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Abstract. Lung cancer is one of the highest causes of death in the world, including in Indonesia, which is largely caused 
by delayed early detection. Conventional methods such as CT-scan, thoracic surgery, and histopathology have 
limitations in terms of cost, time, and accessibility. Therefore, machine learning (ML)-based approaches are a 
promising alternative to support early detection of lung cancer quickly and at a low cost. This study aims to benchmark 
the performance of various machine learning algorithms in detecting lung cancer using public datasets. A literature 
review was conducted on Scopus and Web of Science indexed articles over the past five years to identify trends and 
research gaps related to the selection of ML algorithms. The dataset used consisted of 310 data with 16 clinical symptom 
attributes and two classes, namely cancer and non-cancer, which had an unbalanced distribution. A total of nine ML 
algorithms were tested, including Random Forest, Support Vector Machine, Logistic Regression, Multi-Layer 
Perceptron, C4.5, Bayesian Network, RepTree, Naïve Bayes, and P.A.R.T, with a cross-validation scheme. 
Performance evaluation was conducted using the Accuracy, Precision, F-Measure, True Positive Rate, ROC, False 
Positive Rate, Precision-Recall Curve, and Matthews Correlation Coefficient metrics. The results of the experiment 
showed that the Support Vector Machine performed best in balanced data distribution, while Random Forest showed 
more stable performance in unbalanced data conditions. This analysis confirms that algorithm selection and data 
distribution greatly affect the quality of lung cancer detection, and emphasizes the importance of fair and standardized 
benchmarking in the development of machine learning-based detection systems. 
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INTRODUCTION 
Cancer is the deadliest disease in the world with a prevalence rate of 11.4 percent. Indonesia noted that 
since 2020, the cause of death due to lung cancer has increased by 18%. This is because the patient is late 
to check with the doctor, so when examined by the doctor, it turns out that the patient has been justified in 
having advanced stage cancer.  
 
In general, cancer detection techniques in Indonesia such as CT scan [1], thoracic surgery [2], and 
histopathology [3]. Cancer detection techniques require expensive and expensive time, so a fast and low-
cost alternative detection technique is needed. Several studies have used machine learning techniques as an 
alternative detection technique for lung cancer. This machine learning technique is very helpful in detecting 
the characteristics of lung cancer [4]. 
 
Many researchers are trying to find the best techniques for detecting lung cancer, such as [5], [6], [7], [8] 
and [9]. [5] using Support Vector Machines (SVM), Decision trees (DT), and Artificial Neural Networks 
techniques in the TCGA dataset. [6] using the SEER dataset to use Random Forests (RF), General Linear 
Regression (GL), RF, Gradient Boosted Machines (GBM), and Ensemble learning modifications. [7] 
compared machine learning techniques such as SVM, K-Nearest Neighbour, Decision Tree, Random 
Forest, Gradient Boosting Decision tree on private datasets as well as those done by [8] who used EHR 
datasets to be classified by random forest. It is different from [9] that uses public datasets, such as UCI 
Machine learning with the Lung Cancer dataset against the Naïve Bayes (NB) technique, C4.5 Decision 
Tree, and Support Vector Machine (SVM). 
 
Benchmarking is one of the techniques used to get the best of the best techniques [10], especially for lung 
cancer cases. However, the various machine learning techniques  proposed by various researchers to detect 
lung cancer are not all comparable [11], this is one of them due to differences in datasets to access to 
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datasets [12] (public or private). Benchmarking is not a technique by taking other research results and 
combining them in a tabulation. Benchmark is more about the research process of others can be compared 
to how to follow the same process done by them, such as using datasets, parameters, and configurations.  
According to [13], benchmarks should at least have aspects of relevance, reproducibility, fairness, 
verifiability, and usability.  
 
In practice, the selection of ML algorithms for a given scientific problem is more complex than simply 
choosing one of the specific machine learning technologies and algorithms [14]. The selection of the most 
effective ML algorithm is based on many factors, including the type, amount, and quality of the training 
data, the availability of labeled data, the type of problem being addressed (prediction, classification, and so 
on), the accuracy and overall performance required, and the hardware systems available for training and 
inference [15]. Therefore, it is necessary to select the best technique by comparing various machine learning 
techniques in a standard dataset and performance evaluation. 
 
We conducted a performance evaluation of various machine learning techniques using a public lung cancer 
dataset. This dataset contains a variety of symptoms that can be used to predict lung cancer. We compared 
nine machine learning techniques namely Random Forest, Support Vector Machine, logistic regression, 
Multi-Layer Perceptron, C4.5, Bayesian Network, Reptree, Naive Bayes and P.A.R.T using lung cancer 
datasets. Each machine learning technique was evaluated using Accuracy, F-Measure, Precision, True 
Positive Rate, ROC, False Positive Rate, Precision Recall Curve, and Matthew's correlation coefficient. 
Based on the performance tests carried out, the best machine learning techniques to detect lung cancer have 
been successfully identified. 
 
The purpose of this study is to determine the performance of the best machine learning techniques on public 
datasets to detect lung cancer.  
 
We evaluated the performance of various machine learning techniques of public datasets (lung cancer). 
Very few researchers have done the same comparison of machine learning techniques as we did.  With 
multi-dimensional issues consisting of ML algorithm choices, hardware architectures, and various scientific 
issues, choosing the optimal ML algorithm for a given task is not trivial. This has become a significant 
barrier for many scientists who want to use modern ML methods in their scientific research [14]. 
 
