
Indonesian Council of Premier Statistical Science   Volume 4 Issue 1, 36 – 44, February 2025 
ISSN: 3030-9956/https://dx.doi.org/10.24014/icopss.v4i1.37519     © 2025 Universitas Islam Negeri Sultan Syarif Kasim Riau®        
  

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Estimation of Hazard Cumulative Function Using the 
Nelson-Aalen Method on Covid-19  

Patient Data in Jember Regency 
Hilvania Ramadhani1, Rini Pauziah2   

1,2Program Study of Mathematics, Faculty of Science & Technology, Sultan Syarif Kasim State Islamic University Riau 
Email: hilvaniaramadhani@uin-suska.ac.id 

Received: 9 June 2025 Revised: 14 June 2025 Accepted: 15 June 2025     Published: 18 June 2025 
 

Abstract - The Covid-19 pandemic presents a major challenge in the health sector, especially related to understanding patient 
recovery patterns. This study aims to estimate the cumulative hazard function using the Nelson-Aalen method on the length of 
treatment data of Covid-19 patients who have recovered in Jember Regency. The Nelson-Aalen method is a non-parametric approach 
that does not require certain distribution assumptions and is suitable for survival data, especially those subjected to right censorship. 
In this study, all patient data was complete without sensors. The analysis was conducted with Microsoft Excel software, resulting in 
a cumulative hazard curve that showed an increased risk of recovery as the treatment time increased. The results of this study provide 
an empirical picture of patient recovery patterns and serve as a basis for evaluating health service efficiency and hospital capacity 
planning during the pandemic. In addition, the application of the Nelson-Aalen method reinforces the contribution of non-parametric 
statistical methods in epidemiological studies. 
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1. Introduction 
The Covid-19 pandemic has become a major challenge for health systems around the world, including in Indonesia. One of the 

important aspects of pandemic management is understanding the patient's healing pattern, including the length of treatment time 
needed until the patient is declared cured. This information is not only important for hospitals, but also the basis for policy making 
by local governments. 

Survival analysis is a statistical approach used to analyze the time until an event occurs, such as death, equipment failure, or in 
this context – the patient's recovery [1]. In contrast to ordinary descriptive statistics, survival analysis is able to account for 
cumulative risk over time, and often involves censored data, even though in this study all patients have recovered. 

The Nelson-Aalen method is one of the non-parametric estimators used to estimate the cumulative hazard function, i.e. the 
probability of events (in this case healing) accumulating over a period of time. This method is quite simple and effective in describing 
risk patterns without certain distribution assumptions, so it is suitable for application to observational data such as Covid-19 patient 
data. 

Research on the estimation of cumulative hazard function is essential to describe the change in risk over time, especially in the 
context of infectious diseases such as Covid-19. Using data on patients who have been declared cured, the Nelson-Aalen method can 
provide an idea of when the peak risk of recovery occurs and how quickly the recovery process occurs in the population. This is very 
useful for hospital capacity planning, evaluation of health service efficiency, and anticipation of future surge in cases. 

In addition to being important for clinical purposes, the analysis of the length of treatment of Covid-19 patients also contributes 
to the study of statistics in the field of public health. Cumulative hazard estimation can help identify groups of patients with longer 
recovery times, so that more targeted interventions can be made based on specific demographic characteristics or comorbidities [2]. 
In addition, the use of statistical methods such as Nelson-Aalen is important because it does not require specific distribution 
assumptions, in contrast to parametric approaches that require an explicit form of distribution of event time. Thus, this study not 
only provides an empirical picture of the healing process of Covid-19 patients in Jember Regency, but also expands the application 
of non-parametric methods in epidemiological studies 
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2.    Theoretical Foundations 

2.1. Survival Analysis  
Rain Survival analysis is a statistical method used to study the time it takes until an important event occurs or referred to as 

Event, such as death, recovery, recurrence of illness, or equipment damage. The data used is called survival data or survival data, 
which is data that records the time interval between the beginning of observation and the occurrence of the event. This time can be 
measured in units of days, weeks, months, or years depending on the type of study being conducted. In a medical context, for 
example, survival analysis is widely used to study the length of time a patient survives or recovers after receiving treatment [3]. 

