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Abstract. This study aims to address the difficulty of comparing deep learning–based brain cancer detection methods 
due to differences in datasets and parameter settings, which limits the generalizability of previous findings. The purpose 
of this research is to evaluate the performance of several convolutional neural network (CNN) architectures using 
identical datasets and experimental configurations to determine the most effective technique for early brain cancer 
detection. The study builds a comparative framework using the Keras API on TensorFlow, supported by libraries such 
as NumPy, Pandas, Matplotlib, and Seaborn. All datasets were split into stratified training, validation, and test sets, and 
preprocessing included resizing images to 224×224 pixels, converting them to 3-channel RGB, normalizing the inputs, 
and applying data augmentation. CNN architectures, including VGG16, ResNet50, GoogleNet, and AlexNet, were 
trained with consistent parameter settings, including epoch count, batch size, learning rate optimization, and training 
protocols. Performance evaluation using accuracy, precision, recall, and F1-score shows that GoogleNet and ResNet50 
achieve the highest results across datasets (average >94%), with GoogleNet slightly outperforming ResNet50. AlexNet 
performs poorly on the Kaggle dataset but shows potential on the private dataset, while VGG16 demonstrates moderate 
but less consistent performance. The originality of this study lies in providing a unified evaluation framework that 
enables fair comparison across CNN models, offering valuable insights for selecting optimal architectures for brain 
cancer detection. 
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INTRODUCTION 
The highest mortality rate in Asia is caused by brain cancer, according to a 2018 WHO report [1]. 
Symptoms of brain cancer can be identified based on criteria such as frequent headaches, mood swings, 
difficulty concentrating, seizures, and memory loss [1]. However, if patients are diagnosed too late, it can 
be fatal in the future [1]. Therefore, a technique is needed that can quickly and inexpensively diagnose 
patients who are grouped as having brain cancer. 
 
Several conventional techniques for detecting brain cancer are still in use. These techniques are divided 
into invasive and non-invasive [1]. Invasive techniques involve making an incision in the brain and then 
taking a specific sample to identify the cancer. After that, a pathologist will analyze the sample. This 
invasive technique certainly takes a long time and a lot of effort. 
 
In contrast, non-invasive techniques use body and brain scans using Computed Tomography (CT) or 
Magnetic Resonance Imaging (MRI) equipment. Non-invasive methods are safer and faster than invasive 
techniques that involve direct physical contact. However, non-invasive techniques are highly dependent on 
the medical practitioner's analysis of MRI or CT results. Therefore, the medical practitioner's analysis of 
the MRI or CT results also affects the accuracy of the analysis. 
 
Several researchers are developing accurate, non-invasive techniques for analyzing MRI or CT results using 
deep learning. Deep learning techniques have advantages, especially in the field of medicine, such as the 
ability to handle complex data, high precision, the best generalization, automation, and high efficiency and 
affordability in detecting brain cancer, as done by [2], [3], [4], [5], and [6]. They use CNN techniques to 
detect brain cancer. However, what distinguishes their research is the use of private and public datasets: [2] 
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and [5] use private datasets, while [3], [4], [5], and [6] use public datasets. Reference [6] detects brain 
cancer using machine learning techniques such as SVM, Random Forest, Decision Tree, Adaptive Boosting 
(AdaBoost), Gradient Boosting, and relies on CNN architectures such as VGG-16, VGG-19, ResNet50, 
InceptionRes-NetV2, InceptionV3, Xception, and DenseNet201 as feature extraction techniques. 
Meanwhile, the performance metrics used by researchers are almost the same: Recall, Precision, F1-score, 
and Accuracy. However, some studies cannot be compared because they use different datasets and 
parameters, so the results cannot be generalized as the best technique for detecting brain cancer. Therefore, 
the performance of various cancer detection techniques on the same dataset and under the same parameters 
needs to be evaluated. 
 
Reference [2] uses deep-learning-based computer-aided detection (CAD) and achieves 87.1% sensitivity 
and an ROC value of 0.79 on MRI data from 121 patients with brain metastases, totaling 361 MRI results. 
[3] reported an accuracy of 99% using a public dataset of 3064 MRI results with three tumor types: 
meningiomas, gliomas, and pituitary tumors. The deep learning technique used by [2] was Faster region-
based convolutional neural network (Faster R-CNN) with VGG16 architecture, while [3] used a 
convolutional neural network (CNN) with Residual Network (ResNet) architecture.  
 