Many researchers are trying to find the best techniques for detecting lung cancer, such as [5], [6], [7], [8] 
and [9]. [5] using Artificial Neural Networks, Support Vector Machines (SVM), Decision trees (DT) 
techniques in the TCGA dataset. [6] using the SEER dataset to use Random Forests (RF), General Linear 
Regression (GL), RF, Gradient Boosted Machines (GBM), and Ensemble learning modifications. [7] 
compared machine learning techniques such as SVM, K-Nearest Neighbour, Decision Tree, Random 
Forest, and Gradient Boosting Decision tree on private datasets. The same is true for those who use EHR 
datasets to be classified by Random Forest, Logistic Regression, and XGBoost. It is different from [8] that 
uses public datasets, such as UCI Machine learning with the Lung Cancer dataset against Naïve Bayes 
(NB), C4.5, Decision Tree, and Support Vector Machine (SVM) techniques. 
 

Table 1. Related research 
Researchers Method Dataset Info Paramater* Performance Evaluation 
(Yang et al., 2022) Artificial Neural 

Networks, Support 
Vector Machines 
(SVM), Decision trees 
(DT) 

Audience Partial AUC dan ROC  

(Bartholomai & 
Frieboes, 2018) 

learning Random 
Forests (RF), General 
Linear Regression 
(GL), RF, Gradient 
Boosted Machines 
(GBM), dan 
modifikasi Ensemble 
learning 

Publik Full RMSE dan Accuracy 

(Tang et al., 2018) SVM, K-Nearest 
Neighbour, Decision 

Private Partial Accuracy, Recall, dan F1 
Measure 
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Researchers Method Dataset Info Paramater* Performance Evaluation 
Tree, Random Forest, 
dan Gradien Boosting 
Decision tree 

(Faisal et al., 2018) Naïve Bayes (NB), 
C4.5, Decision Tree, 
and Support Vector 
Machine (SVM) 

Publik Partial Accuracy, Precision, Recall, 
dan F1 Measure 

(Alsinglawi et al., 2022) Random Forest, 
Logistic Regression, 
dan XGBoost 

Private partial Accuracy 

This research Random Forest, 
Support Vector 
Machine, logistic 
regression, Multi-
Layer Perceptron, 
C4.5, Bayesian 
Network, Reptree, 
Naive bayes dan 
P.A.R.T 

Publik Full Accuracy, F-Measure, 
Precision, True Positive Rate, 
ROC, False Positive Rate, 
Precision Recall Curve, dan 
Matthew’s correlation 
coefficient 

  
METHODS 

A. Literature review 
We reviewed articles indexed by Scopus and WoS using the criteria, namely Machine learning and Lung 
Cancer. Quality research based on quality references, which is why we chose articles that are indexed by 
Scopus and WoS. We take the last 5 years of articles, to ensure that the research we conduct is always up-
to-date and provides a high contribution value, especially in detecting lung cancer. 
 

B. Dataset 
We used the most widely used data sources by researchers to find out which techniques are best used to 
detect lung cancer. We used datasets that were used to detect lung cancer. The dataset consisted of 16 fields 
consisting of smoking, yellow_fingers, anxiety, peer_pressure, chronic disease,  fatigue, allergy, 
wheezing, alcohol consuming, coughing, shortness of breath, swallowing difficulty, and chest pain. This 
dataset consists of two classes, namely lung cancer and non-lung cancer. This dataset consists of 310 rows 
of data. 
 

C. Experiment Setting 
The techniques used for lung cancer detection are Nine machine learning techniques, namely Random 
Forest, Support Vector Machine, logistic regression, Multi-Layer Perceptron, C4.5, Bayesian Network, 
Reptree, Naive Bayes and P.A.R.T using lung cancer datasets. Also, we made sure the model formed by 
the machine learning technique was better, so we added a cross-validation technique. 
 

D. Performance Evaluation 
Each machine learning technique was evaluated using Accuracy, F-Measure, Precision, True Positive Rate, 
ROC, False Positive Rate, Precision Recall Curve, and Matthews correlation coefficient. The evaluation is 
very widely used by researchers in the field of lung cancer detection. 
 

E. Result and Discussion 
In this stage, we discuss the performance evaluation of machine learning techniques in lung cancer datasets. 
Evaluation is discussed based on the parameters, datasets and machine learning techniques used. So that it 
can be known that the performance of the proposed technique will be maximum in what parameters and 
evaluations it will be. As well as the identification of weaknesses of machine learning techniques can be 
known so that further research can be carried out to cover the weaknesses of the machine learning 
techniques found. 
 
RESULT AND DISCUSSION 
In this chapter, the results of the research are described and analyzed based on the performance evaluation 
of various classification algorithms on the dataset used. This dataset consists of two main classes, namely 
"Cancer" and "No Cancer" with an unbalanced distribution. This data was then tested using several machine 
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learning models, including Random Forest, Support Vector Machine (SVM), Logistic Regression, Multi-
Layer Perceptron (MLP), and others. 
 
The following is the distribution of data sets from this study. The dataset consists of 2 types of data, namely 
cancer and non-cancer, as shown in table 2. The dataset is broken down using no test set simply using K-
fold, and with the default parameters.  
 

