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Abstract. This study aims to address the difficulty of comparing deep learning—based brain cancer detection methods
due to differences in datasets and parameter settings, which limits the generalizability of previous findings. The purpose
of this research is to evaluate the performance of several convolutional neural network (CNN) architectures using
identical datasets and experimental configurations to determine the most effective technique for early brain cancer
detection. The study builds a comparative framework using the Keras API on TensorFlow, supported by libraries such
as NumPy, Pandas, Matplotlib, and Seaborn. All datasets were split into stratified training, validation, and test sets, and
preprocessing included resizing images to 224x224 pixels, converting them to 3-channel RGB, normalizing the inputs,
and applying data augmentation. CNN architectures, including VGG16, ResNet50, GoogleNet, and AlexNet, were
trained with consistent parameter settings, including epoch count, batch size, learning rate optimization, and training
protocols. Performance evaluation using accuracy, precision, recall, and F1-score shows that GoogleNet and ResNet50
achieve the highest results across datasets (average >94%), with GoogleNet slightly outperforming ResNet50. AlexNet
performs poorly on the Kaggle dataset but shows potential on the private dataset, while VGG16 demonstrates moderate
but less consistent performance. The originality of this study lies in providing a unified evaluation framework that
enables fair comparison across CNN models, offering valuable insights for selecting optimal architectures for brain
cancer detection.
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INTRODUCTION

The highest mortality rate in Asia is caused by brain cancer, according to a 2018 WHO report [1].
Symptoms of brain cancer can be identified based on criteria such as frequent headaches, mood swings,
difficulty concentrating, seizures, and memory loss [1]. However, if patients are diagnosed too late, it can
be fatal in the future [1]. Therefore, a technique is needed that can quickly and inexpensively diagnose
patients who are grouped as having brain cancer.

Several conventional techniques for detecting brain cancer are still in use. These techniques are divided
into invasive and non-invasive [1]. Invasive techniques involve making an incision in the brain and then
taking a specific sample to identify the cancer. After that, a pathologist will analyze the sample. This
invasive technique certainly takes a long time and a lot of effort.

In contrast, non-invasive techniques use body and brain scans using Computed Tomography (CT) or
Magnetic Resonance Imaging (MRI) equipment. Non-invasive methods are safer and faster than invasive
techniques that involve direct physical contact. However, non-invasive techniques are highly dependent on
the medical practitioner's analysis of MRI or CT results. Therefore, the medical practitioner's analysis of
the MRI or CT results also affects the accuracy of the analysis.

Several researchers are developing accurate, non-invasive techniques for analyzing MRI or CT results using
deep learning. Deep learning techniques have advantages, especially in the field of medicine, such as the
ability to handle complex data, high precision, the best generalization, automation, and high efficiency and
affordability in detecting brain cancer, as done by [2], [3], [4], [5], and [6]. They use CNN techniques to
detect brain cancer. However, what distinguishes their research is the use of private and public datasets: [2]
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and [5] use private datasets, while [3], [4], [S], and [6] use public datasets. Reference [6] detects brain
cancer using machine learning techniques such as SVM, Random Forest, Decision Tree, Adaptive Boosting
(AdaBoost), Gradient Boosting, and relies on CNN architectures such as VGG-16, VGG-19, ResNet50,
InceptionRes-NetV2, InceptionV3, Xception, and DenseNet201 as feature extraction techniques.
Meanwhile, the performance metrics used by researchers are almost the same: Recall, Precision, F1-score,
and Accuracy. However, some studies cannot be compared because they use different datasets and
parameters, so the results cannot be generalized as the best technique for detecting brain cancer. Therefore,
the performance of various cancer detection techniques on the same dataset and under the same parameters
needs to be evaluated.

Reference [2] uses deep-learning-based computer-aided detection (CAD) and achieves 87.1% sensitivity
and an ROC value of 0.79 on MRI data from 121 patients with brain metastases, totaling 361 MRI results.
[3] reported an accuracy of 99% using a public dataset of 3064 MRI results with three tumor types:
meningiomas, gliomas, and pituitary tumors. The deep learning technique used by [2] was Faster region-
based convolutional neural network (Faster R-CNN) with VGGI16 architecture, while [3] used a
convolutional neural network (CNN) with Residual Network (ResNet) architecture.

