

problems, such as flow shop and job shop scheduling. Famous examples of using ACO to solve 

scheduling issues with total tardiness minimization were developed by [15] and [16]. These studies 

demonstrated ACO's strong computational abilities, particularly its capacity to avoid premature 

convergence on suboptimal solutions. However, a known limitation of ACO is that it often requires a 

significant amount of time to arrive at an optimal solution [17]. Therefore, various methods have been 

proposed to speed up ACO convergence time by applying local search. This combination has previously 

been used by [18] in minimizing makespan for job shop scheduling, yielding impressive results. The 

synergy between ACO and local search methods, such as Tabu Search (TS), has proven to be a powerful 

strategy for achieving more efficient and effective solutions. 

This research introduces a solution to the flow shop scheduling problem by integrating ACO 

with Tabu Search (TS) to minimize total tardiness. ACO is employed as the primary algorithm to generate 

a suitable global solution, while TS is used to refine and improve the quality of the solution iteratively. 

This hybrid approach prevents the algorithm from becoming trapped in local optima and achieves 

superior results with faster convergence time. By leveraging the strengths of both ACO and TS, the 

proposed method aims to provide a robust and efficient solution to complex scheduling challenges.  

 

 

Research Methods 
 

Problem Statement 

Scheduling jobs on specific machines is a core component of production scheduling, crucial for 

optimizing manufacturing processes and ensuring that operations run smoothly and efficiently. At PT 

Garmen X, "machine" represents the production floors. The primary aim in this context is to strategically 

allocate or schedule jobs across these production floors to maximize efficiency and productivity 

throughout the entire production system. This scheduling task is critical as it directly impacts the 

efficiency and productivity of the entries production system. In this paper, scheduling is done by 

considering that production is carried out sequentially on each production floor continuously. Flow shop 

scheduling at PT Garmen X involves 𝑛  jobs processed on 𝑚 production floors, each starting 

simultaneously. As stated earlier, the goal achieved in this paper is to minimize total tardiness, which 

can be calculated using several steps: 

a. Completion time (𝐶𝑗): The total time required to complete a job. 

1. Calculate 𝐶1𝑗 = 𝑝𝑖𝑗 , where 𝑝𝑖𝑗 = process time for the job 𝑖 on the production floor 𝑗 where  

(1 ≤ 𝑖 ≤ 𝑛) and (1 ≤ 𝑗 ≤ 𝑚). 

Where 𝑖, 𝑗 ∈ 𝑍 with 𝑍 being the set of positive integers. 

2. Calculate 𝐶𝑖𝑗 = 𝐶𝑖(𝑗−1) + 𝑝𝑖𝑗   

Calculate 𝐶𝑖𝑗 = 𝑚𝑎𝑥 {𝐶𝑖(𝑗−1) + 𝑝𝑖𝑗}, for (1 ≤ 𝑖 ≤ 𝑛) and (1 ≤ 𝑗 ≤ 𝑚) where 𝑖, 𝑗 ∈ 𝑍 with 𝑍 

being the set of positive integers. 

b. Tardiness (𝑇𝑖): the condition where work is completed beyond the specified deadline and can be 

calculated as follows [19]: 

𝑇𝑖 = 𝑚𝑎𝑥{0, 𝐶𝑖𝑗 − 𝑑𝑖}, where 𝑑𝑖 = due date for job 𝑖. 

c. The objective of minimized total tardiness can be formulated as follows [19]: 

𝑚𝑖𝑛 ∑ 𝑇𝑖

𝑛

𝑖=1

 
(1) 

Ant Colony Optimization (ACO) 

ACO is a metaheuristic technique derived from the behavior of ant colonies, which is 

characterized by a unique form of social cooperation and communication through chemical signals 

known as pheromones [14]. The ACO algorithm was originally introduced by Marco Dorigo [20] as a 

novel method for addressing the shortest path problem, such as the Traveling Salesman Problems. The 

foundational concept of ACO is based on the observation that ants, while searching for food, leave behind 

a trail of pheromones on the ground. These pheromone trails serve as a guide for other ants, who tend to 

follow the paths with higher pheromone concentrations, which often correspond to shorter or more 

efficient routes. This is used as a signal for other ant to follow the route taken by the previous ants. 