Table 2. Dataset partition table 
a. Cancer and non-cancer divisions 

  90% 80% 70% 60% 50% 
Cancer  270 243 216 189 162 135 
No cancer 39 4 8 12 16 20 

 309 10% 20% 30% 40% 50% 

  247 224 201 178 155        
 
b. Non-Cancer and Cancer Divisions 

  90% 80% 70% 60% 50% 
No cancer 39 35 31 27 23 20 
Cancer  270 27 54 81 108 135 

 309 10% 20% 30% 40% 50% 

  62 85 108 131 155 
 
From table 2, it can be seen that the first column shows the total number of cases (270 for Cancer and 39 
for No Cancer). The next columns show the number of cases by various percentages. The values in the row 
show the number of actual case divisions by percentage. The bottom table is the same as the top but with 
the reverse category order (No Cancer and Cancer). Analysis Distribution The first dataset had a higher 
number of cases for Cancer than for No Cancer. For example, 243 cases (90%) were cancers compared to 
only 4 cases (10%) that were non-cancerous. The second dataset (bottom) had a higher number of cases for 
No Cancer than for Cancer. For example, 35 cases (90%) were No Cancer compared to only 27 cases (10%) 
were Cancer. With a dataset model like this, it may be more representative of a situation where Cancer 
cases are more common than No Cancer. The second dataset may be more representative of a situation 
where No Cancer cases are more common than Cancer. The condition of sharing this dataset is intended to 
detect or study Cancer cases with a higher focus, then the dataset at the top is more suitable, but if the goal 
is to detect or study No Cancer cases with a higher focus, the dataset at the bottom is more suitable. 
 
This analysis shows the existence of class imbalances in both datasets. In practice, it is important to account 
for these imbalances in machine learning models because they can affect the accuracy and performance of 
the model. Several techniques such as resampling, oversampling, or under sampling can be applied to deal 
with this problem. 
 
The results of the analysis for each classification of the data that have been shared above can be seen as 
follows:  

 
A. Random Forest 

The following are the results of the performance evaluation of the Random Forest algorithm based on the 
class distribution and some test metrics.  

Table 3. Random Forest evaluation results 
a. Cancer Class: Non-Cancer Class 

Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Random Forest 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 91.2621 0.909 0.907 0.913 0.941 0.386 0.947 0.574 
50:50 91.6129 0.908 0.909 0.916 0.918 0.438 0.934 0.578 
60:40 93.2584 0.925 0.924 0.933 0.881 0.514 0.942 0.520 
70:30 94.0299 0.926 0.922 0.940 0.944 0.784 0.964 0.265 
80:20 94.1964 0.935 0.929 0.942 0.793 0.965 0.957 -0.029 
90:10 98.3193 0 0 0.983 0.725 0.983 0.976 0 
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b. Non-Cancer Class: Cancer Class 

Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Random Forest 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 91.2621 0.909 0.907 0.913 0.941 0.386 0.947 0.574 
50:50 86.4516 0.847 0.839 0.865 0.881 0.659 0.912 0.268 
60:40 88.4615 0.879 0.877 0.885 0.914 0.366 0.931 0.573 
70:30 91.6667 0.914 0.916 0.917 0.938 0.201 0.946 0.770 
80:20 89.4118 0.892 0.897 0.894 0.917 0.157 0.911 0.770 
90:10 87.0968 0.871 0.871 0.871 0.956 0.133 0.957 0.738 

 
The results of the evaluation of the performance of the random forest algorithm based on the class 
distribution can be seen from table 3 above. The table above presents an evaluation of the performance of 
the Random Forest algorithm based on the various class distributions between Cancer and Non-Cancer. In 
this evaluation, several important metrics are used, including Accuracy, F-Measure, Precision, True 
Positive Rate (TPR), Receiver Operating Characteristic (ROC), False Positive Rate (FPR), Precision-
Recall Curve (PRC), and Matthews Correlation Coefficient (MCC). 
 
In table 3a, the performance of the Random Forest algorithm for the "Cancer" class shows that the accuracy 
increases with the imbalance of the class distribution. The 90:10 distribution resulted in the highest accuracy 
of 98.3193%, but with significant decreases in F-Measure, Precision, and MCC values. This suggests a 
trade-off between high accuracy and the ability of the model to correctly detect both classes, especially on 
highly unbalanced datasets.  
 
In contrast, on more balanced distributions such as 70:30 and 80:20, the Precision, F-Measure, and MCC 
values remain more consistent, although the accuracy is slightly lower compared to the highly unbalanced 
distribution. This suggests that the Random Forest model works better at detecting the overall class on a 
more balanced distribution, while maintaining the trade-offs between various performance metrics. 
 
In table 3b, which shows the results for the "No Cancer" class, it can be seen that a more balanced 
distribution of classes such as 70:30 and 80:20 gives more stable results, especially at MCC values that 
reach 0.770 in these two distributions. The 90:10 distribution shows a decrease in accuracy of up to 
87.0968%, which indicates that in cases of extreme data imbalances, the model tends to have difficulty in 
classifying minority classes well. 
 
Overall, these tables show that while accuracy can improve on unbalanced datasets, other metrics such as 
F-Measure and MCC can experience significant decreases, so it is important to consider the balance 
between classes when training classification models. 
 

B. Support Vector Machine 
The following are the results of the performance evaluation of the Support Vector Machine algorithm based 
on the class distribution and some test metrics. 

