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Abstract. Turbofan engines are crucial components in the aviation and manufacturing industries, where estimating the 
Remaining Useful Life (RUL) has a significant impact on operational efficiency and safety. This study aims to predict 
the RUL of turbofan engines using the Support Vector Regression (SVR) method, a machine learning approach that 
has proven effective in modeling nonlinear relationships between variables. Operational data related to turbofan engines 
include operational parameters, sensors, and maintenance records. The initial stage of this research involves data 
analysis based on unit number, time, operational control, and sensor parameters. This process begins with preprocessing 
to initialize the initial data values, normalize, and select sensors that have stagnant values, as these sensors do not affect 
the machine learning system. Subsequently, regression calculations are performed to compare predicted values and 
actual values using the Support Vector Regression method optimized with Grid Search Optimization. In this study, 
testing was conducted with Parameters C [1, 10, 50, 100] and ε [1, 5, 10, 50], resulting in the best model with an RMSE 
error of 19.56 and MAE of 14.73. 
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INTRODUCTION 
C-MAPSS (Commercial Modular Aero Propulsion System Simulation) is a dataset published by NASA 
containing simulated flight data from various measurements. This dataset is intended for research purposes 
and is used in this study. Several publications and research studies have been conducted related to this 
dataset. The C-MAPSS dataset simulates flight data recordings from various measurements that occur in 
aircraft engines [1]. This dataset consists of four datasets, with each dataset further divided into training 
data and test data. Each turbofan engine has 21 sensors that collect data for measuring temperature, speed, 
pressure, and ratios. The first column of the dataset is the unit number and operational time [2]. To maintain 
engine health, operational maintenance is required. This drives the need for prognostic processes to predict 
the likelihood of failures and estimate the remaining effective operational time of components before failure 
occurs (Remaining Useful Life/RUL) [3]. By understanding RUL, we can measure the lifespan of a 
machine. Predictive maintenance model is estimating the time of equipment failure to schedule maintenance 
times [4].  

With machine maintenance and care using data analysis to detect damage to machine components, damage 
can be predicted and repaired before it occurs in the machine. Therefore, an in-depth study and analysis are 
very necessary. Previously, a case study of this CMAPSS data was conducted using the Elastic Weight 
Consolidation (EWC) method. It was found that EWC performance can be affected when the tasks faced 
have different complexities. The results of this study indicate that the proposed approach is able to compete 
with other approaches in predicting turbofan engine degradation [5]. In addition, other researchers used the 
Convolutional Neural Network (CNN) and Transformer Encoder methods. The results show that this 
combined model demonstrates excellent performance and is comprehensively superior [6].  

This research uses Support Vector Regression (SVR). Because SVR in previous research was able to predict 
cases of bearing damage detection using the SVR method with the best parameters resulting in RMSE for 
training data of 4.5785 and RMSE for test data of 9.6796 [7]. In addition, there are also researchers using 
the SVR method with K-fold error predicting COVID-19 patients, obtaining the most optimal model for 
active COVID-19 cases of 0.000547 and the largest error model on the death attribute of 0.575177 [8]. The 

http://creativecommons.org/licenses/by/4.0/


 
 

204 
	

SVR method was also used by Isnaeni R. (2022) to predict the inflation rate in Indonesia using the SVR 
method with RBF kernel, resulting in an RMSE value of 0.0020 [9]. 

Based on previous studies, the use of the SVR method obtains good accuracy values and can be used to 
predict Remaining Useful Life (RUL). The use of SVR has been successfully applied to several problems 
in time series prediction[10]. So that time series data prediction can be carried out. On this turbofan engine 
usingan artificial intelligence method, namely Support Vector Regression (SVR). The Support Vector 
Regression method has been widely used to assist researchers in prediction or forecasting cases with a fairly 
low error rate [11]. SVR, which is part of Support Vector Machine (SVM) introduced by Vapnik in 1995, 
is used for regression and prediction cases. 

 The SVR algorithm can produce accurate forecast values because it has the ability to overcome overfitting 
problems [9]. Overfitting is a condition where the model predicts training data with almost perfect accuracy, 
but its performance decreases significantly when applied to test data[10]. 
   
 
METHODS 
The research methodology is first carried out by identifying the problem, after that the preprocessing 
process reaches the stage normalize the data until the data is ready for the modeling process. 

 
Figure 1. Research stages 

C-MAPSS Dataset 
C-MAPSS is a tool encoded in the MATLAB-Simulink environment to simulate a 90,000lb thrust class 
engine model [12]. By using a number of editable input parameters, it allows for determining operational 
profiles, closed-loop control, environmental conditions (various altitudes and temperatures), in addition to 
provisions for modifying several efficiency parameters to simulate various degradations in different parts 
of the engine system [13]. To model uncertainties in meter readings during operation, additionally, each 
sensor has its own initial wear level and manufacturing variance. This engine contains 21 sensors, operating 
conditions, and other information. Since each time series represents a different engine, the data from the C-
MAPSS collection can be considered to come from the same engine [2]. 
 

