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Abstract. The diseases that affect apple tree leaves seriously compromise agricultural production; therefore, early and
accurate diagnosis is crucial for effective disease control. Machine learning's recent developments have opened up
fascinating possibilities for automating the detection process and enhancing precision agriculture methods. This study
aims to develop a robust classification model that can accurately and efficiently identify various diseases affecting
apple tree leaves. The approach combines the pre-trained EfficientNetBO architecture for feature extraction with the
XGBoost model for classification, utilizing the advantages of both deep learning and gradient-boosting methods. With
high performance measures including a macro-average precision of 95.86%, recall of 95.44%, and F1 score of 95.64%,
the model achieved a classification accuracy of 95.74%. Furthermore, the average ROC-AUC score of 0.9964
highlights the model’s ability to effectively differentiate between the five disease categories. This work stands out due
to its hybrid approach, which integrates a robust pre-trained convolutional neural network (EfficientNetB0) with the
XGBoost model. This significantly improves the accuracy of disease classification. This approach presents a novel
pathway for precision agriculture, providing a reliable and effective instrument for the automatic identification of
diseases in apple orchards.
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INTRODUCTION

The direct effect of apple leaf diseases on crop production and quality makes their identification a vital
focus of study. Automated solutions are driven by conventional disease detection approaches, which depend
on manual inspection and are often error-prone and labor-intensive. Recent developments in machine
learning (ML) and deep learning (DL) have created new paths for highly accurate and efficient leaf disease
detection. For example, [1] emphasized the need for ML to increase the accuracy of disease identification
by offering a comprehensive review of apple leaf disease detection methods [2]. Similarly, [3] predicted
diseases in apple leaves using multiclass support vector machines (SVMs). With more effective feature
extraction, they achieved a significantly improved classification. Researchers have investigated the junction
of DL models and machine learning classifiers in order to improve the detection accuracy even more. In
one study, [4] proposed a deep learning framework to detect apple leaf diseases using image processing
methods combined with convolutional neural networks (CNNs) for feature extraction [5]. Their technique
demonstrated notable improvements in accuracy and precision compared to conventional techniques.

Research by [6] discussed how well pre-trained networks, such as EfficientNet, find complex disease
patterns and examined new advances in deep learning approaches for disease detection on apple leaves.
Their study highlighted that more accurate and computationally efficient models are generated when
EfficientNet is combined with machine learning classifiers, such as XGBoost. This trend is especially
pertinent given the growing attention to hybrid models that combine DL architectures with conventional
ML classifiers for best performance. To search for diseases in apple leaves, [7] developed MCDCNet, a
multiscale limited deformable convolution network. It outperformed many baseline models in terms of
accuracy, precision, and recall, and effectively captured elements in space on varying scales. To greatly
increase detection accuracy, [8] also developed a deep evidence fusion framework for apple leaf disease
classification by including several data sources. These investigations highlight how well multiscale
evidence fusion techniques could improve the detection process.

Focusing on improving the robustness and generalization of the model, recent studies have continued to
investigate advanced approaches for detecting apple leaf disease. [9] investigated various deep learning and
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machine learning techniques extensively for detecting diseases on apple leaves. They found that the most
successful hybrid models were those that combined the best features of both approaches. Emphasizing the
importance of feature extraction to enhance model precision, [10] also examined the effectiveness of
machine learning and deep learning methods for classifying apple leaf disease. [11] conducted the last work
classifying lepidoptera using EfficientNet-B0. This indicated that it could support the possible use in
identifying and extracting characteristics for classification activities. These works validate the trend of
using hybrid models and pre-trained networks for enhanced disease detection in precision agriculture.

The uniqueness of hybridizing machine learning classifiers, such as XGBoost, with deep learning
architectures, including EfficientNet and MCDCNet, lies in increasing both accuracy and generalizability.
Through adaptive feature capture approaches, researchers such as [12] and [13] have focused on enhancing
segmentation and detection, underscoring the potential of these cutting-edge methods to continually
improve classification performance. However, existing studies have not fully addressed the challenge of
distinguishing visually similar leaf diseases under real-world variations. To bridge this gap, this research
addresses these challenges by developing a hybrid classification framework that integrates a pretrained
EfficientNetBO model for deep feature extraction with the XGBoost classifier to improve decision
boundaries. The novelty of this research leverages the unique properties of the EfficientNetB0 model, which
serves as a powerful yet lightweight backbone, and the adaptive ensemble characteristics of XGBoost.
Consequently, the deeper neural network achieves better performance on limited or imbalanced datasets.
The hybrid model improved the generalization and classification of apple tree leaf diseases.

