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Abstract. Turbofan engines are crucial components in the aviation and manufacturing industries, where estimating the
Remaining Useful Life (RUL) has a significant impact on operational efficiency and safety. This study aims to predict
the RUL of turbofan engines using the Support Vector Regression (SVR) method, a machine learning approach that
has proven effective in modeling nonlinear relationships between variables. Operational data related to turbofan engines
include operational parameters, sensors, and maintenance records. The initial stage of this research involves data
analysis based on unit number, time, operational control, and sensor parameters. This process begins with preprocessing
to initialize the initial data values, normalize, and select sensors that have stagnant values, as these sensors do not affect
the machine learning system. Subsequently, regression calculations are performed to compare predicted values and
actual values using the Support Vector Regression method optimized with Grid Search Optimization. In this study,
testing was conducted with Parameters C [1, 10, 50, 100] and € [1, 5, 10, 50], resulting in the best model with an RMSE
error of 19.56 and MAE of 14.73.
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INTRODUCTION

C-MAPSS (Commercial Modular Aero Propulsion System Simulation) is a dataset published by NASA
containing simulated flight data from various measurements. This dataset is intended for research purposes
and is used in this study. Several publications and research studies have been conducted related to this
dataset. The C-MAPSS dataset simulates flight data recordings from various measurements that occur in
aircraft engines [1]. This dataset consists of four datasets, with each dataset further divided into training
data and test data. Each turbofan engine has 21 sensors that collect data for measuring temperature, speed,
pressure, and ratios. The first column of the dataset is the unit number and operational time [2]. To maintain
engine health, operational maintenance is required. This drives the need for prognostic processes to predict
the likelihood of failures and estimate the remaining effective operational time of components before failure
occurs (Remaining Useful Life/RUL) [3]. By understanding RUL, we can measure the lifespan of a
machine. Predictive maintenance model is estimating the time of equipment failure to schedule maintenance
times [4].

With machine maintenance and care using data analysis to detect damage to machine components, damage
can be predicted and repaired before it occurs in the machine. Therefore, an in-depth study and analysis are
very necessary. Previously, a case study of this CMAPSS data was conducted using the Elastic Weight
Consolidation (EWC) method. It was found that EWC performance can be affected when the tasks faced
have different complexities. The results of this study indicate that the proposed approach is able to compete
with other approaches in predicting turbofan engine degradation [5]. In addition, other researchers used the
Convolutional Neural Network (CNN) and Transformer Encoder methods. The results show that this
combined model demonstrates excellent performance and is comprehensively superior [6].

This research uses Support Vector Regression (SVR). Because SVR in previous research was able to predict
cases of bearing damage detection using the SVR method with the best parameters resulting in RMSE for
training data of 4.5785 and RMSE for test data of 9.6796 [7]. In addition, there are also researchers using
the SVR method with K-fold error predicting COVID-19 patients, obtaining the most optimal model for
active COVID-19 cases of 0.000547 and the largest error model on the death attribute of 0.575177 [8]. The
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SVR method was also used by Isnaeni R. (2022) to predict the inflation rate in Indonesia using the SVR
method with RBF kernel, resulting in an RMSE value of 0.0020 [9].

Based on previous studies, the use of the SVR method obtains good accuracy values and can be used to
predict Remaining Useful Life (RUL). The use of SVR has been successfully applied to several problems
in time series prediction[ 10]. So that time series data prediction can be carried out. On this turbofan engine
usingan artificial intelligence method, namely Support Vector Regression (SVR). The Support Vector
Regression method has been widely used to assist researchers in prediction or forecasting cases with a fairly
low error rate [11]. SVR, which is part of Support Vector Machine (SVM) introduced by Vapnik in 1995,
is used for regression and prediction cases.

The SVR algorithm can produce accurate forecast values because it has the ability to overcome overfitting
problems [9]. Overfitting is a condition where the model predicts training data with almost perfect accuracy,
but its performance decreases significantly when applied to test data[10].

METHODS

The research methodology is first carried out by identifying the problem, after that the preprocessing
process reaches the stage normalize the data until the data is ready for the modeling process.