Reference [4] used a CNN with a VGG-16 architecture to predict Glioma tumors in the 2016 BRAT MRI
dataset. This dataset consisted of MRI scan images, namely 188 non-Glioma and 192 Glioma. The results
of the [4] study yielded 96.9% sensitivity, 99.3% specificity, and 99.2% accuracy. In contrast, researchers
[5] tested CNNs with various architectures: VGG-16, ResNet-50, and Inception-v3. The CNN with the
VGG-16 architecture provided the highest accuracy of 0.96. The brain tumor cell dataset used was publicly
available on Kaggle and consisted of 233 data points.

Reference [6] did the same as [5], namely comparing various architectures: VGG-16, VGG-19, ResNet50,
InceptionResNetV2, InceptionV3, Xception, and DenseNet201. However, the difference lies in the
classification techniques used by [6], namely Support Vector Machine, Random Forest, Decision Tree,
AdaBoost, and Gradient Boosting, whereas [5] is limited to CNN techniques. Of course, the scientific
contribution of [6] is greater than that of [5]. Reference [6] identified the best-performing model, VGG-19-
SVM, with an accuracy of 99.39%.

Significantly few researchers have compared various cancer detection techniques, such as [7] and [8].
Reference [7] presents multiple CNN architectures (AlexNet, VGG16, ResNetl8, GoogleNet, and
ResNet50) on a priv. In contrast, it compares several machine learning techniques (Support Vector
Machine, K-Nearest Neighbors, Naive Bayes, Decision Tree, and Linear Discrimination) and various CNN
architectures (AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50). Limitations in the use of datasets,
performance evaluation, and parameters make it impossible to compare the two directly

Therefore, many studies cannot be directly compared to determine the best technique. The obstacles
encountered include the inability to access publicly available datasets, the use of non-standard or limited
research parameters, and the lack of model evaluation by researchers, such as cross-validation. Therefore,
this study compares various public datasets using CNN architectures such as AlexNet [9], [10], V,
includingsNet18, GoogleNet [11], and ResNet50. CNNs are most widely used by researchers to detect brain
cancer across both public and private datasets. This study conducted experiments using CNN techniques
on two public datasets, namely Brain MRI Images for Brain Tumor Detection and Figshare. This study
used several parameters, including Epochs, Batch Size, Average Iterations, Learning Rate, and Training
Protocol. Performance evaluation was carried out using Recall, Precision, F1-score, and Accuracy [12],
[13].

METHODS

Collecting and labeling medical data is challenging because it involves data privacy and expert explanations
[14]. Since 2012, CNNs have been widely used for image classification, achieving remarkable results [14].
CNNs are widely used by researchers in healthcare image processing, especially for MRI data. CNNs are
believed to perform best for working with MRI data. Therefore, many researchers have improved CNNSs,
especially in various fields of image processing. The CNN architecture is divided into two parts, namely
feature extraction and classification [15]. In general, the CNN architecture is divided into five layers,
namely input, convolutional, pooling, fully connected, and classification [16], [17]. CNNs consist of several
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layers that use distinct functions to convert input volumes into outputs. In essence, deep learning is an
adaptation of artificial neural networks where the neurons are stacked on top of each other [18], [19].

This study evaluates the performance of CNN techniques with ed, including ResNet18, GoogleNet, and
ResNet50. This study tests CNNs on various public datasets. Very few researchers have conducted studies
as significant as this study has. Refer [7] only to CNNs with different architectures (multiple: multipleNet,
VGGI16, ResNetl8, GoogleNet, and ResNet50) on private datasets. The results of the research from [7]
cannot be generalized, let alone compared with other related studies. This is because it uses private datasets,
so other researchers cannot compare it with the research in [7]. Therefore, the research in [7] can only be
used for private environments.

This contrasts with [8], which uses the public REMBRANT dataset. Reference [8] compares machine
learning and deep learning techniques. The machine learning techniques used are Support Vector Machine,
K-Nearest Neighbors, Naive Bayes, Decision Tree, and Linear Discriminant Analysis, while a CNN is used
as a deep learning technique. The parameters used by [8] are epochs, batch size, average iterations, learning
rate, and training protocol. In contrast, [7] uses the parameters: Gradient decay factor, epsilon, initial
learning rate, L2 regularization, Gradient threshold, method, threshold (Gradient), maximum epochs,
minimum batch size, and frequency (verbose). The similarity between studies [8] and [7] in the use of CNN
architecture is AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50. Although the techniques used by
[7] and [8] are identical, the results obtained for each CNN architecture differ.