METHODS

The proposed method for classifying apple tree leaf diseases uses the strengths of both deep learning and
machine learning approaches [14], [15]. This paper utilizes EfficientNetB0, a compact yet highly effective
convolutional neural network (CNN), to extract features. Pre-trained weights from the ImageNet dataset is
used to transfer its learning abilities. This paper also extracts deep feature representations from apple leaf
images and subsequently feeds these features to an XGBoost model, a gradient boosting method known for
great accuracy and robustness in classification problems. EfficientNetB0's feature extraction, combined
with XGBoost's classification, offers a hybrid model that successfully strikes a balance between
computational efficiency and performance accuracy [11]. Using criteria including precision, recall, F1
score, and ROC-AUC, this article evaluated the model's performance and found notable improvements in
the identification of several apple leaf diseases. Figure 1 shows a method flowchart diagram.
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Figure 1. Method flowchart
A. Import Data

In this research, the dataset used consists of an apple tree leaf disease dataset from five different categories.
These diseases include alternating leaf spot, gray spot, brown spot, and rust. The data are collected from
the Kaggle website [16], and the overall number of images is 1641. The data is then divided into separate
training and testing sets. The distribution of data for each class is shown in Table 1.
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Table 1. Apple tree leaf disease dataset distribution

Class Number of Images
Alternia Leaf Spot 278

Brown Spot 215

Gray Spot 395

Healthy Leaf 409

Rust 344

Total 1641

B. Images Preprocessing

The preprocessing of the dataset ensures an optimal structure for the training and testing of the machine
learning models in this work. The preprocessing starts with creating training and testing sets from the data.
As shown in the code, the split data function divides the images from the source directory into separate
directories for training and testing, thereby automating this process. Using the split ratio parameter allows
one to vary the allocation of images, with 80% allocated to the training set and the remaining 20% to the
testing set. Every class of a picture is arranged in line with its related directory.

The TensorFlow Keras API initiates preprocessing as soon as the data is split. The pre-process input
function of the image data generator class establishes a standard pixel value for images. Deep learning relies
on standardization, as it ensures the appropriate scaling of input data, enhances model convergence, and
yields better results. This is especially important when using pre-trained models, such as InceptionV3,
where the input must conform to a specific structure.

From the training and test directories, the Image Data Generator then generates batches of images [17]. The
images are loaded straight from their directories, resized to the suitable input shape of 224x224 pixels, and
created batches of a specified size, in this case 32 images per batch using the flow from directory method.
Setting class mode to None and shuffle to False helps the generator prepare images without labels, which
can subsequently be used for classification chores once the model is fully trained. Figure 2 and Figure 3
show the different images before and after pre-processing.
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Figure 2. Sample of images before preprocessing
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Figure 3. Sample of images after preprocessing

C. Feature Extraction

In this work, for feature extraction, the ImageNet dataset is pre-trained using EfficientNetB0, a powerful
convolutional neural network (CNN) architecture [18], [19]. EfficientNetBO0's effective scaling of depth,
width, and resolution has shown outstanding performance in many image classification challenges. This
paper seeks to extract high-quality features from our apple tree leaf dataset using pre-trained weights,
avoiding the need to build the whole model from scratch. It is perfect for feature extraction, since the

architecture is used without a top classification layer. Figure 4 shows a summary of the EfficientNetB0
architecture model.
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Figure 4. EfficientNetBO0 architecture model

Following the base model, this paper adds a Global Average Pooling 2D (GAP) layer to further hone the
EfficientNetBO extracted features. By reducing the spatial dimensions of the output feature maps, the GAP
layer substitutes for conventional fully connected layers and retains the most significant information. By
concatenating the feature maps into a single value per feature, this layer reduces the general complexity of
the feature vectors. Using GAP produces compact and globally representative features from the input

images that fit downstream applications, including classification. Figure 4 shows model architecture of
EfficientNetBO.