Therefore, ACO assumes that (artificial) ant colonies use previously discovered (artificial) pheromone 

trails in constructing the best solution that can be iteratively improved. In addition to being based on the 

value of the pheromone trail function, solution selection will be done incrementally by considering the 
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value of the heuristic information function. Each ant will produce a solution, and the selected solution at 

each iteration will be stored in the Tabu list. A Tabu list is a memory 

list used to store the best solution found so the solution cannot be selected at a particular time. 

During the solution-building process by the ants, the value of the pheromone trail disappears after the 

ants choose to include it in the taboo, which is called evaporation. The movement of ants can be seen in 

Figure 1. 

 
Figure 1. (1) Ants finding food, (2) Ant colony looking for the shortest distance, (3) Ant colony gets 

the shortest distance 

Reference: [21] 

 

Ant Colony Optimization Parameters 

ACO has several parameters used to perform the initiation [22]: 

a. Number of cycles (𝑁𝐶𝑚𝑎𝑥), refers to the number of iterations executed throughout the solution 

search process. The ants require this number of cycles to find a solution. 

b. Number of ants (𝑚), the number of artificial entities used to form various combinations of solutions 

at each cycle/iteration. 

c. Pheromone trail (𝜏𝑖𝑗), the chemical substance left by each ant during the journey, as information 

for the next ant to pass the same path. 

d. Heuristic information (𝜂𝑖𝑗) , is the visibility of the job selected in each phase based on the 

mathematical function value.  

e. The relative significance of the pheromone trail (𝛼), is the weight assigned to the pheromone trail 

parameter. Hence, the solution obtained follows the ant's history in the previous movement. The 

value of the parameter 𝛼 ≥  0. 

f. The relative importance of heuristics information (𝛽) , is the weight assigned to the heuristic 

information parameter such that the resulting solution is usually based on a mathematical function. 

Parameter value 𝛽 ≥ 0. 

g. Evaporation coefficient (𝜌),  is a measure of the evaporations coefficient of the pheromone trail 

dissipating over time, causing the evaporation of pheromones, which prevents all ants from 

following identical paths? The parameter value of the evaporation coefficient is 0 ≤  𝜌 ≤  1. The 

probability of ants performing the exploitation process at each stage (𝑞0) (0 ≤  𝑞0  ≤  1). 

Ant Path Selection Rules 

During path selection in schedule formation, ant 𝑘 on job 𝑖 will have job 𝑗 with the following 

rules [4]: 

𝑗 = {
arg max
𝑢 ∈ 𝑆𝑘(𝑖)

{[𝜏𝑖𝑢]𝛼[𝜂𝑖𝑢]𝛽},   𝑖𝑓 𝑞 ≤ 𝑞0

 𝐽,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

Where, 𝜏𝑖𝑢  is the number of pheromone trail on edge (𝑖, 𝑢), whit the calculation of 𝜂𝑖𝑢  as 

follow: 

𝜂𝑖𝑗 =
1

max (𝑡∗ + 𝑝𝑖 ,  𝑑𝑖)
 

(3) 

Equation (3) calculates heuristic information using the Modified Due Date method with a value 

of 𝑡∗ = 0 for this case because it is a type of static scheduling [23]. 𝑆𝑘(𝑖) is the set of jobs fefeasible for 

ant k to select on the job i. inside the for ant 𝑘 to selecton the job 𝑖 inside 𝑡𝑎𝑏𝑢𝑘 . Path selection is 

determined by comparing the 𝑞0 with the 𝑞 value. The value of 𝑞 represents a value obtained arbitrarily 

from probability uniform in [0,1],. In contrast value of 𝑞0 is a parameter that has been initialized at the 

beginning of the algorithm to determine whether the ants choose a path based on the exploitation or 

exploration process.  𝐽 is a random variable chosen based on the cumulative probability distributions, i.e. 
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where to move from job 𝑖 ant 𝑘 chooses job 𝑗 with a cumulative probability value greater than the value 

of 𝑞. The value of  𝐽 is obtained based on the following probability distribution: 