Table 1. CMAPSS Dataset 
Dataset Train Trejectories Test Trejectories Conditions Fault Mode 
FD001 100 100 One (Sea level) One (HPC) 
FD002 260 259 Six One (HPC) 
FD003 100 100 One (Sea level) Two (HPC, Fan) 
FD004 248 249 Six Two (HPC, Fan) 

 
Table 2. Variabel CMAPSS Dataset 

Index Dataset Description 

1 Unit Number 
2 Time (In Cycle) 
3 Operational Setting 1 
4 Operational Setting 2 
5 Operational Setting 3 
6 Sensor Measurement 1 
…  
26 Sensor Measurement 21 
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Support Vector Regression 
Support Vector Regression is part of the supervised learning algorithm, used to predict the value of 
continuous variables. Like the SVM concept, the SVR method also seeks the best hyperplane in the form 
of a regression function by minimizing errors and maximizing margins. The goal of SVR is to find a 
function f(x) as a hyperplane (separating line) in the form of a regression function that fits all input data, 
by making the error as small as possible [14]. 

 
Figure 2. Concept of Support Vector Regression 

 
In Figure 2(a), the thick black line represents a hyperplane, while the two lines flanking it are soft margins. 
The distance between the hyperplane and the soft margin is ɛ, and the points that lie between +ɛ and -ɛ are 
called support vectors. However, for points that exceed the soft margin, slack variables ξ are needed. The 
basic idea of using the SVR method is to find a regression function that fits the given training data, 
consisting of n sets of data (xi, yi) with xi ∈ ℝᵈ as the input vector of the i-th data, where i = 1, 2, ..., n, and 
yi is the corresponding target value. The SVR method aims to produce a model that can predict the target 
value y for new, unseen input x, utilizing the hyperplane concept learned from the training data. In Support 
Vector Regression, if we want to find a function f(x) that has the largest deviation ε from the target yi for 
training data, it can be seen in the formula 1. 

"($) = ⟨(. $⟩ + ,    (1) 

"($) is the function of SVR (Support Vector Regression	$ is the input vector ( is the weight vector of 
dimension Ɩ and , is the bias. 
 

.!(/", "($#)) = 10;	/# − "($#) ≤ 6
|/8 − "($8)| 	− 6;   (2) 

Formula 2 is the equation. In general, a linear function can be expressed as ⟨w, x⟩ + b, where ⟨.⟩ is the dot 
product in x. To maximize the hyperplane, it is necessary to minimize the Loss Function. 

9("($)) 	= 	 "$ 	‖(‖
$ + %

&;#'"
& .!(/", "($#))  (3) 

Using the ε-insensitive loss function Lε, and with parameters C and ε. Using dual formulation through 
Lagrange multipliers, Support Vector Regression (SVR) can be extended to include non-linear functions. 
In this context, the optimization problem is formulated only in terms of Lagrange multipliers αi and αi∗. 
This is possible because the kernel function (xi, xj) returns the dot product between pairs of data in high-
dimensional space without explicitly mapping the data to that space [15]. 
 
Prepsocessing 
Preprocessing is a technique to manipulate data collected from various sources so that it's ready for use in 
subsequent processes. This process is important to address issues such as missing values, redundant data, 
outliers, or data formats that are incompatible with the system. The presence of these problems can interfere 
with the final results of the output produced [16]. 
The first preprocessing step is Min-Max Normalization, where each value in the data feature is subtracted 
by the minimum value of that feature, then the result is divided by the difference between the maximum 
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and minimum values of that feature [17]. Where $&() is the normalized value of the attribute, $*#& is the 
minimum value of the attribute, and $*+, is the maximum value of the attribute. 

!HIJ = K!"#	LK$%&
K$'(	LK$%&

     (4) 

Next, Standard Scaler normalization is a preprocessing method where each feature in the sample will be 
transformed in such a way that the feature has a mean of zero and a variance of one. This process is done 
by subtracting the mean from each feature and then dividing it by the standard deviation of that feature 
[18]. Where $̅ is the sample mean and > is the standard deviation. 

? = ,!-,̅
/       (5) 

Grid Search Optimization 
This algorithm works by dividing the range of parameters to be optimized into a grid and testing all 
combinations of grid points to obtain the optimal parameters. In its performance, this grid-search algorithm 
must be guided by several performance metrics measured by cross-validation on the training data. 
Therefore, it is recommended to try several variations of pairs on the Support Vector Regression hyperplane 
to find the most optimal model [19]. 

Model selection is based on the performance results of the models that have been created. The evaluations 
used to measure the quality of model predictions include Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). 