In the analysis of survival, there are several important components: 
1) Survival time, which is the duration from the beginning of observation until the subject experiences an event. 
2) Event status, which indicates whether the subject has experienced an event (for example, recovered = 1) or not yet (censored = 

0). 
3) Censorship (censoring), which is a condition in which complete information about the time of the event cannot be obtained. 

This censorship can occur if the subject quits the study before the event occurs, or if the study ends before all subjects experience 
the event [4]. 
There are three main functions in the most relevant survival analysis: 

1) Probability density function (f(t), which indicates the probability of an event occurring at a given time 
2) Survival function (S(t)), i.e. the probability that the subject will survive longer than time t.  
3) The hazard function (h(t)), which expresses the rate or risk of an event occurring at time t, assuming that the subject has not 
experienced an event up to that time. 

The relationship between these three functions is mathematical, where if one of the functions is known, then the other functions 
can be derived from it [3]. 

One of the important aspects of survival analysis is the concept of censorship. There are three main types of censorship: 
1) Right censoring, where the subject has not experienced an event until the end of the study period. 
2) Left censoring, where the event has already occurred before observation begins. 
3) Interval sensor, which is when the exact time an event occurs is unknown, but is known to occur within a certain time range. 

This censorship makes survival analysis different from regular statistical analysis, as this method can still be used even if the 
data are incomplete as a whole [4]. 

The main purpose of survival analysis is to estimate survival functions and hazard functions, compare these functions between 
two or more groups, and assess the relationship between free variables and survival time. One of the advanced methods of analysis 
in survival is Cox Proportional Hazard regression, which links independent variables to the risk of event occurrence. In addition, for 
data that do not follow a specific distribution, non-parametric approaches such as the Kaplan-meier and Nelson-Aalen methods are 
used [3]. 

2.2. Cumulative Hazard Function  
In survival analysis, the cumulative hazard function is one of the key concepts used to describe the accumulated risk of an event 

occurring over time. This function is particularly important in the context of survival data because it provides an idea of how likely 
it is that someone or something will experience a particular event (e.g. death or recovery) over a certain period of time [5]. 

Mathematically, the cumulative hazard function H(t) is defined as the integral of the hazard function over time, namely:ℎ(𝑡𝑡) 

𝐻𝐻(𝑡𝑡) = � ℎ(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

Or it can also be written as , where is the survival function 𝑯𝑯(𝒕𝒕) = − 𝐥𝐥𝐥𝐥𝑺𝑺(𝒕𝒕)𝑺𝑺(𝒕𝒕)[6]. This relationship shows that the cumulative 
hazard function represents the "total amount of risk" that has accumulated over time, and is used as a basis for estimating the survival 
function indirectly through an exponential formula.𝒕𝒕𝒕𝒕(𝒕𝒕) = 𝒆𝒆−𝑯𝑯(𝒕𝒕) 

The interpretation of the cumulative hazard function is not as simple as the survival function that indicates the chances of 
survival. However, this function has a deep meaning, namely as a force of mortality or total risk that a person faces in a certain 
period of time. In a clinical context, this function helps doctors and researchers understand how much the patient's cumulative risk 
of disease recurrence or death is over observation time [7]. 

To estimate the cumulative hazard function, one of the popular non-parametric methods used is the Nelson-Aalen method. This 
estimator works by summing the ratio of the number of events that occurred at a given time to the number of individuals who are 
still at risk at this time. Nelson-Aalen's estimator is written as: 

𝑯𝑯� (𝒕𝒕) = �
𝒅𝒅𝒊𝒊
𝒏𝒏𝒊𝒊𝒕𝒕𝒊𝒊≤𝒕𝒕
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Where is the number of events at the time, and is the number of individuals who are still at risk at that time. This approach is 
particularly beneficial, especially on right-censored data, and provides results that are stable enough to describe the patterns of risk 
accumulated in the population 𝒅𝒅𝒊𝒊𝒕𝒕𝒊𝒊𝒏𝒏𝒊𝒊[8]. 