 

𝑃𝑖𝑗
𝑘 = {

(𝜏𝑖𝑗 
𝛼 ) (𝜂𝑖𝑗

𝛽
)

∑ (𝜏𝑖𝑢
𝛼 )( 𝜂𝑖𝑢

𝛽
)𝑢 ∈ 𝑆𝑘(𝑖) 

, 𝐼𝑓 𝑗 ∈  𝑆𝑘(𝑖)

0 ,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

Based on these two rules, if the value 𝑞 ≤ 𝑞0  will perform exploitation using Equation (2); 

otherwise, the exploration process will be carried out using Equation (4). 

Pheromone Update  

After forming a solution schedule, the ants will perform a pheromone update to reduce the 

pheromone trail so that it is possible to explore the solution space more widely. The following is the local 

pheromone update rule performed by ants [15]: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + 𝜌. 𝜏0 (5) 

Where, 𝜏0 =
1

𝑝𝑖
 is initial pheromone. 

Furthermore, once all ants have completed their schedules, a global pheromone update is 

conducted to reinforce the most successful pheromone trail created by the ants. The global pheromone 

update is updated with the following equation: 

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + 𝜌. ∆𝜏𝑖𝑗(𝑡) (6) 

Where, 

∆𝜏𝑖𝑗(𝑡) = {

1

𝑇
, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑗 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

In Equation (6), 𝜌 (0 < 𝜌 < 1) and 𝑇 are the total tardiness as the best possible value of the 

objective function for the best schedule. 

 

Tabu Search (TS) 

Fred Glover introduced Tabu Search (TS) in 1986 as an innovative metaheuristic technique. 

This method enhances local heuristic search processes by directing them to explore the solution space 

beyond the confines of traditional local optimization. Tabu Search is widely regarded as one of the most 

effective strategies for tackling combinatorial optimization challenges. It was specifically developed to 

address the shortcomings of local search methods, which tend to become trapped in suboptimal solutions. 

By employing Tabu Search, a more thorough examination of the solution space is possible, increasing 

the likelihood of identifying best solutions. This method uses adaptive memory to avoid revisiting 

previously explored solutions, enabling a more effective search and reducing the likelihood of getting 

trapped in suboptimal solutions [24]. Insertions and exchanges are frequently performed to generate new 

neighborhoods [25]. TS can be applied to various issues, from computer scheduling and channel 

balancing to cluster analysis and space planning [26]. This paper uses TS as a local search to improves 

the solutions formed by ACO. There are several rules in local search [27], namely: 

1. Swapping is performed by constructing random numbers 𝑖 and 𝑗 to indicate the position of 𝑖 and 

𝑗. The swap process replaces the job in position 𝑖 with the job in position 𝑗. 
2. Insertion is done by building random numbers, a process that is almost the same as swapping, 

but the difference is that the job in position 𝑖 is move to position 𝑗. 

3. Block insertion is done by constructing numbers 𝑖, 𝑗, and 𝑘. And then adding 𝑘 jobs, starting 

from job 𝑖 and ending at position 𝑗. 

In this paper, TS as a local search, performs the swapping process by randomly swapping jobs 

from one production floor to another. 

 

Ant Colony Optimization – Tabu Search (ACO-TS) 

In this research, the combination of the ACO and TS algorithms is called ACO-TS. This merger 

minimizes the convergence time and improves the standard of the generated solution. The search for the 

best scheduling solution to minimize total tardiness can be done through the following steps. 

Step 0. Input the company's scheduling dataset. Go to Step 1. 

Step 1. Initialize the parameters and set the parameter values 𝑁𝐶𝑚𝑎𝑥 , 𝑚, 𝛼, 𝛽, 𝜌, 𝑞0. Go to Step 2. 