Data Collection Preprocessing » Feature Selection

l

analysis of results |« SVR Modeling < Normalization

Figure 1. Research stages

C-MAPSS Dataset

C-MAPSS is a tool encoded in the MATLAB-Simulink environment to simulate a 90,0001Ib thrust class
engine model [12]. By using a number of editable input parameters, it allows for determining operational
profiles, closed-loop control, environmental conditions (various altitudes and temperatures), in addition to
provisions for modifying several efficiency parameters to simulate various degradations in different parts
of the engine system [13]. To model uncertainties in meter readings during operation, additionally, each
sensor has its own initial wear level and manufacturing variance. This engine contains 21 sensors, operating
conditions, and other information. Since each time series represents a different engine, the data from the C-
MAPSS collection can be considered to come from the same engine [2].

Table 1. CMAPSS Dataset

Dataset Train Trejectories Test Trejectories Conditions Fault Mode
FD001 100 100 One (Sea level) One (HPC)
FD002 260 259 Six One (HPC)
FDO003 100 100 One (Sea level) Two (HPC, Fan)
FD004 248 249 Six Two (HPC, Fan)

Table 2. Variabel CMAPSS Dataset

Index Dataset Description
1 Unit Number
2 Time (In Cycle)
3 Operational Setting 1
4 Operational Setting 2
5 Operational Setting 3
6 Sensor Measurement 1

26 Sensor Measurement 21
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Support Vector Regression

Support Vector Regression is part of the supervised learning algorithm, used to predict the value of
continuous variables. Like the SVM concept, the SVR method also seeks the best hyperplane in the form
of a regression function by minimizing errors and maximizing margins. The goal of SVR is to find a
function f(x) as a hyperplane (separating line) in the form of a regression function that fits all input data,
by making the error as small as possible [14].

A

(a) (b)
Figure 2. Concept of Support Vector Regression

In Figure 2(a), the thick black line represents a hyperplane, while the two lines flanking it are soft margins.
The distance between the hyperplane and the soft margin is €, and the points that lie between +¢ and -¢ are
called support vectors. However, for points that exceed the soft margin, slack variables & are needed. The
basic idea of using the SVR method is to find a regression function that fits the given training data,
consisting of n sets of data (xi, yi) with xi € R9 as the input vector of the i-th data, wherei=1, 2, ..., n, and
yi is the corresponding target value. The SVR method aims to produce a model that can predict the target
value y for new, unseen input x, utilizing the hyperplane concept learned from the training data. In Support
Vector Regression, if we want to find a function f(x) that has the largest deviation € from the target yi for
training data, it can be seen in the formula 1.

fG)=(w.x)+b (M

f(x) is the function of SVR (Support Vector Regression x is the input vector w is the weight vector of
dimension / and b is the bias.
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Formula 2 is the equation. In general, a linear function can be expressed as (w, x) + b, where (.) is the dot
product in x. To maximize the hyperplane, it is necessary to minimize the Loss Function.

RUF@) = 2 Iwl2 + S5, L O, £ () 3)

Using the e-insensitive loss function Le, and with parameters C and €. Using dual formulation through
Lagrange multipliers, Support Vector Regression (SVR) can be extended to include non-linear functions.
In this context, the optimization problem is formulated only in terms of Lagrange multipliers oi and oi*.
This is possible because the kernel function (x;, Xj) returns the dot product between pairs of data in high-
dimensional space without explicitly mapping the data to that space [15].

Prepsocessing

Preprocessing is a technique to manipulate data collected from various sources so that it's ready for use in
subsequent processes. This process is important to address issues such as missing values, redundant data,
outliers, or data formats that are incompatible with the system. The presence of these problems can interfere
with the final results of the output produced [16].

The first preprocessing step is Min-Max Normalization, where each value in the data feature is subtracted
by the minimum value of that feature, then the result is divided by the difference between the maximum
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and minimum values of that feature [17]. Where x,,.,, is the normalized value of the attribute, x,,;,, is the
minimum value of the attribute, and x,,,, is the maximum value of the attribute.

Xpew = Xold ~Xmin (4)

Xmax —Xmin

Next, Standard Scaler normalization is a preprocessing method where each feature in the sample will be
transformed in such a way that the feature has a mean of zero and a variance of one. This process is done
by subtracting the mean from each feature and then dividing it by the standard deviation of that feature
[18]. Where x is the sample mean and o is the standard deviation.

z=22 Q)

Grid Search Optimization

This algorithm works by dividing the range of parameters to be optimized into a grid and testing all
combinations of grid points to obtain the optimal parameters. In its performance, this grid-search algorithm
must be guided by several performance metrics measured by cross-validation on the training data.
Therefore, it is recommended to try several variations of pairs on the Support Vector Regression hyperplane
to find the most optimal model [19].