Practically, the cumulative hazard function can be visualized in the form of curves that continue to increase over time, since 
the risks are accumulative. When the curve goes up steeply, it indicates a period of time where the risk of events is very high. 
Conversely, if the curve is sloping, it means that the risk is relatively stable or low. Therefore, the cumulative hazard function is not 
only theoretically important, but also has great applicative value in risk modeling in fields such as medicine, actuarial, and 
engineering engineering [5]. 

2.3. Method Nelson-Aalen  
The Nelson-Aalen method is a nonparametric approach used to estimate the cumulative hazard from the survival data that has 

been sensory, in particular right-censored data [9]. This estimator was introduced by Nelson (1969, 1972) and further developed 
by Aalen (1978) using the counting process and martingal theory, which allows for in-depth statistical analysis of survival data and 
other stochastic processes. 

Mathematically, the Nelson-Aalen estimator for the cumulative hazard 𝑨𝑨(𝒕𝒕) function is formulated as: 

𝑨𝑨�(𝒕𝒕) = �
𝒅𝒅𝒋𝒋
𝒓𝒓𝒋𝒋𝒕𝒕𝒋𝒋≤𝒕𝒕

 

Where is the number of events (e.g. deaths) at the time , and is the number of individuals who are still "at risk" (have not experienced 
an event and have not been censored) shortly before . This estimator is in the form of 𝒅𝒅𝒋𝒋𝒕𝒕𝒋𝒋𝒓𝒓𝒋𝒋𝒕𝒕𝒋𝒋a step function that increases discretely 
at each time of the event. 

The main advantage of the Nelson-Aalen estimator lies in its nonparametric nature, so it does not require distribution 
assumptions about the time of occurrence. This estimator is also almost unbiased and has variances that can be estimated with the 
formula: 

𝝈𝝈�𝟐𝟐(𝒕𝒕) = �
(𝒓𝒓𝒋𝒋 − 𝒅𝒅𝒋𝒋)𝒅𝒅𝒋𝒋
(𝒓𝒓𝒋𝒋 − 𝟏𝟏)𝒓𝒓𝟐𝟐𝒋𝒋𝒕𝒕𝒋𝒋≤𝒕𝒕

 

In large samples, the Nelson-Aalen estimator is uniformly consistent and follows the asymptotic normal distribution, which allows 
the construction of confidence intervals for the cumulative hazard function. One commonly used form of trust interval is log-normal 
transformation: 

𝑨𝑨�(𝒕𝒕)𝒆𝒆𝒆𝒆𝒆𝒆�±𝒛𝒛𝟏𝟏−𝜶𝜶 𝟐𝟐�
.
𝝈𝝈�(𝒕𝒕)
𝑨𝑨�(𝒕𝒕)

� 

Application  
The Nelson-Aalen estimator is not only used in the context of simple survival data, but also in more complex models such as: 

• Multistate model: for estimating the intensity of transitions in the Markov process, e.g. the transition from healthy to sick or 
sick to dead. 

• Data with left truncation: when the subject enters the study at varying times. 
• Epidemiological model: to estimate the cumulative rate of infection in the spread of infectious diseases. 
• Data with relative mortality: when individual hazards are calibrated against an external standard population. 

Relationships with Other Methods 
The Nelson-Aalen estimator also has a close relationship with the famous Kaplan-Meier estimator. Theoretically, the survival 

function can be estimated from the Nelson-Aalen estimator through:𝑺𝑺(𝒕𝒕) 

𝑺𝑺�(𝒕𝒕) = 𝒆𝒆𝒆𝒆𝒆𝒆�−𝑨𝑨�(𝒕𝒕)� 

While Kaplan-Meier is a direct estimator of the survival function, Nelson-Aalen provides a robust theoretical approach to the 
cumulative hazard function, and is more flexible in the context of martingal-based stochastic process models [10]. 