Step 2. Set the values of 𝜏𝑖𝑗 with the values of 1 and 𝜂𝑖𝑗 according to Equation (3), 𝜖 𝑖, 𝑗.  

Step 3. Initialize the Tabu Search requirements in the form of Tabu tenure and Tabu list size.   

Step 4. Perform ant generation. The generated solution is 𝑘. Go to Step 5. 
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Step 5. Start the iteration by making a stochastic decision to select the next ant path. The value of q is 

randomly selected with uniform probability in [0, 1]. Go to Step 6. 

Step 6. Does the value of 𝑞 ≤ 𝑞0? If yes, go to Step 7; if not, go to Step 8. 

Step 7. Path selection is performed by exploitation using Equation (2). Go to Step 9. 

Step 8. Use Equation (4) to select a path during the exploration process. Go to the Step 9. 

Step 9. Perform local pheromone update according to Equation (5). Continue to the Step 10. 

Step 10. Calculate the fitness value according to Equation (1). Go to Step 11. 

Step 11. Find the best solution from 𝑆′ in the tabu list with the smallest total tardiness criteria.  

Step 12. Whether 𝑆 <  𝑆’ is the process of making the best solution decision. 𝑆 is the newly found best 

solution, while 𝑆′ is the best in the tabu list. If yes, go to Step 14; if not, go to Step 13. 

Step 13. Since 𝑆 >  𝑆’, another alternative solution is searched to avoid getting stuck in a cycle or local 

solution already explored. Go to Step 9. 

Step 14. Update the tabu list and add the newly found best solution (𝑆); because 𝑆 <  𝑆′, then the 

solution (𝑆′) with the highest total tardiness value will be removed, go to Step 15. 

Step 15. If the present quantity of ants(𝑘) matches the specified number of ants (𝑚), go to Step 16. If 

not, do 𝑘 =  𝑘 +  1 again until if the present quantity of ants(𝑘) matches the specified number (𝑚) at 

the initialization stage, so go to Step 5. 

Step 16. According to Equation (6), perform a global pheromone update from a selection of local 

solutions. Then, go to Step 17. 

Step 17. Does the value of 𝑁𝐶 =  𝑁𝐶𝑚𝑎𝑥? If not, then an additional cycle 𝑁𝐶 =  𝑁𝐶 +  1. Go to step 

5. But, if yes, then the process is stopped and go to Step 18. 

Step 18. Print the best solution.  

 

Performance Parameters  

After obtaining the proposed scheduling results from the ACO-TS algorithm, the suggested 

approach's effectiveness is measured to minimize total tardiness. This measurement is carried out with 

two parameters, namely Efficiency Index (EI) and Relative Error (RE), which are calculated in the 

following equation [28]: 

𝐸𝐼 =
𝑇 𝑐𝑜𝑚𝑝𝑎𝑛𝑦′𝑠 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑

𝑇 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑

 (8) 

If the 𝐸𝐼 𝑣𝑎𝑙𝑢𝑒 >  1, the proposed method is better than the company's actual method in 

reducing total tardiness. 

𝑅𝐸 =
𝑇 𝑐𝑜𝑚𝑝𝑎𝑛𝑦′𝑠 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑

𝑇 𝑐𝑜𝑚𝑝𝑎𝑛𝑦′𝑠 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑

× 100% (9) 

 

 

Results and Discussion 
 

 This paper evaluates the application of the ACO-TS method on data sourced from PT Garmen 

X. The data indicates that 25 jobs must be scheduled across 5 production floors. The 18 stages outlined 

above determine the optimal scheduling solution utilizing MATLAB software. The computations are 

performed on a computer equipped with an AMD Ryzen 7 4700U processor, Radeon Graphics, a 2.00 

GHz CPU, and 16 GB of RAM. As a combination algorithm, the ACO-TS algorithm has a challenge in 

implementing the best solution: setting the correct parameters to achieve optimal performance. This 

tuning process often requires extensive experimentation and repeated iterations, which can be time-

consuming and resource-consuming. In this paper, several scenarios are made for each parameter 

obtained from previous research, producing good results in achieving the objectives. These parameter 

scenarios will form several parameter combinations that are then assessed for their performance in 

achieving the smallest total tardiness.  