Model selection is based on the performance results of the models that have been created. The evaluations
used to measure the quality of model predictions include Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE).

RMSE = |~¥1 . (y; — 9)) (6)

nHi=1

The RMSE calculation involves squaring the differences between predicted and actual values, taking the
average of these squared differences, and then finding the square root of this average. This gives us a
measure of the typical magnitude of prediction errors.

MAE == 3" Y, - T )

The MAE is calculated by taking the absolute differences between predicted and actual values, summing
these differences, and then dividing by the number of observations. This gives us an average of the absolute
errors, providing a straightforward measure of prediction accuracy.

Both RMSE and MAE are in the same units as the original data, making them interpretable in the context
of the problem. However, RMSE tends to penalize large errors more heavily due to the squaring step, while
MAE treats all sizes of errors linearly. The choice between these metrics often depends on the specific
requirements of the prediction task and the nature of the errors that are most important to minimize in your
particular application.

RESULT AND DISCUSSION

Data is a crucial element in research. Without data, research cannot be conducted. Data processing is
necessary to generate useful information to support decision-making or develop theories. Therefore, the
first step in research is to collect the required data. After the C-MAPSS dataset is collected, the research
focus shifts to the stages of data analysis and interpretation as an initial phase in developing predictive
models. Data from the files RUL FDO0O1.txt, test FDOOI.txt, and train FDOOI.txt have been prepared for
further analysis.

In the Train, Test, and RUL FDO0O1 datasets, there are several columns that will be the focus of analysis.

The details of Train FD0O01 data contain information about the unit, operating system, and measured sensor
data. During the initial analysis, it was noticed that the amount of sensor data in columns 5, 9, 10, and others
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have the same values. Researchers will check each column to see if there are significant changes in
degradation. Columns that do not show much change in degradation will be removed during the pre-
processing and data cleaning stages, as well as in subsequent stages.

01 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20 21 22
0 1 1 -00007 -0.0004 1000 51867 641.82 158970 1400.60 14.62 21.61 55436 2388.06 9046.19 1.3 47.47 521.66 2388.02 813862 84195 003 392 2388
1 1 2 00019 -00003 100.0 51867 64215 1591.82 1403.14 1462 2161 55375 2388.04 904407 13 4749 52228 2388.07 813149 84318 003 392 2388
2 1 3 -00043 00003 1000 51867 64235 1587.99 140420 1462 21.61 55426 2383.08 9052.94 13 4727 52242 2383.03 813323 84178 0.03 390 2388
3 1 4 00007 00000 1000 51867 642.35 158279 1401.87 1462 21.61 55445 238811 904948 13 47.13 52286 2388.08 8133.83 83682 0.03 392 2388

4 1 5 -00019 -0.0002 1000 51867 64237 158285 140622 1462 21.61 55400 238806 905515 13 47.28 52219 2383.04 813380 84294 003 393 2388

Figure 3. Train FDOO1 Data

In Figure 3, which displays the Train FD0OO1 data, initial analysis results show that there is no significant
variation indicating data decline or degradation yet. The range of sensor values at the beginning of the cycle
seems relatively consistent for each type of sensor. Nevertheless, to detect degradation or patterns of decline
more accurately from this data, a more in-depth analysis is required in the subsequent stages.

Analysis of train and test data

array(l 1, 2, 3, 4, 5, 6, 7, 8, 9, 1o, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 3@, 31, 32, 33, 34, 35, 36, 37, 38, 39,
4p, 41, 42, 43, 44, 45, 46, 47, 48, 49, 58, 51, 52,
53, 54, 55, 56, 57, 58, 59, 6@, 61, 62, 63, 64, 65,
66, 67, 68, 69, 7@, 71, 72, 73, 74, 75, 76, 77, 78,
79, 8@, 81, 82, 83, 84, 85, 86, 87, 83, 89, 99, 91,
92, 93, 94, 95, 95, 97, 98, 99, 100], dtype=int64)

Figure 4. Analysis of 100 Engine Units in Train Data

The analysis results in Figure 4 show that the training dataset includes 100 engine units, ranging from unit
1 to 100. The involvement of a large number of engine units in this analysis provides a comprehensive
representation of the operational conditions of the engines. This information has significance in developing
accurate and reliable prediction models. With the variety of engine units recorded in the dataset, the analysis
results can be more representative and relevant in supporting decision-making related to engine
maintenance and condition monitoring.