The performance evaluation used by [8] is accuracy (ACC), sensitivity (SE), specificity (SP), positive
predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) of the receiver
operator characteristic (ROC). In contrast, [7] uses Precision, Recall, and F-measure. Therefore, the results
of studies [8] and [7] cannot be compared.

This study builds a framework to compare each model for detecting brain cancer, as shown in figure 1. This
study uses the Keras API on TensorFlow. Several libraries are used, such as NumPy, Pandas, Matplotlib,
Seaborn, and several TensorFlow and Keras modules. Each dataset is divided into training, validation, and
test sets, ensuring hierarchical separation to maintain class distribution. In data processing, this study
employs several techniques, such as resizing to 224x224 pixels, converting images to 3-channel RGB, and
applying data augmentation during training. After that, the VGG16, ResNet50, GoogleNet, and AlexNet
models were used with several parameters, including Epoch = 100, Batch Size = 35, Learning rate
optimization = adam, and Training protocol = categorical crossentropy. Epoch is the number of times the
model checks all data during training, while Batch Size is the number of samples processed at once before
updating the model's parameters. Categorical Cross-Entropy is a loss function for measuring errors in
predicting in many-class classification, while the Adam Optimizer is an efficient, adaptive optimization
algorithm that updates each parameter previously defined for the model.

After that, each model was trained and evaluated using accuracy, precision, recall, and F1-score. The results
of each model were assessed for each dataset used, namely the tumor dataset with two classes, yes (155)
and no tumor (98), the tumor dataset with three classes meningioma (708), glioma (1426), pituitary tumor
(90)), and a tumor dataset wifourh four classes meningioma (306), glioma (300), pituitary tumor (300), and
No cancer (405)
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Figure 1. Framework for comparing the best Deep Learning techniques

RESULT AND DISCUSSION

The results of the best technique comparison measurements are explained in each section as follows:
A. VGGI16
In figure 1, VGG16 achieved the highest accuracy of 0.9555 on the Kagglel dataset. Meanwhile, the
accuracy value reported by [7] was 0. This is because [7] did not provide accurate results in their research.
The high accuracy of VGG16 is reflected in the highest precision and recall values of 0.9572 and 0.9555,
compared to the values reported by [7] of 0.55 and 0.5. The performance of VGGI16 is fully supported by
an Fl-score of 0.952, which is higher than that reported by [7]. ThF1-scorel-score in VGG16 indicates a
good balance between precision and recall.

In general, as shown in figure 1, VGG16 achieved the highest performance across the dataset, especially
on kaggle1. Meanwhile, on the Kaggle2 dataset, performance was poor, especially in terms of accuracy and
precision. This is in contrast to [7], which obtain precision and recall values, but not purity values.
Meanwhile, on the Kaggle2 dataset, VGG16 achieved low accuracy and precision, indicating that the model
produced many false positives. This could be due to problematic data quality and balance. Therefore, future
research could explore this aspect. In the Kaggle3 dataset, VGG16 achieved high recall but low precision,
indicating that its predictions produced many false positives. This occurred due to overfitting; to address it,
cross-validation or regularization techniques can be used.
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Figure 2. Performance evaluation of the VGG16 model on various datasets

B. ResNet50

In figure 2, the fl-score values for the kagglel and kaggle2 datasets are very high, namely 0.9855 and
0.954847, indicating a good balance between precision and recall. In contrast, the Kaggle3 dataset shows a
low F1 score (0.862069), indicating lower precision and recall. Meanwhile, the low fl-score in the dataset
[7] precision and recall are not optimal. Therefore, the performance of ResNet50 on kagglel and kaggle2
reached its maximum at the largest sizes. This shows that ResNet50 is powerful and reliable.
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Figure 3. Performance evaluation of the ResNet50 model on various datasets