 
Table 4. Support Vector Machine evaluation results table 

a. Cancer Class: Non-Cancer Class 
Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Support Vector Machine 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 92.5566 0.921 0.920 0.926 0.782 0.362 0.886 0.632 
50:50 95.4839 0.954 0.954 0.955 0.889 0.177 0.934 0.795 
60:40 94.9438 0.945 0.946 0.949 0.775 0.399 0.916 0.654 
70:30 93.5323 0.927 0.922 0.935 0.614 0.706 0.905 0.296 
80:20 93.75 0.933 0.929 0.938 0.486 0.965 0.930 -0.032 
90:10 97.8992 0.973 0.967 0.979 0.498 0.983 0.967 -0.008 
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b. Non-Cancer Class: Cancer Class 
Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Support Vector Machine 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 92.5566 0.921 0.920 0.926 0.782 0.362 0.886 0.632 
50:50 89.6774 0.897 0.897 0.897 0.770 0.356 0.869 0.541 
60:40 90 0.899 0.898 0.900 0.820 0.260 0.864 0.651 
70:30 94.4444 0.944 0.944 0.944 0.926 0.093 0.921 0.852 
80:20 90.5882 0.906 0.908 0.906 0.905 0.095 0.873 0.801 
90:10 87.0968 0.871 0.874 0.871 0.873 0.125 0.827 0.741 

 
Table 4 above shows the performance evaluation of the Support Vector Machine (SVM) algorithm based 
on the various class distributions between Cancer and Non-Cancer. In table 4a focusing on the "Cancer" 
class, it can be seen that the highest Accuracy is achieved at a 90:10 distribution with a value of 97.8992%. 
However, despite the high accuracy, the MCC value shows a drastic drop to -0.008, which signals an 
imbalance in the classification between the dominant and minority classes. On more balanced distributions, 
such as 50:50 and 60:40, SVM provides more stable results with more consistent F-Measure and Precision, 
as well as higher MCC values, such as 0.795 in a 50:50 distribution. 
 
In contrast, in highly unbalanced distributions such as 80:20 and 90:10, although the accuracy remains high, 
the FPR and MCC values drop dramatically, suggesting that the SVM model begins to have difficulty in 
precisely distinguishing classes when the class distribution becomes highly unbalanced. 
 
In table 4b focusing on the "No Cancer" class, similar results can be observed. In the 50:50 distribution, 
SVM showed better performance with an Accuracy of 89.6774%, and an MCC value of 0.541. However, 
as the distribution becomes more unbalanced as in 90:10, the MCC value drops to 0.741, while the Accuracy 
also decreases to 87.0968%. 
 
In addition, table 4 shows that a more balanced class distribution such as 70:30 results in better performance 
overall, especially in the case of MCC, which reaches a value of 0.852, suggesting that the SVM model can 
better differentiate classes in this distribution. 
 
Overall, table 4 indicates that although the SVM algorithm has a high accuracy capability, especially on 
unbalanced datasets, a more balanced class distribution in general provides more stable and fair 
performance results in classifying both classes. 
 
In both cases, a more balanced class distribution tends to provide better performance in terms of MCC, 
which indicates better classification quality. Better class balance seems to be essential to get optimal results 
with the SVM algorithm. 

 
C. Logistic Regression 

The following are the results of the performance evaluation of the Logistic Regression algorithm based on 
class distribution and several test metrics. 

 
 
 
 
 

Table 5. Logistic Regression evaluation results 
a. Cancer Class: Non-Cancer Class 

Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Logistic Regression 

Accuracy F-Measure Precion TPR ROC FPR PRC MCC 
Default 93.2039 0.930 0.929 0.932 0.934 0.295 0.946 0.676 
50:50 90.9677 0.908 0.906 0.910 0.865 0.354 0.918 0.581 
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Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Logistic Regression 

Accuracy F-Measure Precion TPR ROC FPR PRC MCC 
60:40 92.1348 0.921 0.921 0.921 0.717 0.402 0.885 0.519 
70:30 91.0448 0.916 0.923 0.910 0.731 0.552 0.929 0.314 
80:20 92.4107 0.935 0.948 0.924 0.713 0.605 0.952 0.237 
90:10 95.7983 0.962 0.966 0.958 0.449 0.984 0.965 -0.021 

 
b. Non-Cancer Class: Cancer Class 

Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Logistic Regression 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 93.2039 0.930 0.929 0.932 0.934 0.295 0.946 0.676 
50:50 89.6774 0.899 0.901 0.897 0.864 0.313 0.913 0.560 
60:40 89.2308 0.892 0.892 0.892 0.832 0.262 0.887 0.630 
70:30 89.8148 0.896 0.896 0.898 0.896 0.207 0.913 0.720 
80:20 82.3529 0.825 0.829 0.824 0.857 0.184 0.827 0.629 
90:10 90.3226 0.903 0.903 0.903 0.935 0.100 0.924 0.803 

 
The table above shows the performance evaluation of the Logistic Regression algorithm based on the class 
distribution between Cancer and Non-Cancer. In table 5a, which focuses on the "Cancer" class, the results 
show that the 90:10 distribution results in the highest Accuracy, which is 95.7983%, followed by the F-
Measure and Precision values which are also high. However, despite the very high accuracy, the MCC 
value became negative (-0.021), indicating an imbalance in the model's performance when detecting a 
minority class, although the overall accuracy seemed satisfactory. 
 