Reference [4] used a CNN with a VGG-16 architecture to predict Glioma tumors in the 2016 BRAT MRI 
dataset. This dataset consisted of MRI scan images, namely 188 non-Glioma and 192 Glioma. The results 
of the [4] study yielded 96.9% sensitivity, 99.3% specificity, and 99.2% accuracy. In contrast, researchers 
[5] tested CNNs with various architectures: VGG-16, ResNet-50, and Inception-v3. The CNN with the 
VGG-16 architecture provided the highest accuracy of 0.96. The brain tumor cell dataset used was publicly 
available on Kaggle and consisted of 233 data points. 
 
Reference [6] did the same as [5], namely comparing various architectures: VGG-16, VGG-19, ResNet50, 
InceptionResNetV2, InceptionV3, Xception, and DenseNet201. However, the difference lies in the 
classification techniques used by [6], namely Support Vector Machine, Random Forest, Decision Tree, 
AdaBoost, and Gradient Boosting, whereas [5] is limited to CNN techniques. Of course, the scientific 
contribution of [6] is greater than that of [5]. Reference [6] identified the best-performing model, VGG-19-
SVM, with an accuracy of 99.39%. 
 
Significantly few researchers have compared various cancer detection techniques, such as [7] and [8]. 
Reference [7] presents multiple CNN architectures (AlexNet, VGG16, ResNet18, GoogleNet, and 
ResNet50) on a priv. In contrast, it compares several machine learning techniques (Support Vector 
Machine, K-Nearest Neighbors, Naïve Bayes, Decision Tree, and Linear Discrimination) and various CNN 
architectures (AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50). Limitations in the use of datasets, 
performance evaluation, and parameters make it impossible to compare the two directly   
 
Therefore, many studies cannot be directly compared to determine the best technique. The obstacles 
encountered include the inability to access publicly available datasets, the use of non-standard or limited 
research parameters, and the lack of model evaluation by researchers, such as cross-validation. Therefore, 
this study compares various public datasets using CNN architectures such as AlexNet [9], [10], V, 
includingsNet18, GoogleNet [11], and ResNet50. CNNs are most widely used by researchers to detect brain 
cancer across both public and private datasets. This study conducted experiments using CNN techniques 
on two public datasets, namely Brain MRI Images for Brain Tumor Detection and Figshare. This study 
used several parameters, including Epochs, Batch Size, Average Iterations, Learning Rate, and Training 
Protocol. Performance evaluation was carried out using Recall, Precision, F1-score, and Accuracy [12], 
[13]. 
  
METHODS 
Collecting and labeling medical data is challenging because it involves data privacy and expert explanations 
[14]. Since 2012, CNNs have been widely used for image classification, achieving remarkable results [14]. 
CNNs are widely used by researchers in healthcare image processing, especially for MRI data. CNNs are 
believed to perform best for working with MRI data. Therefore, many researchers have improved CNNs, 
especially in various fields of image processing. The CNN architecture is divided into two parts, namely 
feature extraction and classification [15]. In general, the CNN architecture is divided into five layers, 
namely input, convolutional, pooling, fully connected, and classification [16], [17]. CNNs consist of several 
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layers that use distinct functions to convert input volumes into outputs. In essence, deep learning is an 
adaptation of artificial neural networks where the neurons are stacked on top of each other [18], [19]. 
This study evaluates the performance of CNN techniques with ed, including ResNet18, GoogleNet, and 
ResNet50. This study tests CNNs on various public datasets. Very few researchers have conducted studies 
as significant as this study has. Refer [7] only to CNNs with different architectures (multiple: multipleNet, 
VGG16, ResNet18, GoogleNet, and ResNet50) on private datasets. The results of the research from [7] 
cannot be generalized, let alone compared with other related studies. This is because it uses private datasets, 
so other researchers cannot compare it with the research in [7]. Therefore, the research in [7] can only be 
used for private environments.  
 
This contrasts with [8], which uses the public REMBRANT dataset. Reference [8] compares machine 
learning and deep learning techniques. The machine learning techniques used are Support Vector Machine, 
K-Nearest Neighbors, Naïve Bayes, Decision Tree, and Linear Discriminant Analysis, while a CNN is used 
as a deep learning technique. The parameters used by [8] are epochs, batch size, average iterations, learning 
rate, and training protocol. In contrast, [7] uses the parameters: Gradient decay factor, epsilon, initial 
learning rate, L2 regularization, Gradient threshold, method, threshold (Gradient), maximum epochs, 
minimum batch size, and frequency (verbose). The similarity between studies [8] and [7] in the use of CNN 
architecture is AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50. Although the techniques used by 
[7] and [8] are identical, the results obtained for each CNN architecture differ.  
 