C. GoogleNet

In figure 3, GoogleNet on the kagglel and kaggle2 datasets achieved high accuracy, particularly on kagglel,
with a score of 0.9901. Similarly, GoogleNet achieved the highest precision scores, particularly on kagglel
with a score of 0.9901. Perfect recall was completed on the Kaggle3 dataset [7]. However, the recall values
for the kaggle1 and kaggle? datasets remain high at 0.9901 and 0.977199, respectively. Meanwhile, the F1-
score values for kagglel and kaggle2 are high, especially for the kagglel dataset at 0.9901. Therefore,
GoogleNet performs best across all measures, indicating that the model's validation and training processes
are highly reliable.
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Figure 4. Evaluation of the GoogleNet model performance on various datasets

D. AlexNet

In figure 4, AlexNet achieved the highest accuracy on the kaggle3 dataset, namely 0.803922. However, the
highest precision was found in the dataset [7] (0.937), followed by the kaggle3 dataset (0.72973).
Meanwhile, the highest recall was obtained by kaggle3 and the private dataset [7].Similarly, the highest
F1-score was received by the dataset [7] (0.96774), followed by the Kaggle3 dataset (0.84375). Therefore,
AlexNet achieved the best performance on the Kaggle3 dataset, except for precision.
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Figure 5. Evaluation of the AlexNet model performance on various datasets

Based on table 1, many models were evaluated on various datasets. Performance evaluation used accuracy,
precision, recall, and F1-score. GoogleNet performed best on all datasets, especially on kagglel and
kaggle2. In addition, ResNet50 also generally performed well on all datasets. On the Kaggle dataset,
GoogleNet achieved the highest accuracy of 0.9901, while AlexNet achieved the lowest accuracy of 0.3089
and 0.1458. On the Kaggle2 dataset, GoogleNet achieved the best performance for all sizes, exceeding
0.977. On the Kaggle3 dataset, GoogleNet and ResNet50 achieved accuracy and F1-scores above 0.8, while
AlexNet achieved high precision but low accuracy and moderate F1-scores. Unlike the kagglel, kaggle2,
and kaggle3 datasets, AlexNet achieved maximum performance across all sizes, exceeding 0.93, while
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GoogleNet achieved balanced performance and a moderate fl-score. Therefore, the model proposed in this
study is more reliable across all datasets than that in [7].

Table 1. Performance comparison with current research

Model Researcher Dataset Accuracy Precision  Recall F1-Score
GoogleNet Thisstudy  Kagglel 0.9901 0.9901 0.9901 0.9901
ResNet50  Thisstudy  Kagglel 0.9855 0.9856 0.9855 0.9855
VGG16 This study  Kagglel 0.9565 0.9572 0.9565 0.9562
AlexNet This study  Kagglel 0.3089 0.0954 0.3089 0.1458
GoogleNet This study  Kaggle2 0.977199 0.977231 0.977199 0.977201
ResNet50  Thisstudy  Kaggle2 0.954397 0.956988  0.954397 0.954847
VGG16 This study  Kaggle2 0.465798 0.216968 0.465798 0.296041
AlexNet This study  Kaggle2 0.465798 0.216968  0.465798 0.296041
GoogleNet Thisstudy  Kaggle3 0.882353 0.818182 1 0.9
ResNet50  Thisstudy  Kaggle3 0.843137 0.806452  0.925926 0.862069
VGG16 This study  Kaggle3 0.705882 0.642857 1 0.782609
AlexNet This study  Kaggle3 0.803922 0.729730 1 0.843750
AlexNet [7] Private dataset - 0.937 1 0.96774
VGG16 [7] Private dataset - 0.55 0.5 0.5238
ResNet50  [7] Private dataset - 0.95 0.5588 0.7036
GoogleNet [7] Private dataset - 0.75 1 0.8571

Based on table 2, several models performed poorly, such as the AlexNet model on the kaggle!l dataset
(accuracy 0.3089, precision 0.0954, recall 0.3089, and F1-Score 0.1458), VGG16 on kaggle2 (accuracy
0.465798, precision 0.216968, recall 0.465798, and F1-Score 0.296041) and AlexNet on kaggle2 (accuracy
0.465798, precision 0.216968, recall 0.465798, and F1-Score 0.296041). Therefore, this study attempts to
re-evaluate using the overfitting technique, namely, cross-validation.