Feature extraction is applied with a Keras model that combines the GAP layer with EfficientNetB0. The
raw images form the model's input; the feature vectors produced following the GAP layer form its output.
This paper uses a custom function, extract features, to effectively manage this process. Using the pre-
trained EfficientNetB0 model, this function iteratively over ImageDataGenerator's produced image batches
forecasts the feature vectors. Dividing the total sample count by the batch size helps us determine the
number of steps needed to handle the dataset. To ensure that the model generates significant feature vectors
for both the training and testing sets, feature vectors are also extracted for both sets. The main input for
additional analysis or training of the machine learning pipeline is these derived features. For every dataset,
the function outputs feature arrays that allow us to examine the dimensions and understand the scale and
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organization of the data obtained. For instance, the form of the feature arrays reveals the number of feature
vectors generated for every image, which is a crucial insight for the next model construction.

D. Feature Classification

In this work, the obtained features are classified using the XGBoost model. Particularly in large datasets,
XGBoost is a strong and very efficient implementation of gradient boosting that shines in speed and
accuracy [20], [21], [22]. XGBoost generates a strong classifier capable of fast differentiating between the
five classes of apple tree leaf images by using pre-extracted feature vectors as input. The model is trained
with the hyperparameter method shown in Table 2.

Table 2. Hyperparameter for classification

Hyperparameter Value Description

n_estimators 500  Number of trees in the ensemble (boosting rounds)

max_depth 5 Maximum depth of each tree. Controls the complexity of the model.
learning_rate 0.1 Shrinks the contribution of each tree to prevent overfitting.
random_state 42 Seed for random number generation to ensure reproducibility
device GPU  Specifies the use of GPU for faster training

The XGBoost classifier learns from the features acquired for training. The classifier receives training from
the feature vectors of the training set train_features, even if the class labels from train_gen.classes do not
match. Following training, the classifier projects the test set (test_features) relative to the actual class labels
of the test data. Evaluating the performance of the model depends on this predictive phase since it helps us
to determine how well the classifier generalizes to unprocessed data.

This paper evaluates the classifier's performance by computing the accuracy of the model on the test set by
means of the accuracy score function and presents a rather high percentage accuracy of the model to
provide a complete picture of its classification performance. In addition, the tool generates comprehensive
classification reports. This article presents key metrics, including precision, recall, F1 score, and class
support. These steps assess how well the model handles imbalanced classes and whether it performs
consistently across all dataset categories, providing a more comprehensive understanding of its
performance.

E. Model Evaluation

To obtain a more comprehensive evaluation, additional metrics, such as precision, recall, and the F1 score,
are calculated using the model's predictions [23], [24]. Precision measures the ratio of correct positive
predictions to total positive predictions, which highlights the accuracy of the model in predicting a
particular class. Recall, on the other hand, estimates a model based on its ability to identify all relevant
examples in the validation set, thereby underlining the sensitivity regarding real positives. The F1 score is
the harmonic mean of precision and recall. Balances the two measures and provides a more detailed view
of model performance when one is less important. Combining precision, recall, and F1-score ensures the
completeness of judgment on a model's effectiveness.

TP+TN

ACCUTACY = o rn PN M
. . — TP (2)

precision TP+FP

recall = ——~ (3)
TP+FN
_ recall X precision

F1Score = 2 x recall + precision (4)

TPR = —— (5)
TP+FN

FPR = —= (6)
FP+TN

Where TP is True Positive, where the model correctly predicts the positive class. TN is True Negative,
where the model correctly predicts the negative class. FP is False Positive, where the model incorrectly
predicts the positive class when the actual class is negative, FN is False Negative, the model incorrectly
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predicts the negative class when the actual class is positive. TPR and FPR are used to plot the Receiver
Operating Characteristic (ROC).
RESULT AND DISCUSSION
A. Feature Extraction Result

Using the pre-trained EfficientNetB0O model for feature extraction, the raw image data were successfully
converted into a format that the XGBoost classifier could understand. The results are presented in Table 3.