The performance evaluation used by [8] is accuracy (ACC), sensitivity (SE), specificity (SP), positive 
predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) of the receiver 
operator characteristic (ROC). In contrast, [7] uses Precision, Recall, and F-measure. Therefore, the results 
of studies [8] and [7] cannot be compared. 
 
This study builds a framework to compare each model for detecting brain cancer, as shown in figure 1. This 
study uses the Keras API on TensorFlow. Several libraries are used, such as NumPy, Pandas, Matplotlib, 
Seaborn, and several TensorFlow and Keras modules. Each dataset is divided into training, validation, and 
test sets, ensuring hierarchical separation to maintain class distribution. In data processing, this study 
employs several techniques, such as resizing to 224x224 pixels, converting images to 3-channel RGB, and 
applying data augmentation during training. After that, the VGG16, ResNet50, GoogleNet, and AlexNet 
models were used with several parameters, including Epoch = 100, Batch Size = 35, Learning rate 
optimization = adam, and Training protocol = categorical_crossentropy. Epoch is the number of times the 
model checks all data during training, while Batch Size is the number of samples processed at once before 
updating the model's parameters. Categorical Cross-Entropy is a loss function for measuring errors in 
predicting in many-class classification, while the Adam Optimizer is an efficient, adaptive optimization 
algorithm that updates each parameter previously defined for the model. 
 
After that, each model was trained and evaluated using accuracy, precision, recall, and F1-score. The results 
of each model were assessed for each dataset used, namely the tumor dataset with two classes, yes (155) 
and no tumor (98), the tumor dataset with three classes meningioma (708), glioma (1426), pituitary tumor 
(90)), and a tumor dataset wifourh four classes meningioma (306), glioma (300), pituitary tumor (300), and 
No cancer (405) 
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Figure 1.  Framework for comparing the best Deep Learning techniques 

 
RESULT AND DISCUSSION 

The results of the best technique comparison measurements are explained in each section as follows:  
A. VGG16 
In figure 1, VGG16 achieved the highest accuracy of 0.9555 on the Kaggle1 dataset. Meanwhile, the 
accuracy value reported by [7] was 0. This is because [7] did not provide accurate results in their research. 
The high accuracy of VGG16 is reflected in the highest precision and recall values of 0.9572 and 0.9555, 
compared to the values reported by [7] of 0.55 and 0.5. The performance of VGG16 is fully supported by 
an F1-score of 0.952, which is higher than that reported by [7]. ThF1-score1-score in VGG16 indicates a 
good balance between precision and recall.  
 
In general, as shown in figure 1, VGG16 achieved the highest performance across the dataset, especially 
on kaggle1. Meanwhile, on the Kaggle2 dataset, performance was poor, especially in terms of accuracy and 
precision. This is in contrast to [7], which obtain precision and recall values, but not purity values. 
Meanwhile, on the Kaggle2 dataset, VGG16 achieved low accuracy and precision, indicating that the model 
produced many false positives. This could be due to problematic data quality and balance. Therefore, future 
research could explore this aspect. In the Kaggle3 dataset, VGG16 achieved high recall but low precision, 
indicating that its predictions produced many false positives. This occurred due to overfitting; to address it, 
cross-validation or regularization techniques can be used. 
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Figure 2. Performance evaluation of the VGG16 model on various datasets 

 
B. ResNet50 
In figure 2, the f1-score values for the kaggle1 and kaggle2 datasets are very high, namely 0.9855 and 
0.954847, indicating a good balance between precision and recall. In contrast, the Kaggle3 dataset shows a 
low F1 score (0.862069), indicating lower precision and recall. Meanwhile, the low f1-score in the dataset 
[7] precision and recall are not optimal. Therefore, the performance of ResNet50 on kaggle1 and kaggle2 
reached its maximum at the largest sizes. This shows that ResNet50 is powerful and reliable. 