In more balanced distributions such as 50:50 and 60:40, MCC values tend to be more stable, with the highest 
value on the default distribution (0.676). However, a more balanced distribution results in slightly lower 
accuracy compared to a 90:10 distribution, which indicates that the model may experience trade-offs in 
detection between classes when the dataset becomes more unbalanced. 
 
For table 5b, which shows the evaluation of the "Non-Cancer" class, a more balanced distribution such as 
70:30 yields more consistent results, with an Accuracy of 89.8148% and the highest MCC value of 0.803. 
The 90:10 distribution results in an increase in Accuracy to 90.3226%, but at the 80:20 distribution, the 
Accuracy value decreases to 82.3529%, although the MCC remains at a stable level. 
 
From these results, it can be seen that the Logistic Regression algorithm shows a fairly good performance 
in both classes, with more stable performance metrics in a more balanced distribution. However, as with 
other algorithms, Logistic Regression tends to face challenges in maintaining the consistency of metrics 
such as MCCs on highly unbalanced distributions. 

 
D. Multi-Layer Perceptron 

The following are the results of the performance evaluation of the Perceptron Multi-layer algorithm based 
on the class distribution and some test metrics. 

 
 
 
 
 
 
 

Table 6. Multi-layer Perceptron evaluation results 
a. Cancer Class: Non-Cancer Class 
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Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Multi-Layer Perceptron 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 92.233 0.921 0.919 0.922 0.938 0.318 0.942 0.633 
50:50 94.8387 0.948 0.948 0.948 0.952 0.178 0.960 0.770 
60:40 92.1348 0.921 0.921 0.921 0.925 0.402 0.958 0.519 
70:30 94.0299 0.944 0.950 0.940 0.962 0.316 0.970 0.547 
80:20 91.9643 0.930 0.942 0.920 0.818 0.725 0.962 0.149 
90:10 96.6387 0.966 0.966 0.966 0.490 0.983 0.967 -0.017 
 

b. Non-Cancer Class: Cancer Class 
Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Multi-Layer Perceptron 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 92.233 0.921 0.919 0.922 0.938 0.318 0.942 0.633 
50:50 90.9677 0.915 0.923 0.910 0.920 0.184 0.929 0.651 
60:40 89.2308 0.896 0.901 0.892 0.940 0.194 0.956 0.657 
70:30 91.6667 0.918 0.921 0.917 0.957 0.102 0.962 0.788 
80:20 87.0588 0.872 0.875 0.871 0.934 0.129 0.931 0.728 
90:10 93.5484 0.935 0.937 0.935 0.979 0.075 0.981 0.870 

 
The following are the results of the performance evaluation of the Multi-Layer Perceptron (MLP) algorithm 
for classification in two categories: Cancer Class and Non-Cancer Class. The evaluation was conducted 
using several different data distributions, namely 50:50, 60:40, 70:30, 80:20, and 90:10, as well as one 
default setting.  
 
Accuracy: The 90:10 distribution in both tables shows high accuracy, especially in the Cancer Class: Non-
Cancer Class with a value of 96.64%, although a high False Positive Rate (FPR) value in this distribution 
may indicate a classification imbalance. 
 
F-Measure and Precision: These metrics are generally high at the 50:50 and 90:10 distributions, which 
indicates that the model is quite good at handling positive predictions. However, at certain distributions 
such as 80:20, even though the Precision is high, a low MCC value indicates a problem in overall 
performance, especially for Cancer Class: Non-Cancer Class. 
 
True Positive Rate (TPR) and ROC: In more balanced data distributions such as 50:50 and 70:30, the model 
shows a good ability to detect correct predictions. However, at the 90:10 distribution for Cancer Class: 
Non-Cancer Class, the ROC value dropped significantly, indicating a decrease in performance in 
distinguishing between the two classes. 
 
False Positive Rate (FPR): This value varies quite significantly across multiple distributions. The 90:10 
distribution for the Cancer Class: The Non-Cancer Class shows very high FPR values, which means the 
model often misclassifies negative samples as positive. In contrast, at the same distribution for Non-
Cancerous Class: Cancer Class, the FPR value was very low, showing good performance in reducing 
negative misclassification. 
 
MCC (Matthews Correlation Coefficient): This metric shows the overall balance between positive and 
negative class predictions. In the Non-Cancerous Class: Cancer Class, the highest MCC is at the 90:10 
distribution, while in the Cancer Class: Non-Cancer Class, the MCC is very low at the same distribution, 
indicating that the model works much better in the situation of the Non-Cancer class as a minority class 
than in the case of Cancer being a minority class. 
 
Overall, these algorithms show the MLP model is heavily influenced by the distribution of data. The models 
tend to perform best on more balanced distributions, and some metrics such as MCC and FPR are strongly 
influenced by unbalanced distributions, especially in Cancer Class: Non-Cancer Class. 
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The MLP model works better with a more balanced distribution (50:50 or 70:30). Higher MCC and stable 
accuracy indicate that the model is capable of handling the minority and majority classes well. Highly 
unbalanced distributions tend to significantly degrade model performance, as seen from the negative MCC. 
Overall, a more balanced class distribution tends to provide better performance in terms of MCC, suggesting 
that better classification quality can be achieved by maintaining a balance between classes in the dataset. 

 
E. C4.5 

The following are the results of the evaluation of the performance of the C4.5 algorithm based on the class 
distribution and some test metrics. 
 