array([192, 287, 179, 189, 269, 188, 259, 150, 201, 222, 240, 170, 163,
180, 207, 209, 276, 195, 158, 234, 195, 202, 168, 147, 230, 199,
156, 165, 163, 194, 234, 191, 2@@, 195, 181, 158, 178, 194, 128,
188, 216, 196, 207, 192, 158, 256, 214, 231, 215, 198, 213, 213,
195, 257, 193, 275, 137, 147, 231, 172, 185, 188, 174, 283, 153,
202, 313, 199, 362, 137, 208, 213, 213, 166, 229, 21@, 154, 231,
199, 185, 24@, 214, 293, 267, 188, 278, 178, 213, 217, 154, 135,
341, 155, 258, 283, 336, 282, 156, 185, 208], dtype=int64)

Figure 5. Analysis of 128-362 Cycles Before Failure in Train Data

Figure 5 displays the analysis results regarding the number of cycles each engine goes through before
experiencing failure. This data illustrates the variation in the number of cycles before failure, ranging from
128 to 362 cycles. This information provides important insights into the relative operational life of each
engine before failure occurs. By understanding the number of cycles required before failure occurs,
maintenance and care planning can be optimized to reduce the risk of failure and improve model
performance.

The column labeling process for the C-MAPSS dataset begins with naming each feature in the dataset. This

dataset consists of three operational setting columns (os1, 0s2, 0s3) which indicate the operational settings
of the observed unit, and 21 sensor columns (sl to s21) which record sensor signal data from that unit. The
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initial step in this process is to create an empty list to store the new column names. We will add the first
two columns, 'unit' and 'time', which represent the observed unit number and observation time. After that,
we iterate from 1 to 3 to add column names for the operational setting columns with the format 'os' followed
by the iteration number. The same is done for the sensor columns, iterating from 1 to 21 and adding column
names with the format 's' followed by the iteration number.

Feature selection becomes an important part of data processing because we can see several sensor sources
that show stagnant or constant trends, which means the sensor values tend to stay within a certain range
without significant changes over time. This can have a quite important impact on the modeling process that
will be carried out.
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Figure 6. Data Visualization

From the graph in Figure 6, we can see that Operating Condition 3, as well as sensors 1, 5, 6, 10, 16, 18,
19, and 21 show a stagnant tendency. This indicates that the data from these sensors do not provide useful
or relevant information for the modeling process. This stagnation tendency can lead to model inaccuracies
and less reliable interpretations. It is evident from the visualization above that there are several sensors that
need to be removed because they have no influence on the prediction process due to their stagnant values.
Figure 7 show the results after dropping stagnant data from train and test sets. Sensors like 0s3, s1, s5, s6,
s10, s16, s18, s19, and s21 are considered to not contribute significantly to the model because their data
distribution is inconsistent or has low variation.
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unit time os1 os2 s2 s3 s4 s7 s8 s9 s11 s12 s13 s14 s15 517 s20 s21  rul

o 1 1 -00007 -0.0004 641.82 1589.70 1400.60 554.36 238306 9046.19 4747 52166 238302 813862 84195 392 39.06 234190 191

1 1 2 00019 -00003 64215 1501.82 1403.14 55375 2338.04 0904407 4749 52228 2383.07 813149 384318 302 3900 234236 190

2 1 3 -0.0043 00003 64235 1587.99 140420 55426 2333.08 905294 4727 52242 2383.03 8133.23 384178 300 3895 233442 189

3 1 4 00007 0.0000 64235 158279 1401.87 55445 233811 904948 47.13 52286 238308 8133.83 83682 392 3828 233730 188

4 1 S5 -0.0019 -0.0002 64237 1582.85 140622 55400 2333.06 9055.15 47.28 522.19 238304 8133.80 384204 303 3890 23.4044 187

unit time os1 os2 s2 s3 s4 s7 s8 s9 s11 s12 s13 s14 s15 517 s20 s21  rul
0 1 1 00023 00003 64302 158529 139821 ©553.90 233304 9050.17 47.20 52172 238303 812555 84052 392 3886 23.3735 142
1 1 2 -0.0027 -0.0003 641.71 1588.45 139542 55485 233801 905442 4750 52216 2383.06 8139.62 83803 393 39.02 23.3916 141