9@AB = C"
&∑ (/# − /E#)&

#'"     (6) 

The RMSE calculation involves squaring the differences between predicted and actual values, taking the 
average of these squared differences, and then finding the square root of this average. This gives us a 
measure of the typical magnitude of prediction errors. 

@FB = "
&G HI# − IJ#H&

#'"      (7) 

The MAE is calculated by taking the absolute differences between predicted and actual values, summing 
these differences, and then dividing by the number of observations. This gives us an average of the absolute 
errors, providing a straightforward measure of prediction accuracy. 

Both RMSE and MAE are in the same units as the original data, making them interpretable in the context 
of the problem. However, RMSE tends to penalize large errors more heavily due to the squaring step, while 
MAE treats all sizes of errors linearly. The choice between these metrics often depends on the specific 
requirements of the prediction task and the nature of the errors that are most important to minimize in your 
particular application. 
 
RESULT AND DISCUSSION 
Data is a crucial element in research. Without data, research cannot be conducted. Data processing is 
necessary to generate useful information to support decision-making or develop theories. Therefore, the 
first step in research is to collect the required data. After the C-MAPSS dataset is collected, the research 
focus shifts to the stages of data analysis and interpretation as an initial phase in developing predictive 
models. Data from the files RUL_FD001.txt, test_FD001.txt, and train_FD001.txt have been prepared for 
further analysis.  

In the Train, Test, and RUL FD001 datasets, there are several columns that will be the focus of analysis. 
The details of Train FD001 data contain information about the unit, operating system, and measured sensor 
data. During the initial analysis, it was noticed that the amount of sensor data in columns 5, 9, 10, and others 
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have the same values. Researchers will check each column to see if there are significant changes in 
degradation. Columns that do not show much change in degradation will be removed during the pre-
processing and data cleaning stages, as well as in subsequent stages. 
 

 
Figure 3. Train FD001 Data 

 
In Figure 3, which displays the Train FD001 data, initial analysis results show that there is no significant 
variation indicating data decline or degradation yet. The range of sensor values at the beginning of the cycle 
seems relatively consistent for each type of sensor. Nevertheless, to detect degradation or patterns of decline 
more accurately from this data, a more in-depth analysis is required in the subsequent stages. 

Analysis of train and test data 

 
Figure 4. Analysis of 100 Engine Units in Train Data 

The analysis results in Figure 4 show that the training dataset includes 100 engine units, ranging from unit 
1 to 100. The involvement of a large number of engine units in this analysis provides a comprehensive 
representation of the operational conditions of the engines. This information has significance in developing 
accurate and reliable prediction models. With the variety of engine units recorded in the dataset, the analysis 
results can be more representative and relevant in supporting decision-making related to engine 
maintenance and condition monitoring. 

 
Figure 5. Analysis of 128-362 Cycles Before Failure in Train Data 

 

Figure 5 displays the analysis results regarding the number of cycles each engine goes through before 
experiencing failure. This data illustrates the variation in the number of cycles before failure, ranging from 
128 to 362 cycles. This information provides important insights into the relative operational life of each 
engine before failure occurs. By understanding the number of cycles required before failure occurs, 
maintenance and care planning can be optimized to reduce the risk of failure and improve model 
performance. 

The column labeling process for the C-MAPSS dataset begins with naming each feature in the dataset. This 
dataset consists of three operational setting columns (os1, os2, os3) which indicate the operational settings 
of the observed unit, and 21 sensor columns (s1 to s21) which record sensor signal data from that unit. The 
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initial step in this process is to create an empty list to store the new column names. We will add the first 
two columns, 'unit' and 'time', which represent the observed unit number and observation time. After that, 
we iterate from 1 to 3 to add column names for the operational setting columns with the format 'os' followed 
by the iteration number. The same is done for the sensor columns, iterating from 1 to 21 and adding column 
names with the format 's' followed by the iteration number. 

Feature selection becomes an important part of data processing because we can see several sensor sources 
that show stagnant or constant trends, which means the sensor values tend to stay within a certain range 
without significant changes over time. This can have a quite important impact on the modeling process that 
will be carried out. 

 

Figure 6. Data Visualization 

From the graph in Figure 6, we can see that Operating Condition 3, as well as sensors 1, 5, 6, 10, 16, 18, 
19, and 21 show a stagnant tendency. This indicates that the data from these sensors do not provide useful 
or relevant information for the modeling process. This stagnation tendency can lead to model inaccuracies 
and less reliable interpretations. It is evident from the visualization above that there are several sensors that 
need to be removed because they have no influence on the prediction process due to their stagnant values. 
Figure 7 show the results after dropping stagnant data from train and test sets. Sensors like os3, s1, s5, s6, 
s10, s16, s18, s19, and s21 are considered to not contribute significantly to the model because their data 
distribution is inconsistent or has low variation. 
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Figure 7. Results after dropping stagnant data from train and test sets 

Figure 8 show the normalization result using the Min-Max Scaling method, which aims to transform the 
values in each feature to a range between 0 and 1. Figure 9 show Normalization Result with Standard Scaler. 
The purpose of this process is to ensure that all features have a uniform scale, so that no feature dominates 
others in its influence on the model.  