Table 7. C4.5 Evaluation 
a. Cancer Class: Non-Cancer Class 

Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for C4.5 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 90.2913 0.899 0.897 0.903 0.787 0.409 0.882 0.531 
50:50 89.0323 0.886 0.884 0.890 0.744 0.442 0.870 0.481 
60:40 86.5169 0.869 0.873 0.865 0.633 0.633 0.867 0.220 
70:30 93.5323 0.923 0.916 0.935 0.721 0.785 0.929 0.229 
80:20 96.4286 0 0 0.964 0.394 0.964 0.924 0 
90:10 98.3193 0 0 0.983 0.197 0.983 0.955 0 

 
b. Non-Cancer Class: Cancer Class 

Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for C4.5 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 90.2913 0.899 0.897 0.903 0.787 0.409 0.882 0.531 
50:50 87.0968 0.871 0.871 0.871 0.740 0.445 0.863 0.426 
60:40 86.9231 0.863 0.860 0.869 0.712 0.404 0.803 0.514 
70:30 91.6667 0.917 0.918 0.917 0.892 0.127 0.895 0.781 
80:20 72.9412 0.728 0.728 0.729 0.754 0.320 0.760 0.412 
90:10 75.8065 0.757 0.757 0.758 0.755 0.254 0.718 0.506 

 
Cancer Distribution: No Cancer: 
The C4.5 algorithm shows a decrease in performance in MCC values when the distribution becomes more 
unbalanced (80:20 and 90:10), where MCC values reach 0. The best performance is seen in the 70:30 
distribution with an MCC of 0.229. 
 
Distribution of No Cancer: Cancer: 
The C4.5 algorithm showed an increase in performance at MCC values when the distribution was more 
balanced (50:50 and 70:30), with the highest MCC value at the 70:30 distribution (0.781). Performance 
decreases on more unbalanced distributions (80:20 and 90:10), but MCC values remain above 0. 
 
For a more balanced distribution (No Cancer : Cancer 70:30): The C4.5 algorithm shows excellent 
performance with the highest MCC. This suggests that this distribution is more optimal for the C4.5 
algorithm. 
 
For more unbalanced distributions (Cancer: No Cancer 80:20 and 90:10): The C4.5 algorithm showed a 
significant decrease in performance. Imbalance handling techniques such as oversampling, undersampling, 
or the use of customized evaluation metrics may be necessary to improve performance. 
 
Overall the C4.5 algorithm is more effective on a more balanced distribution and shows excellent 
performance in identifying cancer cases when the data distribution is more evenly distributed.  
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F. Bayesian Network 
The following are the results of the evaluation of the performance of the Bayesian Network algorithm based 
on the class distribution and some test metrics. 

Table 8. Bayesian Network evaluation 
a. Kelas Kanker: Kelas Tidak Kanker 

Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Bayesian Network 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 87.055 0.868 0.865 0.871 0.855 0.501 0.898 0.387 
50:50 85.1613 0.826 0.813 0.852 0.746 0.746 0.864 0.151 
60:40 91.0112 0 0 0.910 0.437 0.910 0.814 0 
70:30 94.0299 0 0 0.940 0.729 0.940 0.928 0 
80:20 96.4286 0 0 0.964 0.428 0.964 0.921 0 
90:10 98.3193 0 0 0.983 0.445 0.983 0.963 0 
 

b. Kelas Tidak Kanker: Kelas Kanker 
Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Bayesian Network 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 87.055 0.868 0.865 0.871 0.855 0.501 0.898 0.387 
50:50 83.871 0.811 0.792 0.839 0.691 0.791 0.834 0.069 
60:40 81.5385 0.812 0.809 0.815 0.834 0.483 0.855 0.344 
70:30 79.6296 0.801 0.807 0.796 0.869 0.290 0.871 0.485 
80:20 75.2941 0.755 0.759 0.753 0.827 0.265 0.831 0.479 
90:10 74.1935 0.741 0.741 0.742 0.740 0.275 0.736 0.472 

 
A decrease in accuracy and MCC, indicates a more balanced class distribution but a decrease in 
performance in Bayesian Network algorithms. At the 60:40 to 90:10 dataset split, the F-Measure and 
Precision are 0, indicating the model cannot make valid predictions on these distributions. This may be 
because the model has become highly biased towards the majority class. The MCC is 0, indicating no 
correlation between prediction and reality. Further decline in accuracy but the MCC still showed a moderate 
correlation between prediction and reality. 
 
In the 50:50 Class distribution, the Bayesian Network showed a significant decrease in MCC. The model 
may not be robust enough to handle a well-balanced distribution of classes. In the second table, the MCC 
shows a significant increase in the 70:30 distribution, suggesting that the model is better able to handle 
moderate class imbalances. In table 8a, the 90:10 distribution yields an MCC of 0, indicating that the model 
is highly biased towards the majority class and cannot make valid predictions. 
 
In table 8b, a moderate MCC shows that the model still has some predictive capabilities despite the 
significant class imbalance. The Bayesian Network model performs best in a 70:30 class distribution with 
a higher MCC, suggesting that this distribution is better suited to handling class imbalances. Extreme 
imbalances such as 90:10 severely affect the performance of Bayesian Network models, making them 
ineffective in making valid predictions.  
 
Overall, the Bayesian Network model appears to be more sensitive to class imbalances than other models 
analyzed previously. A more moderate class distribution such as 70:30 gives better results in terms of MCC, 
indicating better classification quality. 

 
G. Reptree 

The following are the results of the evaluation of the performance of the Bayesian Network algorithm based 
on the class distribution and some test metrics. 