2 1 3 00003 00001 64246 158694 140134 55411 233805 9056.96 47.50 52197 23823.03 2130.10 384441 303 3908 234166 140
3 1 4 00042 0.0000 64244 1584.12 140642 55407 233803 904529 47.28 52138 2388.05 813290 83917 391 39.00 23.3737 139

4 1 5 00014 0.0000 64251 1587.19 140192 554.16 238301 904455 4731 52215 238303 8129.54 84031 390 3899 234130 138

Figure 7. Results after dropping stagnant data from train and test sets

Figure 8 show the normalization result using the Min-Max Scaling method, which aims to transform the
values in each feature to a range between 0 and 1. Figure 9 show Normalization Result with Standard Scaler.
The purpose of this process is to ensure that all features have a uniform scale, so that no feature dominates
others in its influence on the model.

os1 os2 s2 s3 s4 s7 s8 s9 s11 s12 s13 s14 s15 s17 s20 s21  rul
0.459770 0.166667 0.183735 0406802 0.309757 0.726248 0.242424 0.109755 03690428 0633262 0.205882 0.199608 0.363986 0333333 0713178 0724662 191
0.609195 0.250000 0.283133 0453019 0.352633 0.628019 0212121 0.100242 0380952 0.765458 0.279412 0.162813 0411312 0333333 0.666667 0.731014 190
0.252874 0750000 0.343373 0.369523 0.370527 0.710145 0272727 0.140043 0250000 0.795309 0.220588 0.171793 0.357445 0.166667 0.627907 0.621375 139
0.540230 0500000 0343373 0.256159 0.331195 0.740741 0318182 0.124518 0.166667 0.889126 0.294118 0.174889 0.166603 0333333 0573643 0662386 138
0.3902805 0333333 0349393 0.257467 0.404625 0.668277 0.242424 0.149960 0255952 0746269 0.235294 0.174734 0.402078 0416667 0.589147 0704502 187
L _________________________________________________________________________________________________________________JJ

os1 os2 s2 s3 s4 s7 s8 s9 s11 s12 s13 s14 s15 s17 s20 s21  rul
0.632184 0750000 0.545181 0310661 0.269413 0.652174 0212121 0.127614 0.208333 0.646055 0.220588 0.132160 0.308965 0.333333 0558140 0661334 142
0344328 0.250000 0.150602 0.379551 0.222316 0.805153 0.166667 0.146684 0386905 0.739872 0.264706 0.204768 0.213159 0416667 0.632171 0686327 141
0.517241 0583333 0376506 0.346632 0.322248 0.685990 0.227273 0.158081 0.386905 0.699360 0.220588 0.155640 0.458638 0416667 0.728682 0721348 140
0.741379 0500000 0370482 0.285154 0.408001 0.679549 0.196970 0.105717 0.255952 0.573561 0.250000 0.170090 0.257022 0.250000 0.666667 0.662110 139

0.580460 0.500000 0.391566 0.352082 0.332039 0.694042 0.166667 0.102396 0273810 0.737740 0.220588 0.152751 0.3008385 0.166667 0.658915 0.716377 138

EE————————————

Figure 8. Normalization Results with Min-Max
unit 0s1 0s2 s2 s3 s4 s7 s8 s9 s11 s12 s13 s14 s15 s17 s20

0 10 -0315980 -1372953 -1.721725 -0.134255 -0.925936 1.121141 -0.516338 -0.862813 -0.266467 0334262 -1.058890 -0.269071 -0.603816 -0.781710 1.348493
1 10 0872722 -1.031720 -1.061780 0.211528 -0.643726 0431930 -0.798093 -0.958818 -0.191583 1.174899 -0.363646 -0.642845 -0275852 -0.781710 1.016528
2 10 -1961874 1.015677 -0.661813 -0413166 -0.525953 1.008155 -0.234584 -0557139 -1.015303 1364721 -0919841 -0.551629 -0.649144 -2073094 0.739891
3 10 0324090 -0.008022 -0.661813 -1.261314 -0.784831 1222827 0.188048 -0.713826 -1.539489 1.961302 -0.224597 -0.520176 -1.971665 -0.781710 0.352598

4 10 -0.864611 -0.690488 -0.621816 -1.251528 -0.301518 0714393 -0.516338 -0457059 -0.977861 1.052871 -0.780793 -0.521748 -0.339845 -0.136018 0463253
1 E E — —E  —E —E—E——E—E—EEE———————————— »