Table 3. Feature extraction

Train Test
Shape 1,312 329
Feature 1,280 1280

Based on Table 3, the output indicates the conversion of the training set, comprising 1,312 images, into a
feature matrix with dimensions of 1,312 rows and 1,280 columns. Similarly, a feature matrix with 329 rows
and 1,280 columns now represents the test set of 329 images. The EfficientNetB0O model extracts distinct
features from each of the 1,280 columns, and each row in these matrices corresponds to an image.

The EfficientNetBO model learned high-level visual information from these 1,280 features during its
training on a massive image dataset, likely ImageNet. Instead of using raw pixel values, which can be high-
dimensional and noisy, this paper leverages these learned features that capture more discriminative and
abstract image representations. The pre-trained models can acquire knowledge for our specific image
classification task through this approach, known as transfer learning.

A key turning point in our image classification system is the effective extraction of these 1280-dimensional
feature vectors from the image datasets. The XGBoost classifier will learn to map these features to related
image labels using these feature matrices as input. A strong and accurate image classification system can
be achieved by combining deep learning for feature extraction with a robust machine learning algorithm,
such as XGBoost.

B. Feature Classification Result

Training on features derived from the EfficientNetB0 model, the XGBoost model has shown extraordinary
image classification performance. With an impressive accuracy of 95.74%, the classifier accurately
predicted the class labels for most images in the test set. This exceptional accuracy demonstrates the
effectiveness of transfer learning in combination with a robust machine learning method for image
recognition.

Examining the classification report closely repeatedly reveals high precision, recall, and F1 scores in all
classes, with each score above 0.9. This indicates a well-balanced performance in which the classifier not
only detects most of the instances matching each class (recall), but also finds the proper class with high
confidence (precision). Harmonizing accuracy and recall, the F1 score strengthens the classifier's general
performance across all classes.

Many factors contribute to explaining this exceptional performance. Firstly, the extraction of features with
EfficientNetB0O ensured the discriminative and informative components of the XGBoost model. Second,
well known for its ability to handle complex datasets and find subtle relationships, the XGBoost algorithm
effectively learned the mapping between the extracted features and the matching class labels. The
classifier's exceptional performance ultimately stems from the meticulous selection of hyperparameters and
the utilization of GPU devices. Table 4 presents a comprehensive analysis of the classification outcomes
for each class.
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Table 4. Feature classification result

Class Precision Recall F1-Score Support

0 0.963 0.9286 0.9455 56

1 0.9302 0.9302 0.9302 43

2 0.9146 0.9494 0.9317 79

3 0.9878 0.9878 0.9878 82

4 0.9853 0.971 0.9781 69
Accuracy 329
macro avg 0.9562 0.9534 0.9547 329
weighted avg 0.958 0.9574 0.9576 329

Details:

Class 0: Alternaria leaf spot
Class 1: Brown spot

Class 2: Gray spot

Class 3: Healthy leaf

Class 4: Rust

C. Confusion Matrix

A confusion matrix is a common tool used to evaluate the performance of a classification model,
specifically one designed to classify different types of data. Figure 5 shows a confusion matrix. The matrix
compares the predicted types of apple tree leaf disease with the actual types of apple tree leaf disease. A
variety of blue hues fill the cells, and darker blues represent the frequency of correct or incorrect predictions.
This color gradient makes it easier to visualize the model’s accuracy and errors.

Confusion Matrix
80
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Figure 5. Confusion matrix

Figure 5 presents the five distinct classes that a classification model can predict for apple tree leaf disease.
This paper sets up the matrix as a 5x5 grid, where each column represents the predicted class, and each row
represents the true class. The model correctly classified 52 samples in class 0, 40 in class 1, 75 in class 2,
81 in class 3, and 67 in class 4, with diagonal values of 52, 40, 75, 81, and 67 for each class, respectively.
Examining off-diagonal values reveals misclassifications. In class 0, for example, the model misclassified
one sample as class 1, another as class 2, another as class 3, and still another as class 4. In class 1, the model
also incorrectly predicted three samples, as it did in class 2. In class 2, the model misclassified two samples
as class 0 and another two as class 1. For class 3, the model misclassified only one sample, projecting it as
class 2. Finally, class 4 misinterpreted two samples as class 2.