Table 9. Reptree Evaluation 
a. Cancer Class: Non-Cancer Class 
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Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Reptree 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 85.7605 0.839 0.828 0.858 0.739 0.701 0.859 0.207 
50:50 87.0968 0.865 0.860 0.871 0.691 0.530 0.836 0.375 
60:40 90.4494 0.892 0.885 0.904 0.639 0.685 0.863 0.286 
70:30 93.5323 0.909 0.884 0.935 0.614 0.941 0.912 -

0.018 
80:20 96.4286 0 0 0.964 0.394 0.964 0.924 0 
90:10 98.3193 0 0 0.983 0.197 0.983 0.955 0 
 

b. Non-Cancer Class: Cancer Class 
Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Reptree 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 85.7605 0.839 0.828 0.858 0.739 0.701 0.859 0.207 
50:50 85.8065 0.823 0.809 0.858 0.629 0.788 0.814 0.122 
60:40 86.9231 0.866 0.863 0.869 0.801 0.369 0.858 0.529 
70:30 84.2593 0.839 0.838 0.843 0.807 0.299 0.827 0.566 
80:20 74.1176 0.739 0.738 0.741 0.715 0.313 0.703 0.434 
90:10 70.9677 0.710 0.710 0.710 0.738 0.300 0.710 0.410 

 
From table 9 showing an Accuracy value of 85.7605 and an MCC value of 0.207, this is a baseline with 
MCC showing a weak correlation between prediction and reality. At the 50:50 class distribution, the 
Accuracy is 87.0968 and the MCC: 0.375, a slight improvement in accuracy and MCC, indicating a more 
balanced class distribution improves performance. The values of Accuracy 90.4494 and MCC: 0.286 were 
obtained in the 60:40 class distribution, the Accuracy increased, but the MCC showed an insignificant 
increase, indicating the imbalance still affected the performance.  
 
An accuracy of 93.5323 and an MCC of -0.018 was obtained at a class distribution of 70:30, The MCC 
decrease indicates that despite the high accuracy, the class imbalance greatly affects performance. The 
80:20 and 90:10 class distributions, F-Measure and Precision are 0, indicating the model cannot make valid 
predictions on these distributions. This may be because the model has become highly biased towards the 
majority class. The MCC is 0, indicating no correlation between prediction and reality. 
 
Analysis Based on the RepTree Model: 

1. 50:50 Class Distribution: 
The model shows a moderate improvement in performance with a balanced distribution of classes, but 

the MCC improvement shows that the model still has some difficulties in handling class imbalances 
efficiently. 

2. 70:30 Class Distribution: 
In table 9b, the MCC shows a significant increase at the 70:30 distribution, suggesting that the model is 

better able to handle moderate class imbalances. 
3. 90:10 Class Distribution: 

In table 9a, the 90:10 distribution results in an MCC of 0, indicating that the model is highly biased 
towards the majority class and cannot make valid predictions. 
 
In table 9b, a moderate MCC shows that the model still has some predictive capabilities despite the 
significant class imbalance. 
 
The RepTree model shows best performance at a 70:30 class distribution with a higher MCC, suggesting 
that this distribution is better suited to handle class imbalances. Extreme imbalances such as 90:10 severely 
affect the performance of the RepTree model, making it ineffective in making valid predictions. 
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Overall, the RepTree model appears to be more sensitive to class imbalances than some of the other models 
analyzed previously. A more moderate class distribution such as 70:30 gives better results in terms of MCC, 
indicating better classification quality. 
 

H. Naive Bayes 
The following are the results of the evaluation of the performance of the Naïve Bayesian algorithm based 
on the class distribution and some test metrics. 
 

Table 10. Naïve Bayes Evaluation 
a. Cancer Class: Non-Cancer Class 

Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for Naïve Bayes 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 89.644 0.893 0.890 0.896 0.902 0.432 0.926 0.500 
50:50 90.9677 0.903 0.901 0.910 0.910 0.439 0.936 0.550 
60:40 92.6966 0.921 0.918 0.927 0.830 0.514 0.925 0.490 
70:30 92.5373 0.924 0.922 0.925 0.925 0.629 0.956 0.309 
80:20 95.5357 0.958 0.961 0.955 0.752 0.483 0.951 0.424 
90:10 98.3193 0 0 0.983 0.679 0.983 0.976 0 

 
b. Non-Cancer Class: Cancer Class 

Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for Naïve Bayes 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 89.644 0.893 0.890 0.896 0.902 0.432 0.926 0.500 
50:50 86.4516 0.866 0.867 0.865 0.876 0.446 0.912 0.410 
60:40 86.9231 0.870 0.872 0.869 0.891 0.301 0.907 0.559 
70:30 89.8148 0.894 0.896 0.898 0.949 0.231 0.956 0.717 
80:20 84.7059 0.847 0.846 0.847 0.927 0.184 0.933 0.668 
90:10 82.2581 0.822 0.822 0.823 0.916 0.188 0.919 0.638 

 
This is a good baseline with the MCC showing a moderate correlation between prediction and reality. 
At 50:50 data distribution: Accuracy: 86.4516, MCC: 0.410. A decrease in accuracy and MCC, indicating 
a more balanced distribution of classes decreases performance. At 60:40 data distribution: Accuracy: 
86.9231, MCC: 0.559. Accuracy is slightly improved with MCC also improved, suggesting a more balanced 
class distribution improves classification quality. At 70:30 data distribution: Accuracy: 89.8148, MCC: 
0.717. A significant increase in MCC showed a better correlation between prediction and reality. 
Distribution 80:20: Accuracy: 84.7059, MCC: 0.668. The decrease in accuracy but the MCC remains quite 
high, demonstrating the model's ability to handle class imbalances. And at a 90:10 distribution: Accuracy: 
82.2581, MCC: 0.638. Further decline in accuracy but the MCC still showed a moderate correlation 
between prediction and reality. 
 