Figure 9. Normalization Result with Standard Scaler

Application of support vector regression algorithm

Parameter determination in the Support Vector Regression (SVR) method is very important as it can affect
the performance and ability of the model to make accurate predictions. In the context of using the SVR
method, parameter determination involves selecting optimal values for certain parameters that can influence
the strength and flexibility of the model. In the process of determining SVR parameters, there are several
main parameters that need to be considered, including the C parameter, epsilon, and kernel. In this case,
the researcher uses the Radial Basis Function (RBF) Kernel due to its flexibility in handling complex data.
With the C parameter defined as [1, 10, 50, 100] and epsilon as [1, 5, 10, 50].
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Grid search can be used to produce the best parameter combination by trying all possible combinations of
values for each specified parameter and evaluating performance using cross-validation techniques to
determine the optimal parameter combination. From the results of this Grid Search test, which produces
various combinations of several parameters, the results are obtained as shown in Table 3.

Table 3. Test scenarios

Normalization Parameter Value Normalization Parameter Value

C € RMSE MSE C € RMSE MSE
Min-Max 1 1 49,04 38,44 Standard Scaler 1 1 20,79 15,23
Min-Max 1 5 49,05 38,44 Standard Scaler 1 5 20,52 15,11
Min-Max 1 10 49,04 38,43 Standard Scaler 1 10 20,00 14,88
Min-Max 1 50 41,44 36,76 Standard Scaler 1 50 34,07 30,30
Min-Max 10 1 4426 34,42 Standard Scaler 10 1 20,75 15,23
Min-Max 10 5 44,29 34,44 Standard Scaler 10 5 20,33 15,07
Min-Max 10 10 44,00 34,27 Standard Scaler 10 10 19,73 14,78
Min-Max 10 50 40,63 36,17 Standard Scaler 10 50 33,63 29,87
Min-Max 50 1 34,87 28,66 Standard Scaler 50 1 20,73 15,35
Min-Max 50 5 34,79 28,59 Standard Scaler 50 5 20,26 15,13
Min-Max 50 10 34,67 28,52 Standard Scaler 50 10 19,64 14,76
Min-Max 50 50 39,12 34,85 Standard Scaler 50 50 33,93 30,18
Min-Max 100 1 33,20 27,32 Standard Scaler 100 1 20,67 15,34
Min-Max 100 5 33,01 27,07 Standard Scaler 100 5 20,25 15,19
Min-Max 100 10 33,14 27,26 Standard Scaler 100 10 19,56 14,73
Min-Max 100 50 38,38 34,12 Standard Scaler 100 50 33,90 30,13

Based on Table 3, the RMSE and MAE values for each parameter with the RBF kernel were obtained,
resulting in the best RMSE and MAE values when using Standard Scaler normalization, which had a lower
average error compared to Min-Max normalization. The parameter combination [100, 10] yielded an RMSE
value of 19.56 and an MAE value of 14.73.

For the best prediction results of Remaining Useful Life (RUL) for this turbofan engine, using the Radial
Basis Function (RBF) kernel with parameters C [100] and epsilon [10], an RMSE of 19.56 and an MAE of
14.73 were obtained. A visualization of the prediction results and the actual values of the true RUL and the
predictions in Figure 10 generated from the model training with normalization using Standard Scaler shows
that the RBF kernel provides optimal results. This is due to the low error rate, as the lower the error, the
more optimal the model is in predicting

Normalization Standard Scaler

140 - — True RUL
—— Pred RUL
120 b
100 1
80 1
60
40
20 4
01— T T T T T
20 40 60 80 100

Figure 10. The best model from the Standard Scaler normalization method
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CONCLUSION

Based on the research conducted, the use of the Support Vector Regression algorithm successfully predicted
the Remaining Useful Life (RUL) of a turbofan engine using the C-MAPSS FDO0O1 dataset. By utilizing
the Radial Basis Function (RBF) kernel, optimal prediction results were achieved. The best model, obtained
through Grid Search Optimization with C = 100 and epsilon = 10 and normalization using Standard Scaler,
produced an RMSE of 19.56 and an MAE of 14.73. Furthermore, the values of C and epsilon can influence
the model, potentially leading to overfitting. This experiment resulted in an optimal model visualization for
predicting the machine’s remaining useful life, indicating that the generated model was able to follow the
pattern of RUL set in the RUL test.