3.   Research Methods 
3.1 Types of Research 

This study is a quantitative research with a non-parametric survival analysis  approach which aims to estimate the cumulative 
hazard function in Covid-19 patients treated in Jember Regency using the Nelson-Aalen method 

3.2 Data Analysis Techniques 
The analysis was carried out using the Nelson-Aalen method to estimate the cumulative hazard function . 𝑯𝑯�(𝒕𝒕)The analysis 

steps are as follows: 
1) Survival time calculation: calculates the length of treatment of each patient from the date of admission to the date of recovery 
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2) Timing sequencing: determining the order in which events occur (healing) 
3) Determine the number of events and individuals at risk: 

• 𝒅𝒅𝒋𝒋: Number of patients recovered at the time 𝒕𝒕𝒋𝒋 
• 𝒓𝒓𝒋𝒋: The number of patients who are still in care shortly before the time 𝒕𝒕𝒋𝒋 

4) Calculating the Nelson-Aalen estimate: 

𝑯𝑯� (𝒕𝒕) = �
𝒅𝒅𝒊𝒊
𝒓𝒓𝒊𝒊𝒕𝒕𝒊𝒊≤𝒕𝒕

 

5) Visualization of results: create a cumulative hazard function graph over time to observe the pattern of recovery risk over time. 
6) Interpretation: interpreting the cumulative hazard curve to find out when the risk of recovery is highest and how the recovery 

process unfolds in aggregate. 
The calculation is done using statistical software such as Microsoft Excel for analysis to be done manually. 

4.     Results and Discussion 
4.1 Deskriptif Data 

Table 1. Actual Data 

Yes The patient Status Duration of Treatment Until Recovery (Days) Gender 
1 1 Recover  12 * 
2 2 Recover  46 * 
3 10 Recover  14 * 
4 11 Recover  14 * 
5 3 Recover  38 * 
6 5 Recover  41 * 
7 6 Recover  44 * 
8 8 Recover  36 * 
9 26 Recover  14 * 
10 18 Recover  22 Woman 
11 21 Recover  24 Man 
12 23 Recover  24 Man 
13 19 Recover  31 * 
14 20 Recover  31 Man 
15 22 Recover  31 Man 
16 15 Recover  38 Man 
17 48 Recover  13 * 
18 49 Recover  12 Woman 
19 50 Recover  12 Man 
20 57 Recover  11 * 
21 63 Recover 8 * 
22 65 Recover 7 * 
23 36 Recover 18 * 
24 37 Recover 18 * 
25 47 Recover 14 * 
26 66 Recover 10 * 
27 91 Recover 3 * 
28 34 Recover 23 Woman 
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29 35 Recover 23 * 
30 58 Recover 17 * 
31 61 Recover 16 * 
32 28 Recover 2 * 
33 60 Recover 20 * 
34 67 Recover 15 Woman 
35 84 Recover 13 Woman 
36 87 Recover 11 * 
37 88 Recover 11 * 
38 38 Recover 27 * 
39 70 Recover 16 Man 
40 78 Recover 15 Man 
41 79 Recover 15 Woman 
42 92 Recover 11 * 
43 99 Recover 8 * 
44 62 Recover 23 * 
45 80 Recover 19 Woman 
46 89 Recover 16 * 
47 96 Recover 11 * 
48 104 Recover 9 * 
49 86 Recover 20 Woman 
50 110 Recover 7 * 
51 14 Recover 28 * 
52 83 Recover 24 Man 
53 103 Recover 14 * 
54 39 Recover 38 * 
55 54 Recover 33 Man 
56 130 Recover 4 * 
57 109 Recover 15 * 
58 68 Recover 31 * 
59 33 Recover 47 * 
60 158 Recover 7 * 
61 29 Recover 51 * 
62 108 Recover 22 * 
63 127 Recover 13 * 
64 30 Recover 52 * 
65 32 Recover 52 * 
66 46 Recover 45 * 
67 52 Recover 44 * 
68 53 Recover 44 * 
69 56 Recover 43 * 
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70 166 Recover 6 * 
71 169 Recover 6 * 
72 167 Recover 7 * 
73 173 Recover 7 * 
74 174 Recover 7 * 
75 175 Recover 7 * 
76 176 Recover 7 * 