 

 
Figure 3. Performance evaluation of the ResNet50 model on various datasets 

 
C. GoogleNet 
In figure 3, GoogleNet on the kaggle1 and kaggle2 datasets achieved high accuracy, particularly on kaggle1, 
with a score of 0.9901. Similarly, GoogleNet achieved the highest precision scores, particularly on kaggle1 
with a score of 0.9901. Perfect recall was completed on the Kaggle3 dataset [7]. However, the recall values 
for the kaggle1 and kaggle2 datasets remain high at 0.9901 and 0.977199, respectively. Meanwhile, the F1-
score values for kaggle1 and kaggle2 are high, especially for the kaggle1 dataset at 0.9901. Therefore, 
GoogleNet performs best across all measures, indicating that the model's validation and training processes 
are highly reliable. 
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Figure 4. Evaluation of the GoogleNet model performance on various datasets 

 
D. AlexNet 
In figure 4, AlexNet achieved the highest accuracy on the kaggle3 dataset, namely 0.803922. However, the 
highest precision was found in the dataset [7] (0.937), followed by the kaggle3 dataset (0.72973). 
Meanwhile, the highest recall was obtained by kaggle3 and the private dataset [7].Similarly, the highest 
F1-score was received by the dataset [7] (0.96774), followed by the Kaggle3 dataset (0.84375). Therefore, 
AlexNet achieved the best performance on the Kaggle3 dataset, except for precision. 
 

 
 

Figure 5. Evaluation of the AlexNet model performance on various datasets 
 
Based on table 1, many models were evaluated on various datasets. Performance evaluation used accuracy, 
precision, recall, and F1-score. GoogleNet performed best on all datasets, especially on kaggle1 and 
kaggle2. In addition, ResNet50 also generally performed well on all datasets. On the Kaggle dataset, 
GoogleNet achieved the highest accuracy of 0.9901, while AlexNet achieved the lowest accuracy of 0.3089 
and 0.1458. On the Kaggle2 dataset, GoogleNet achieved the best performance for all sizes, exceeding 
0.977. On the Kaggle3 dataset, GoogleNet and ResNet50 achieved accuracy and F1-scores above 0.8, while 
AlexNet achieved high precision but low accuracy and moderate F1-scores. Unlike the kaggle1, kaggle2, 
and kaggle3 datasets, AlexNet achieved maximum performance across all sizes, exceeding 0.93, while 
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GoogleNet achieved balanced performance and a moderate f1-score. Therefore, the model proposed in this 
study is more reliable across all datasets than that in [7].   
 

Table 1. Performance comparison with current research 
Model Researcher Dataset Accuracy Precision Recall F1-Score 

GoogleNet This study Kaggle1 0.9901 0.9901 0.9901 0.9901 
ResNet50 This study Kaggle1 0.9855 0.9856 0.9855 0.9855 
VGG16 This study Kaggle1 0.9565 0.9572 0.9565 0.9562 
AlexNet This study Kaggle1 0.3089 0.0954 0.3089 0.1458 
GoogleNet This study Kaggle2 0.977199 0.977231 0.977199 0.977201 
ResNet50 This study Kaggle2 0.954397 0.956988 0.954397 0.954847 
VGG16 This study Kaggle2 0.465798 0.216968 0.465798 0.296041 
AlexNet This study Kaggle2 0.465798 0.216968 0.465798 0.296041 
GoogleNet This study Kaggle3 0.882353 0.818182 1 0.9 
ResNet50 This study Kaggle3 0.843137 0.806452 0.925926 0.862069 
VGG16 This study Kaggle3 0.705882 0.642857 1 0.782609 
AlexNet This study Kaggle3 0.803922 0.729730 1 0.843750 
AlexNet [7] Private dataset - 0.937 1 0.96774 
VGG16 [7] Private dataset - 0.55 0.5 0.5238 
ResNet50 [7] Private dataset - 0.95 0.5588 0.7036 
GoogleNet [7] Private dataset - 0.75 1 0.8571 
 

Based on table 2, several models performed poorly, such as the AlexNet model on the kaggle1 dataset 
(accuracy 0.3089, precision 0.0954, recall 0.3089, and F1-Score 0.1458), VGG16 on kaggle2 (accuracy 
0.465798, precision 0.216968, recall 0.465798, and F1-Score 0.296041) and AlexNet on kaggle2 (accuracy 
0.465798, precision 0.216968, recall 0.465798, and F1-Score 0.296041). Therefore, this study attempts to 
re-evaluate using the overfitting technique, namely, cross-validation.  