REFERENCES

(1]
(2]

[10]

[1]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

T. Wang, “Trajectory Similarity Based Prediction for Remaining Useful Life Estimation,” 2010.
U. Thakkar, “Remaining Useful Life Prediction of a Turbofan Engine Using Deep Layer Recurrent
Neural Networks,” 2021.

E. Priambodo, T. Prahasto, and A. Widodo, “Deteksi Dini Kerusakan Bearing Menggunakan
Machine Learning Pendekatan Support Vector Regression (SVR),” 2023.

0. Asif, S. A. L. 1. Haider, S. R. Naqvi, J. F. W. Zaki, K. S. Kwak, and S. M. R. Islam, “A Deep
Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS
Dataset,” IEEE Access, vol. 10, pp. 95425-95440, 2022, doi: 10.1109/ACCESS.2022.3203406.
B. Maschler, Continual Learning of Fault Prediction for Turbofan Engines using Deep Learning
with Elastic Weight Consolidation. IEEE, 2020.

H. K. Wang, Y. Cheng, and K. Song, “Remaining useful life estimation of aircraft engines using
a joint deep learning model based on tcnn and transformer,” Comput Intell Neurosci, vol. 2021,
2021, doi: 10.1155/2021/5185938.

D. Titian Wiranata, T. Prahasto, and A. Widodo, “Analisis Prognostik Terhadap Kerusakan
Bantalan Pada Poros Kecepatan Tinggi Turbin Angin Menggunakan Machine Learning Dengan
Pendekatan Support Vector Regression (SVR),” 2021.

A. M. Siregar, S. Faisal, and B. Widiharto, “Model Prediksi Penderita Covid 19 Di Indonesia
Menggunakan Metode Support Vector Regresion,” 2022.

Z. Rais, “Analisis Support Vector Regression (SVR) Dengan Kernel Radial Basis Function (RBF)
Untuk Memprediksi Laju Inflasi Di Indonesia,” VARIANSI: Journal of Statistics and Its
Application on Teaching and Research, vol. 4, no. 1, pp. 30-38, 2022, doi:
10.35580/variansiunm13.

R. P. Furi, M. S. Jondri, and D. Saepudin, “Prediksi Financial Time Series Menggunakan
Independent Component Analysis dan Support Vector Regression Studi Kasus : IHSG dan JII,”
2015.

N. Asyraf et al., “Peramalan Curah Hujan Di Kota Medan menggunakan Metode Support Vector
Regression,” 2022.

D. K. Frederick, J. A. Decastro, and J. S. Litt, “User’s Guide for the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS),” 2007. [Online]. Available: http://www.sti.nasa.gov
E. Ramasso and A. Saxena, “Review and Analysis of Algorithmic Approaches Developed for
Prognostics on CMAPSS Dataset,” 2014.

A. J. Smola, B. Sch”olkopf, and S. Sch olkopf, “A tutorial on support vector regression,” Kluwer
Academic Publishers, 2004.

A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain, “Support vector regression
with chaos-based firefly algorithm for stock market price forecasting,” Applied Soft Computing
Journal, vol. 13, no. 2, pp. 947-958, 2013, doi: 10.1016/j.as0c.2012.09.024.

V. R. Prasetyo, B. Hartanto, and A. A. Mulyono, “Penentuan Pembimbing Tugas Akhir Mahasiswa
Jurusan Teknik Informatika Universitas Surabaya Dengan Metode Dice Coefficient,” Teknika, vol.
8, no. 1, pp. 44-51, 2019, doi: 10.34148/teknika.v8il.147.

M. Sholeh, D. Andayati, R. Yuliana Rachmawati, P. Studi Informatika, and F. Teknologi Informasi
dan Bisnis, “Data Mining Model Klasifikasi Menggunakan Algoritma K-Nearest Neighbor
Dengan Normalisasi Untuk Prediksi Penyakit Diabetes Data Mining Model Classification Using
Algorithm K-Nearest Neighbor With Normalization For Diabetes Prediction,” 2022.

V. R. Prasetyo, M. Mercifia, A. Averina, L. Sunyoto, and B. Budiarjo, “Prediksi Rating Film Pada
Website Imdb Menggunakan Metode Neural Network,” Network Engineering Research
Operation, vol. 7,n0. 1, p. 1, 2022, doi: 10.21107/nero.v7i1.268.

M. Raehanun, “Analisis Support Vector Machine (Svm) Dalam Prediksi,” Yogyakarta, Jun. 2021.

211