This data shows several samples of COVID-19 patients in Jember Regency who have recovered [11]. The main focus of the 
data was on how long they were treated until they recovered. Although the gender column exists, the information has not been filled 
in completely 

 
Figure 1. Actual Data Graph 

The "Patient-to-" time series graph shows the order in which COVID-19 patients are recorded who have recovered in Jember 
Regency. It is seen that the order of patients is not recorded sequentially by time, characterized by fluctuations up and down on the 
graph. This is likely due to the process of collecting data from different sources or times. At the end of the chart, there is a fairly 
sharp and steady rise, which indicates that the data is starting to be recorded more regularly. This graph illustrates irregularities in 
the recording of patient sequences, rather than the development of the number of cases over time. 

4.2 Application of the Nelson-Aalen Method 
The application of the Nelson-Aalen method in this study aims to estimate the cumulative hazard function from the length of 

treatment data of COVID-19 patients in Jember Regency. All patients in the data have been declared cured, so there is no censored 
data, and all events are considered to have occurred. Therefore, the Nelson-Aalen approach is very appropriate because it does not 
require the assumption of a specific event time distribution and is able to handle survival data in a nonparametric manner. 

 
Table 2. Implementation of the Nelson-Aalen Method with Microsoft Excel 

Leaks Fustat The Number Of Observations At Risk Hazard Cumulative Hazard 
12 1 76 0,013158 0,013157895 
46 1 75 0,013333 0,026491228 
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14 1 74 0,013514 0,040004742 
14 1 73 0,013699 0,053703372 
38 1 72 0,013889 0,067592261 
41 1 71 0,014085 0,081676768 
44 1 70 0,014286 0,095962482 
36 1 69 0,014493 0,110455236 
14 1 68 0,014706 0,125161118 
22 1 67 0,014925 0,140086491 
24 1 66 0,015152 0,155238006 
24 1 65 0,015385 0,170622622 
31 1 64 0,015625 0,186247622 
31 1 63 0,015873 0,202120637 
31 1 62 0,016129 0,21824967 
38 1 61 0,016393 0,234643112 
13 1 60 0,016667 0,251309779 
12 1 59 0,016949 0,268258932 
12 1 58 0,017241 0,285500311 
11 1 57 0,017544 0,303044171 
8 1 56 0,017857 0,320901313 
7 1 55 0,018182 0,339083132 
18 1 54 0,018519 0,35760165 
18 1 53 0,018868 0,376469575 
14 1 52 0,019231 0,395700344 
10 1 51 0,019608 0,415308187 
3 1 50 0,02 0,435308187 
23 1 49 0,020408 0,45571635 
23 1 48 0,020833 0,476549684 
17 1 47 0,021277 0,497826279 
16 1 46 0,021739 0,51956541 
2 1 45 0,022222 0,541787632 
20 1 44 0,022727 0,564514905 
15 1 43 0,023256 0,587770719 
13 1 42 0,02381 0,611580242 
11 1 41 0,02439 0,635970486 
11 1 40 0,025 0,660970486 
27 1 39 0,025641 0,686611512 
16 1 38 0,026316 0,712927301 
15 1 37 0,027027 0,739954328 
15 1 36 0,027778 0,767732106 
11 1 35 0,028571 0,796303535 
8 1 34 0,029412 0,8257153 
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23 1 33 0,030303 0,85601833 
19 1 32 0,03125 0,88726833 
16 1 31 0,032258 0,919526394 
11 1 30 0,033333 0,952859728 
9 1 29 0,034483 0,987342486 
20 1 28 0,035714 1,023056772 
7 1 27 0,037037 1,060093809 
28 1 26 0,038462 1,098555348 
24 1 25 0,04 1,138555348 
14 1 24 0,041667 1,180222014 
38 1 23 0,043478 1,223700275 
33 1 22 0,045455 1,269154821 
4 1 21 0,047619 1,316773868 
15 1 20 0,05 1,366773868 
31 1 19 0,052632 1,419405447 
47 1 18 0,055556 1,474961003 
7 1 17 0,058824 1,533784532 
51 1 16 0,0625 1,596284532 
22 1 15 0,066667 1,662951199 
13 1 14 0,071429 1,73437977 
52 1 13 0,076923 1,811302847 
52 1 12 0,083333 1,89463618 
45 1 11 0,090909 1,985545271 
44 1 10 0,1 2,085545271 
44 1 9 0,111111 2,196656382 
43 1 8 0,125 2,321656382 
6 1 7 0,142857 2,464513525 
6 1 6 0,166667 2,631180192 
7 1 5 0,2 2,831180192 
7 1 4 0,25 3,081180192 
7 1 3 0,333333 3,414513525 
7 1 2 0,5 3,914513525 
7 1 1 1 4,914513525 