 
Table 2. AlexNet and GoogLeNet models Re-evaluated using Cross-Validation 

Model Dataset Accuracy Precision Recall F1-Score 
Before After Before After Before After Before After 

Google
Net 

Kaggle
1 

0.9901 0.9893 0.9901 0.9894 0.9901 0.9893 0.9901 0.9893 

AlexNe
t 

Kaggle
1 

0.3089 0.3089 0.0954 0.0954 0.3089 0.3089 0.1458 0.1458 

Google
Net 

Kaggle
2 

0.9771
99 

0.9645
49 

0.9772
31 

0.97419
4 

0.9771
99 

0.9680
94 

0.9772
01 

0.9709
05 

ResNet
50 

Kaggle
2 

0.9543
97 

0.8730
98 

0.9569
88 

0.96774
2 

0.9543
97 

0.8679
80 

0.9548
47 

0.9098
36 

VGG16 Kaggle
2 

0.4657
98 

0.7631
37 

0.2169
68 

0.88387
1 

0.4657
98 

0.7703
37 

0.2960
41 

0.8191
26 

AlexNe
t 

Kaggle
2 

0.4657
98 

0.8423
53 

0.2169
68 

0.86451
6 

0.4657
98 

0.8742
12 

0.2960
41 

0.8679
03 

Google
Net 

Kaggle
3 

0.8823
53 

0.9601
87 

0.8181
82 

0.96108
55 

1 0.9601
87 

0.9 0.9603
29 

ResNet
50 

Kaggle
3 

0.8431
37 

0.9758
51 

0.8064
52 

0.97599
24 

0.9259
26 

0.9758
51 

0.8620
69 

0.9758
52 

VGG16 Kaggle
3 

0.7058
82 

0.5189
14 

0.6428
57 

0.60604
96 

1 0.5189
14 

0.7826
09 

0.3861
07 

AlexNe
t 

Kaggle
3 

0.8039
22 

0.9229
65 

0.7297
30 

0.92326
7 

1 0.9229
65 

0.8437
50 

0.9227
34 
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In table 2, the GoogleNet model showed insignificant changes with cross-validation, and the AlexNet model 
showed no changes at all with cross-validation on the Kaggle dataset. In contrast, on the Kaggle 2 and 
Kaggle 3 datasets, the GoogleNet model still did not experience a significant decline, while AlexNet 
experienced a very substantial increase in performance in terms of accuracy, precision, recall, and F1-Score 
on the Kaggle 2 dataset (accuracy 0.842, precision 0.864, recall 0.874, and F1 -Score 0.867) and Kaggle3 
(accuracy 0.922, precision 0.923, recall 0.922, and F1-Score 0.922). Therefore, cross-validation can be used 
to prevent overfitting and achieve better results. In addition, AlexNet is the oldest deep learning technique, 
so its limitations cannot keep up with developments in research. The limitations of AlexNet include depth, 
architectural complexity, and model generalization capabilities. Compared with GoogleNet and ResNet50, 
AlexNet is less effective at predicting brain cancer or similar diseases, though many researchers still use 
the AlexNet architecture today because it can be optimized. 

 

 
Figure 3. Training and validation on the ResNet50 model 

 
Overall, GoogleNet and ResNet50 excelled in all performance evaluations across various datasets. This is 
also evident in figure 6, where the ResNet50 model shows progress in learning on both the training and 
validation sets, with minimal overfitting. Similarly, the GoogleNet model in figure 7, trained on epochs 9 
and 10, produced a robust model during the training and validation phases. 
Therefore, GoogleNet and ResNet50 have different capabilities: GoogleNet excels in computational 
efficiency and multi-scale feature capture, while ResNet50 excels in complex data training processes 
involving deep networks by optimizing residual connections. Additionally, both models can handle 
overfitting by leveraging features such as dropout, batch normalization, and residual connections, enabling 
generalization.  
 

 
Figure 4. Training and validation on the GoogleNet model 

 
CONCLUSION 
Performance evaluation shows that GoogleNet and ResNet50 are superior models across various datasets, 
with GoogleNet slightly outperforming ResNet50. AlexNet struggles with the Kaggle dataset but shows 
potential on private datasets. VGG16 shows moderate performance but is less consistent than GoogleNet 
or ResNet50. Therefore, the best model choice depends on the specific dataset and application 
requirements. The model's complexity, which requires significant computational resources, and the 
imbalance in the number of data classes are limitations of this study. The practical implications of 
GoogleNet or ResNet50 in a clinical context include automating brain cancer detection processes, cancer 
segmentation, predicting brain cancer severity, monitoring brain cancer progression, and personalized drug 
administration. 
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