Table 2. AlexNet and GoogLeNet models Re-evaluated using Cross-Validation

Model Dataset Accuracy Precision Recall F1-Score

Before  After  Before After Before  After  Before  After
Google Kaggle 09901 0.9893 0.9901 0.9894 0.9901 09893 0.9901 0.9893
Net 1
AlexNe Kaggle 03089 0.3089 0.0954 0.0954 0.3089 0.3089  0.1458  0.1458
t 1
Google Kaggle 09771 0.9645 09772 097419 0.9771 09680 09772  0.9709

Net 2 99 49 31 4 99 94 01 05
ResNet Kaggle 09543 0.8730 09569 0.96774 0.9543 0.8679 0.9548  0.9098
50 2 97 98 88 2 97 80 47 36
VGG16 Kaggle 0.4657 0.7631 0.2169  0.88387 0.4657 0.7703  0.2960  0.8191

2 98 37 68 1 98 37 41 26
AlexNe Kaggle 0.4657 0.8423 02169 0.86451 0.4657 0.8742 0.2960 0.8679
t 2 98 53 68 6 98 12 41 03
Google Kaggle 0.8823 0.9601 0.8181 0.96108 1 0.9601 0.9 0.9603
Net 3 53 87 82 55 87 29
ResNet Kaggle 0.8431 0.9758 0.8064 0.97599 0.9259 0.9758 0.8620 0.9758
50 3 37 51 52 24 26 51 69 52
VGG16 Kaggle 0.7058 0.5189  0.6428 0.60604 1 0.5189 0.7826  0.3861

3 82 14 57 96 14 09 07
AlexNe Kaggle 0.8039 0.9229 0.7297 092326 1 0.9229 0.8437  0.9227
t 3 22 65 30 7 65 50 34
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In table 2, the GoogleNet model showed insignificant changes with cross-validation, and the AlexNet model
showed no changes at all with cross-validation on the Kaggle dataset. In contrast, on the Kaggle 2 and
Kaggle 3 datasets, the GoogleNet model still did not experience a significant decline, while AlexNet
experienced a very substantial increase in performance in terms of accuracy, precision, recall, and F1-Score
on the Kaggle 2 dataset (accuracy 0.842, precision 0.864, recall 0.874, and F1 -Score 0.867) and Kaggle3
(accuracy 0.922, precision 0.923, recall 0.922, and F1-Score 0.922). Therefore, cross-validation can be used
to prevent overfitting and achieve better results. In addition, AlexNet is the oldest deep learning technique,
so its limitations cannot keep up with developments in research. The limitations of AlexNet include depth,
architectural complexity, and model generalization capabilities. Compared with GoogleNet and ResNet50,
AlexNet is less effective at predicting brain cancer or similar diseases, though many researchers still use
the AlexNet architecture today because it can be optimized.

Training and Validation Loss Training and Validation Accuracy

=

Accuracy

Epochs Epochs

Figure 3. Training and validation on the ResNet50 model

Overall, GoogleNet and ResNet50 excelled in all performance evaluations across various datasets. This is
also evident in figure 6, where the ResNet50 model shows progress in learning on both the training and
validation sets, with minimal overfitting. Similarly, the GoogleNet model in figure 7, trained on epochs 9
and 10, produced a robust model during the training and validation phases.

Therefore, GoogleNet and ResNet50 have different capabilities: GoogleNet excels in computational
efficiency and multi-scale feature capture, while ResNet50 excels in complex data training processes
involving deep networks by optimizing residual connections. Additionally, both models can handle
overfitting by leveraging features such as dropout, batch normalization, and residual connections, enabling
generalization.

Training and Validation Loss Training and Validation Accuracy

>
Epochs Epochs

Figure 4. Training and validation on the GoogleNet model

CONCLUSION

Performance evaluation shows that GoogleNet and ResNet50 are superior models across various datasets,
with GoogleNet slightly outperforming ResNet50. AlexNet struggles with the Kaggle dataset but shows
potential on private datasets. VGG16 shows moderate performance but is less consistent than GoogleNet
or ResNet50. Therefore, the best model choice depends on the specific dataset and application
requirements. The model's complexity, which requires significant computational resources, and the
imbalance in the number of data classes are limitations of this study. The practical implications of
GoogleNet or ResNet50 in a clinical context include automating brain cancer detection processes, cancer
segmentation, predicting brain cancer severity, monitoring brain cancer progression, and personalized drug
administration.
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