 

 

 

 

 

Table 1. Scenario for 6 ACO Parameters 
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Number of Cycles 

(𝑵𝑪𝒎𝒂𝒙) 

Number of Ant  

(𝒎) 
𝜶 𝜷 

Evaporation 

Coefficient (𝝆) 
𝒒𝟎 

5.000 50 1 1 0,5 0,1 

10.000  100  10  10  0,99  
0,5 

0,9 

 

Based on Table 1, 96 different parameter combinations will be tested to determine which yields 

the minimum total tardiness for this scheduling problem. Each combination is tested 30 times to ensure 

reliable results and assess the variability of outcomes. The Tabu Search (TS) component uses two key 

parameters: Tabu Tenure and Tabu List size. Tabu Tenure is set at 5, determining how long a solution is 

prohibited from revisiting. At the same time, the Tabu List size matches the number of jobs to be 

scheduled to prevent premature convergence on suboptimal solutions. These parameters were selected 

through empirical trials to optimize the Tabu Search's performance. The average total tardiness for each 

combination is shown in Table 2, providing insights into the most effective settings for improving 

scheduling efficiency and productivity. By evaluating these combinations, the study identifies the 

optimal configuration for enhanced scheduling performance. This version maintains the essential 

information while being more concise.   

 

Table 2. The Minimum (Best) Total Tardiness Value From 30 Trials on Each Parameter Combination 

Combinat

ion 

Average Makespan 

(Days) 

Average Total Tardiness 

(Days) 

Average Computation Time 

(Seconds) 

1 56 24 30,8844 

2 60 17 55,6093 

3 57 13 60,8185 

4 58 20 55,3381 

5 56 18 54,8716 

⋯ ⋯ ⋯ ⋯ 

80 58 14 167,6304 

81 56 5 110,7002 

82 60 13 291,8960 

83 58 14 168,4175 

84 59 16 168,7565 

85 58 14 161,3477 

86 56 5 147,4991 

87 61 13 166,7031 

⋯ ⋯ ⋯ ⋯ 

92 55 16 206,2337 

93 58 9 203,4163 

94 57 5 226,3750 

95 59 14 344,7472 

96 57 11 440,5782 

 

Table 2 shows that out of 96 parameter combinations, three-parameter combinations produce 

the smallest total tardiness value, namely the 81st parameter combination, 86th parameter combination, 

and 94th parameter combination, with a total tardiness of 5 days. In addition to the smallest total tardiness 

value, parameter selection is also based on One-Way ANOVA analysis to evaluate the effect of each 

parameter on total tardiness minimization. Based on the One-Way ANOVA analysis, the parameters that 

have a significant impact on total tardiness are the number of cycles (𝑁𝐶𝑚𝑎𝑥) and the number of ants 

(𝑚) because the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 is obtained. The larger the number of cycles, the more the number 

of iterations, the more effective it is in minimizing tardiness because a more significant number of 

iterations allows the algorithm to explore better and exploit the solution space, make incremental 
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improvements, and direct the search towards the optimal solution. Also, the higher the number of ants, 

the more pheromone trails will be updated based on the solutions found. This helps create a more accurate 

and informative pheromone trail, leading subsequent ants to choose a more optimal path. However, too 

many cycles and the number of ants used will increase the complexity of the calculation.  n the problem 

at PT Garmen X, the parameters 𝛼, 𝛽, 𝜌, 𝑑𝑎𝑛 𝑞0 have no significant effect because the value of each 𝑝 −
𝑣𝑎𝑙𝑢𝑒 >  0.05. However, there is a difference in the average value of the total delay generated by each 

parameter. 