 
This table displays the results of estimating hazard and cumulative hazard functions based on the patient's treatment time until 

recovery. Each row represents one time of occurrence, i.e. when at least one patient recovers at a given time. The Futime column 
indicates the days on which the patient recovered, while the Fustat column is valued at 1 to indicate that a recovery event has occurred 
at that time (no data were censored in this study). The Number Of Observations At Risk column shows the number of patients who 
are still in treatment (at risk) shortly before that time. 

The Hazard column shows the value of the hazard rate at a given time, calculated as the ratio of the number of incidents to the 
number of individuals who are still at risk. This value is an estimate of the probability of recovery on that day. The smaller the 
number of patients remaining (at risk), the greater the hazard value in general, reflecting the greater the likelihood of the patient 
being cured in the near future. 



Hilvania Ramadhani & Rini Pauziah / ICoPSS, 4(1), 36 – 44, 2025 
 

44 

The last column, cumulative hazard, is the result of the cumulative sum of the hazard value up to a certain time, which is the 
estimate of the cumulative hazard function H ̂(t). This function describes the accumulation of healing risks that increase over time. 
As can be observed, the cumulative hazard value continued to increase from the beginning to the end of the observation time, 
reaching a maximum value of about 4.91 by the time all patients had recovered. 

It was seen that at the beginning of the period, the hazard value was relatively small because many patients were still under 
treatment (e.g. 0.013 on day 12). However, the hazard value increases sharply in the final hours, especially when there are only a 
few patients left in care. For example, when only 3 patients are left (at risk = 3), the hazard value reaches 0.333, and when there is 1 
patient left, the hazard becomes 1, which means that the only remaining patient will be cured at that time. This reflects a common 
characteristic of the Nelson-Aalen cumulative hazard function, which is that the curve increases exponentially near the end of the 
observation period, as the event becomes more certain. 

Overall, this table shows that the Nelson-Aalen method provides an accurate and gradual picture of the increased risk of 
recovery in COVID-19 patients, from the slow initial days to the sharp acceleration towards the end of the entire patient's treatment 
period. 
  
5.   Conclussion 

This study successfully applied the Nelson-Aalen method as a non-parametric approach to estimate the cumulative hazard 
function in the long-term data of Covid-19 patient care in Jember Regency. The estimated results show that the cumulative risk of 
recovery increases over time, with some periods showing an acceleration of the recovery process. The cumulative hazard curve 
provided a clear picture of the dynamics of patient healing, so that it could be a basis for consideration in evaluating health service 
efficiency and hospital capacity planning. 

The advantages of the Nelson-Aalen method lie in its simplicity and its ability to handle survival data without certain 
distribution assumptions, making it a flexible analytical tool in the context of epidemiology and public health. In the future, similar 
research can be further developed by considering factors such as age, gender, or comorbidities to produce more comprehensive and 
useful models for decision-making in the health sector. 
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