 
Figure 8. Normalization Results with Min-Max 

 
Figure 9. Normalization Result with Standard Scaler 

 

Application of support vector regression algorithm  
Parameter determination in the Support Vector Regression (SVR) method is very important as it can affect 
the performance and ability of the model to make accurate predictions. In the context of using the SVR 
method, parameter determination involves selecting optimal values for certain parameters that can influence 
the strength and flexibility of the model. In the process of determining SVR parameters, there are several 
main parameters that need to be considered, including the C parameter, epsilon, and kernel. In this case, 
the researcher uses the Radial Basis Function (RBF) Kernel due to its flexibility in handling complex data. 
With the C parameter defined as [1, 10, 50, 100] and epsilon as [1, 5, 10, 50].  
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Grid search can be used to produce the best parameter combination by trying all possible combinations of 
values for each specified parameter and evaluating performance using cross-validation techniques to 
determine the optimal parameter combination. From the results of this Grid Search test, which produces 
various combinations of several parameters, the results are obtained as shown in Table 3. 

 
Table 3. Test scenarios 

Normalization Parameter Value 
C ε RMSE MSE 

Min-Max 1 1 49,04 38,44 
Min-Max 1 5 49,05 38,44 
Min-Max 1 10 49,04 38,43 
Min-Max 1 50 41,44 36,76 
Min-Max 10 1 44,26 34,42 
Min-Max 10 5 44,29 34,44 
Min-Max 10 10 44,00 34,27 
Min-Max 10 50 40,63 36,17 
Min-Max 50 1 34,87 28,66 
Min-Max 50 5 34,79 28,59 
Min-Max 50 10 34,67 28,52 
Min-Max 50 50 39,12 34,85 
Min-Max 100 1 33,20 27,32 
Min-Max 100 5 33,01 27,07 
Min-Max 100 10 33,14 27,26 
Min-Max 100 50 38,38 34,12 

Normalization Parameter Value 
C ε RMSE MSE 

Standard Scaler 1 1 20,79 15,23 
Standard Scaler 1 5 20,52 15,11 
Standard Scaler 1 10 20,00 14,88 
Standard Scaler 1 50 34,07 30,30 
Standard Scaler 10 1 20,75 15,23 
Standard Scaler 10 5 20,33 15,07 
Standard Scaler 10 10 19,73 14,78 
Standard Scaler 10 50 33,63 29,87 
Standard Scaler 50 1 20,73 15,35 
Standard Scaler 50 5 20,26 15,13 
Standard Scaler 50 10 19,64 14,76 
Standard Scaler 50 50 33,93 30,18 
Standard Scaler 100 1 20,67 15,34 
Standard Scaler 100 5 20,25 15,19 
Standard Scaler 100 10 19,56 14,73 
Standard Scaler 100 50 33,90 30,13 

Based on Table 3, the RMSE and MAE values for each parameter with the RBF kernel were obtained, 
resulting in the best RMSE and MAE values when using Standard Scaler normalization, which had a lower 
average error compared to Min-Max normalization. The parameter combination [100, 10] yielded an RMSE 
value of 19.56 and an MAE value of 14.73. 

For the best prediction results of Remaining Useful Life (RUL) for this turbofan engine, using the Radial 
Basis Function (RBF) kernel with parameters C [100] and epsilon [10], an RMSE of 19.56 and an MAE of 
14.73 were obtained. A visualization of the prediction results and the actual values of the true RUL and the 
predictions in Figure 10 generated from the model training with normalization using Standard Scaler shows 
that the RBF kernel provides optimal results. This is due to the low error rate, as the lower the error, the 
more optimal the model is in predicting 

 

Figure 10. The best model from the Standard Scaler normalization method 
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CONCLUSION 
Based on the research conducted, the use of the Support Vector Regression algorithm successfully predicted 
the Remaining Useful Life (RUL) of a turbofan engine using the C-MAPSS FD001 dataset. By utilizing 
the Radial Basis Function (RBF) kernel, optimal prediction results were achieved. The best model, obtained 
through Grid Search Optimization with C = 100 and epsilon = 10 and normalization using Standard Scaler, 
produced an RMSE of 19.56 and an MAE of 14.73. Furthermore, the values of C and epsilon can influence 
the model, potentially leading to overfitting. This experiment resulted in an optimal model visualization for 
predicting the machine’s remaining useful life, indicating that the generated model was able to follow the 
pattern of RUL set in the RUL test. 
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