 

The results of the One-Way ANOVA analysis show that the 81st parameter combination has 

the best performance in minimizing total tardiness; the average value of total tardiness evidence this 

generated the smallest compared to other parameter combinations, which is 17,70 days. Therefore, a 

suitable parameter combination for this problem is a combination with a parameter composition of 

(𝑁𝐶𝑚𝑎𝑥) = 10.000, m = 100, 𝛼 = 1,  𝛽 = 10, 𝜌 = 0,5, and 𝑞0 = 0,9. The parameter combination was 

chosen because it provides optimal performance, namely providing the lowest total tardiness value, and 

has good enough consistency because it has the lowest average total tardiness. Based on the results of 

running the ACO-TS algorithm using this combination, the best (minimum) total tardiness value is five 

days. This best value is used as a scheduling proposal for PT Garmen X with a Gantt chart display that 

can be seen in Figure 2. 

 

 
Figure 2. The proposed Gantt chart was generated from the 81st 

parameter combination for the five production floors at PT Garmen X 

 

Figure 2 illustrates the sequence and duration of jobs on each production line to minimize total 

tardiness. Each color represents a different job. Colored blocks indicate that the job can be completed 

before the deadline, while white blocks indicate late jobs. In Figure 2, there is a late job, job J20, which 

has a total tardiness of 5 days out of 25 jobs for 56 days. This result was obtained with a computation 

time of 110.7002 seconds, equivalent to 1.85 minutes. The proposed scheduling conditions, which 

combine the Ant Colony Optimization and Tabu Search (ACO-TS) methods, result in a smaller total 

tardiness compared to the FCFS method currently used by PT Garment X. However, to ensure that the 

proposed scheduling method can efficiently and effectively achieve production goals, a performance test 

is conducted using two parameters: Efficiency Index (EI) and Relative Error (RE). The first step involves 

calculating the Efficiency Index (EI) from the total tardiness results using Equation (8). 

𝐸𝐼 =
42

5
= 8,4 

The EI value of 8.4 >  1 is obtained; this shows that the proposed scheduling is better than the 

method currently used by PT Garmen X in minimizing total tardiness. Furthermore, the Relative Error 

(RE) calculation with Equation (9) is as follows. 

𝑅𝐸 =
42 − 5

42
× 100% 

𝑅𝐸 = 88,09% 

The relative error (RE) value obtained shows a decrease in total tardiness of 88.09% using the 

ACO-TS algorithm. These results clearly show that the combination of the ACO-TS method can find a 

better flow shop scheduling solution for the problem faced by PT Garmen X and provide a short 

computation time. However, this computation time depends on the complexity of the problem. The more 

complex the problem and the larger the size of the job to be scheduled, the more memory usage and long 
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computation time can be involved. This paper’s computation time is relatively small because it only 

schedules 25 jobs for five production floors. 

 

 

Conclusion 
 

This paper introduces a hybrid method combining ACO and TS to address the flow shop 

scheduling issue and efficiently reduce overall tardiness. In this approach, the ACO algorithm is the 

primary component, tasked with finding a global solution by exploring the broader solution space. 

Simultaneously, Tabu Search acts as a local search technique, refining and enhancing the solutions 

generated by ACO. The synergy between ACO and TS allows the combined method to accelerate the 

convergence process, improving the overall quality of the solutions obtained. When applied to data from 

PT Garmen X, this ACO-TS combination demonstrates significant improvements over the company's 

existing scheduling methods. The test results reveal a dramatic decrease in total tardiness by 88.09% and 

a reduction in the total makespan by 5.08%. These improvements highlight the method's effectiveness in 

optimizing job schedules and enhancing production efficiency. Moreover, the ACO-TS method achieves 

these results with a relatively short computation time, making it a practical solution for industrial 

applications.  

In future research, it is expected that ACO-TS can be applied to scheduling scenarios involving 

more machines or more complex operations and utilized for scheduling problems with multiple 

objectives, such as optimizing total tardiness while considering production costs or resource usage. In 

addition, in the future, this ACO-TS algorithm is expected to be able to be used by adding start time 

variations on each production floor to increase flexibility and adaptability. By incorporating different 

start time scenarios, this approach can be refined to better meet the dynamic needs of modern 

manufacturing environments, such as in the automotive or electronics and service industries. 
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