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Abstract. The diseases that affect apple tree leaves seriously compromise agricultural production; therefore, early and 

accurate diagnosis is crucial for effective disease control. Machine learning's recent developments have opened up 

fascinating possibilities for automating the detection process and enhancing precision agriculture methods. This study 

aims to develop a robust classification model that can accurately and efficiently identify various diseases affecting 

apple tree leaves. The approach combines the pre-trained EfficientNetB0 architecture for feature extraction with the 

XGBoost model for classification, utilizing the advantages of both deep learning and gradient-boosting methods. With 

high performance measures including a macro-average precision of 95.86%, recall of 95.44%, and F1 score of 95.64%, 

the model achieved a classification accuracy of 95.74%. Furthermore, the average ROC-AUC score of 0.9964 

highlights the model’s ability to effectively differentiate between the five disease categories. This work stands out due 

to its hybrid approach, which integrates a robust pre-trained convolutional neural network (EfficientNetB0) with the 

XGBoost model. This significantly improves the accuracy of disease classification. This approach presents a novel 

pathway for precision agriculture, providing a reliable and effective instrument for the automatic identification of 

diseases in apple orchards. 
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INTRODUCTION 

The direct effect of apple leaf diseases on crop production and quality makes their identification a vital 

focus of study. Automated solutions are driven by conventional disease detection approaches, which depend 

on manual inspection and are often error-prone and labor-intensive. Recent developments in machine 

learning (ML) and deep learning (DL) have created new paths for highly accurate and efficient leaf disease 

detection. For example, [1] emphasized the need for ML to increase the accuracy of disease identification 

by offering a comprehensive review of apple leaf disease detection methods [2]. Similarly, [3] predicted 

diseases in apple leaves using multiclass support vector machines (SVMs). With more effective feature 

extraction, they achieved a significantly improved classification. Researchers have investigated the junction 

of DL models and machine learning classifiers in order to improve the detection accuracy even more. In 

one study, [4] proposed a deep learning framework to detect apple leaf diseases using image processing 

methods combined with convolutional neural networks (CNNs) for feature extraction [5]. Their technique 

demonstrated notable improvements in accuracy and precision compared to conventional techniques. 

 

Research by [6] discussed how well pre-trained networks, such as EfficientNet, find complex disease 

patterns and examined new advances in deep learning approaches for disease detection on apple leaves. 

Their study highlighted that more accurate and computationally efficient models are generated when 

EfficientNet is combined with machine learning classifiers, such as XGBoost. This trend is especially 

pertinent given the growing attention to hybrid models that combine DL architectures with conventional 

ML classifiers for best performance. To search for diseases in apple leaves, [7] developed MCDCNet, a 

multiscale limited deformable convolution network. It outperformed many baseline models in terms of 

accuracy, precision, and recall, and effectively captured elements in space on varying scales. To greatly 

increase detection accuracy, [8] also developed a deep evidence fusion framework for apple leaf disease 

classification by including several data sources. These investigations highlight how well multiscale 

evidence fusion techniques could improve the detection process. 

 

Focusing on improving the robustness and generalization of the model, recent studies have continued to 

investigate advanced approaches for detecting apple leaf disease. [9] investigated various deep learning and 
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machine learning techniques extensively for detecting diseases on apple leaves. They found that the most 

successful hybrid models were those that combined the best features of both approaches. Emphasizing the 

importance of feature extraction to enhance model precision, [10] also examined the effectiveness of 

machine learning and deep learning methods for classifying apple leaf disease. [11] conducted the last work 

classifying lepidoptera using EfficientNet-B0. This indicated that it could support the possible use in 

identifying and extracting characteristics for classification activities. These works validate the trend of 

using hybrid models and pre-trained networks for enhanced disease detection in precision agriculture. 

 

The uniqueness of hybridizing machine learning classifiers, such as XGBoost, with deep learning 

architectures, including EfficientNet and MCDCNet, lies in increasing both accuracy and generalizability. 

Through adaptive feature capture approaches, researchers such as [12] and [13] have focused on enhancing 

segmentation and detection, underscoring the potential of these cutting-edge methods to continually 

improve classification performance. However, existing studies have not fully addressed the challenge of 

distinguishing visually similar leaf diseases under real-world variations. To bridge this gap, this research 

addresses these challenges by developing a hybrid classification framework that integrates a pretrained 

EfficientNetB0 model for deep feature extraction with the XGBoost classifier to improve decision 

boundaries. The novelty of this research leverages the unique properties of the EfficientNetB0 model, which 

serves as a powerful yet lightweight backbone, and the adaptive ensemble characteristics of XGBoost. 

Consequently, the deeper neural network achieves better performance on limited or imbalanced datasets. 

The hybrid model improved the generalization and classification of apple tree leaf diseases. 

 

METHODS 

The proposed method for classifying apple tree leaf diseases uses the strengths of both deep learning and 

machine learning approaches [14], [15]. This paper utilizes EfficientNetB0, a compact yet highly effective 

convolutional neural network (CNN), to extract features. Pre-trained weights from the ImageNet dataset is 

used to transfer its learning abilities. This paper also extracts deep feature representations from apple leaf 

images and subsequently feeds these features to an XGBoost model, a gradient boosting method known for 

great accuracy and robustness in classification problems. EfficientNetB0's feature extraction, combined 

with XGBoost's classification, offers a hybrid model that successfully strikes a balance between 

computational efficiency and performance accuracy [11]. Using criteria including precision, recall, F1 

score, and ROC-AUC, this article evaluated the model's performance and found notable improvements in 

the identification of several apple leaf diseases. Figure 1 shows a method flowchart diagram. 