Overall, the Naïve Bayes model appears to be more sensitive to class imbalances than some of the other 
models analyzed previously. A more balanced class distribution tends to give better results in terms of 
MCC, indicating better classification quality. 

 
I. P.A.R.T. 

The following are the results of the performance evaluation of the P.A.R.T. algorithm based on class 
distribution and several test metrics. 
 
 
 
 
 

Table 11. P.A.R.T. Evaluation 
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a. Cancer Class: Non-Cancer Class 
Cancer Class: Non-Cancer Class 
Distribution Class Performance Evaluation for P.A.R.T. 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 89.9676 0.898 0.897 0.900 0.834 0.387 0.902 0.530 
50:50 91.6129 0.913 0.912 0.916 0.819 0.353 0.904 0.604 
60:40 91.573 0.909 0.905 0.916 0.682 0.572 0.891 0.409 
70:30 93.0348 0.930 0.930 0.930 0.777 0.551 0.938 0.380 
80:20 92.8571 0.932 0.936 0.929 0.709 0.845 0.949 0.075 
90:10 95.7983 0.962 0.966 0.958 0.686 0.984 0.974 -0.021 
 

b. Non-Cancer Class: Cancer Class 
Non-Cancer Class: Cancer Class 
Distribution Class Performance Evaluation for P.A.R.T. 

Accuracy F-Measure Precision TPR ROC FPR PRC MCC 
Default 89.9676 0.898 0.897 0.900 0.834 0.387 0.902 0.530 
50:50 83.2258 0.832 0.832 0.832 0.691 0.579 0.835 0.254 
60:40 82.3077 0.814 0.809 0.823 0.661 0.516 0.775 0.339 
70:30 90.7407 0.908 0.910 0.907 0.933 0.130 0.918 0.760 
80:20 78.8235 0.788 0.788 0.788 0.735 0.245 0.709 0.543 
90:10 79.0323 0.790 0.790 0.790 0.797 0.221 0.762 0.572 

Accuracy is very high but the MCC is negative, suggesting the model may only predict the majority class. 
 
Analysis Based on the P.A.R.T. Model: 

1. 50:50 Class Distribution: 
The model shows an improvement in performance with a balanced class distribution in table 11a, 

particularly with a significantly increased MCC. Accuracy also improved at a 50:50 distribution, suggesting 
that the P.A.R.T model works better with balanced data. 

2. 70:30 Class Distribution: 
In table 11B, the MCC shows a significant improvement at the 70:30 distribution, suggesting that the 

model is better able to handle moderate class imbalances. Accuracy remains high, indicating that the model 
does not only predict the majority class. 

3. 90:10 Class Distribution: 
 
In the first table, the 90:10 distribution produces a negative MCC, indicating that the model is highly biased 
towards the majority class and cannot make valid predictions. In table 11b, a moderate MCC shows that 
the model still has some predictive capabilities despite the significant class imbalance. 
 
The P.A.R.T. model shows best performance at 50:50 and 70:30 class distributions with higher MCCs, 
suggesting that these distributions are better suited to handling class imbalances. Extreme imbalances such 
as 90:10 severely affect the performance of P.A.R.T. models, making them ineffective in making valid 
predictions. 
 
Overall, the P.A.R.T. model shows that a more balanced class distribution tends to give better results in 
terms of MCC, indicating better classification quality. This model appears to be more sensitive to class 
imbalances than some of the other models analyzed previously. 
 
CONCLUSION 
Based on the results of the evaluation, the Support Vector Machine algorithm showed excellent 
performance in detecting both classes, with the highest accuracy recorded in the 50:50 and 70:30 dataset 
divisions, which were 95.48% and 94.44%. These results suggest that SVM is more suitable for use in 
datasets with a more balanced distribution. In contrast, on highly unbalanced dataset divisions such as 
90:10, SVM accuracy tends to decrease. 
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The Random Forest algorithm shows significant performance stability, especially at a 90:10 dataset split 
with an accuracy of 98.32%. This shows that Random Forest is able to handle data imbalances well. 
 
On the other hand, algorithms such as Naive Bayes and C4.5 also perform well on more unbalanced 
datasets. Naive Bayes had the highest accuracy at 90:10 with a value of 98.32%, while C4.5 achieved the 
best accuracy at 80:20 with a value of 96.43%. 
 
However, it is important to note that certain algorithms, such as Bayesian Network and Reptree, show 
significant performance degradation when faced with data imbalances. The Bayesian Network, for 
example, experienced a decrease in accuracy at a 90:10 distribution, with a low MCC, indicating that this 
algorithm is more sensitive to class imbalances. 
 
From this analysis, it can be concluded that a more balanced distribution of the dataset results in more 
optimal model performance, especially for algorithms such as Support Vector Machine and Logistic 
Regression. To address dataset imbalances, techniques such as oversampling or undersampling can be 
applied to improve the overall performance of the model. 
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