Based on the higher diagonal values and relatively lower misclassification rates, the model demonstrated
excellent general performance for most classes. With 81, Class 3 boasts the most accurate predictions;
Category 1 has the fewest misclassifications, with only 3 incorrect predictions. With a minor uncertainty
between similar classes, such as between classes 1 and 2, and between classes 2 and 4, misclassifications
appear to be rare, and the model is able to precisely differentiate between the various disease categories.
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This implies that diseases in these categories may share similar visual traits; therefore, the model would
find it more challenging to distinguish them.

D. AUC-ROC Analysis

Figure 6 shows the Receiver Operating Characteristic (ROC) curve, which illustrates the ability of the
model to differentiate between the five categories of apple leaf disease. Plotting the ROC curves for every
class allows one to see the trade-off between the false positive rate across many threshold values and the
true positive rate (sensitivity).

Receiver Operating Characteristic (ROC) Curve
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Figure 6. AUC-ROC curve

The Area Under the Curve (AUC) values for each class are especially notable, with class 0 achieving
99.43%, class 1 achieving 99.96%, class 2 achieving 99.32%, class 3 achieving 99.95%, and class 4
achieving 99.93%. With almost flawless discrimination between classes, these high AUC values indicate
excellent model performance. The model's efficiency in differentiating between apple leaf diseases is shown
by the closely approaching top-left corner's high true positive rates with low false positives.

E. Discussion

Table 5 compares the findings of this work with those of earlier studies on the classification of apple tree
leaf diseases. Specifically, the proposed model, which integrates XGBoost model for classification and
EfficientNetBO for feature extraction, excels across all evaluation criteria. The model performs
exceptionally well in confusion matrix evaluations such as precision, recall, and F1-score, demonstrating
its ability to accurately classify a variety of apple leaf diseases, including Alternaria leaf spot, Brown spot,
Gray spot, Healthy Leaf, and Rust. The model achieves a high AUC-ROC score of 99.7%.

Table 5. Comparison with previous study

Study Dataset Objective Method Result
[3] e The dataset includes To detect Multiclass SVM Multiclass SVM
500 apple leaf images.  diseases in achieves 96%
apple leaves accuracy in
using machine identifying
learning diseases.
[4] e The dataset is collected To diagnose VGG16 The VGG16
from the Kaggle apple leaf framework achieves
repository. diseases 93.3% validation
e Apple leaf images are accurately accuracy in the
used for classification. using deep apple leaf data set.

e  The dataset is split into ~ learning
training and testing
sets.
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[6] e  The dataset is sourced ~ To enhance EfficientNet- The proposed
from the Cornell apple leaf DenseNet method
Initiative for Digital disease outperformed the
Agriculture. detection others with 98%
e [t consists of around accuracy using accuracy.
3600 labeled training ~ deep learning
images.

(8]

e The AppleLeaf9
dataset includes 14,582

To achieve EfficientNetV2-S

high accuracy

The experimental
results show

images of 8 disease in leaf disease improved
classes. classification. classification
e Dataset from accuracy, achieving
Northwest AF 98.1% in
University contains EfficientNetV2-S.
26,377 apple leaf
images.
Proposed e  The study uses a To create a EfficientNetBO Achieved 95.74%
Method dataset of 1641 apple strong for feature classification
leaf images. classification  extraction and accuracy and
e The dataset is collected model for XGBoost model 0.9964 ROC AUC
from the Kaggle apple leaf for classification.  score.
repository. diseases.
CONCLUSION

This paper demonstrated the effectiveness of a hybrid model that combines the best features of the XGBoost
model and a pre-trained EfficientNetBO CNN in classifying apple tree leaf diseases. The model achieved
95.74% classification accuracy, 95.64% F1-score, and 95.64% macro-average precision by extracting
features using EfficientNetB0O and XGBoost. The model's average ROC AUC score of 0.9964 accurately
distinguishes the five disease categories. These findings suggest that hybrid models, which combine deep
learning feature extraction with machine learning classifiers, may facilitate the identification of crop
diseases. This study utilizes a pre-trained CNN model and an XGBoost classifier to detect agricultural
diseases. This method enables farmers and agricultural experts to identify and control apple leaf diseases
by enhancing computational efficiency and improving classification accuracy. Further research can
examine other pretrained models, expand the dataset, or test this hybrid approach on different crops and
diseases to prove its adaptability.
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