 
Figure 1. Method flowchart 

A. Import Data 

In this research, the dataset used consists of an apple tree leaf disease dataset from five different categories. 

These diseases include alternating leaf spot, gray spot, brown spot, and rust. The data are collected from 

the Kaggle website [16], and the overall number of images is 1641. The data is then divided into separate 

training and testing sets. The distribution of data for each class is shown in Table 1.  
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Table 1. Apple tree leaf disease dataset distribution 

Class Number of Images 

Alternia Leaf Spot 278 

Brown Spot 215 

Gray Spot 395 

Healthy Leaf 409 

Rust 344 

Total 1641 

 

B. Images Preprocessing 

The preprocessing of the dataset ensures an optimal structure for the training and testing of the machine 

learning models in this work. The preprocessing starts with creating training and testing sets from the data. 

As shown in the code, the split data function divides the images from the source directory into separate 

directories for training and testing, thereby automating this process. Using the split ratio parameter allows 

one to vary the allocation of images, with 80% allocated to the training set and the remaining 20% to the 

testing set. Every class of a picture is arranged in line with its related directory. 

The TensorFlow Keras API initiates preprocessing as soon as the data is split. The pre-process input 

function of the image data generator class establishes a standard pixel value for images. Deep learning relies 

on standardization, as it ensures the appropriate scaling of input data, enhances model convergence, and 

yields better results. This is especially important when using pre-trained models, such as InceptionV3, 

where the input must conform to a specific structure. 

From the training and test directories, the Image Data Generator then generates batches of images [17]. The 

images are loaded straight from their directories, resized to the suitable input shape of 224x224 pixels, and 

created batches of a specified size, in this case 32 images per batch using the flow from directory method. 

Setting class mode to None and shuffle to False helps the generator prepare images without labels, which 

can subsequently be used for classification chores once the model is fully trained. Figure 2 and Figure 3 

show the different images before and after pre-processing. 

 

 
Figure 2. Sample of images before preprocessing 
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Figure 3. Sample of images after preprocessing 

 

C. Feature Extraction 

In this work, for feature extraction, the ImageNet dataset is pre-trained using EfficientNetB0, a powerful 

convolutional neural network (CNN) architecture [18], [19]. EfficientNetB0's effective scaling of depth, 

width, and resolution has shown outstanding performance in many image classification challenges. This 

paper seeks to extract high-quality features from our apple tree leaf dataset using pre-trained weights, 

avoiding the need to build the whole model from scratch. It is perfect for feature extraction, since the 

architecture is used without a top classification layer. Figure 4 shows a summary of the EfficientNetB0 

architecture model. 

 
Figure 4. EfficientNetB0 architecture model 

 

Following the base model, this paper adds a Global Average Pooling 2D (GAP) layer to further hone the 

EfficientNetB0 extracted features. By reducing the spatial dimensions of the output feature maps, the GAP 

layer substitutes for conventional fully connected layers and retains the most significant information. By 

concatenating the feature maps into a single value per feature, this layer reduces the general complexity of 

the feature vectors. Using GAP produces compact and globally representative features from the input 

images that fit downstream applications, including classification. Figure 4 shows model architecture of 

EfficientNetB0. 

 

Feature extraction is applied with a Keras model that combines the GAP layer with EfficientNetB0. The 

raw images form the model's input; the feature vectors produced following the GAP layer form its output. 

This paper uses a custom function, extract_features, to effectively manage this process. Using the pre-

trained EfficientNetB0 model, this function iteratively over ImageDataGenerator's produced image batches 

forecasts the feature vectors. Dividing the total sample count by the batch size helps us determine the 

number of steps needed to handle the dataset. To ensure that the model generates significant feature vectors 

for both the training and testing sets, feature vectors are also extracted for both sets. The main input for 

additional analysis or training of the machine learning pipeline is these derived features. For every dataset, 

the function outputs feature arrays that allow us to examine the dimensions and understand the scale and 
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organization of the data obtained. For instance, the form of the feature arrays reveals the number of feature 

vectors generated for every image, which is a crucial insight for the next model construction. 

 

D. Feature Classification 

In this work, the obtained features are classified using the XGBoost model. Particularly in large datasets, 

XGBoost is a strong and very efficient implementation of gradient boosting that shines in speed and 

accuracy [20], [21], [22]. XGBoost generates a strong classifier capable of fast differentiating between the 

five classes of apple tree leaf images by using pre-extracted feature vectors as input. The model is trained 

with the hyperparameter method shown in Table 2. 

Table 2. Hyperparameter for classification 

Hyperparameter Value Description 

n_estimators 500 Number of trees in the ensemble (boosting rounds) 

max_depth 5 Maximum depth of each tree. Controls the complexity of the model. 

learning_rate 0.1 Shrinks the contribution of each tree to prevent overfitting. 

random_state 42 Seed for random number generation to ensure reproducibility 

device GPU Specifies the use of GPU for faster training 

 

The XGBoost classifier learns from the features acquired for training. The classifier receives training from 

the feature vectors of the training set train_features, even if the class labels from train_gen.classes do not 

match. Following training, the classifier projects the test set (test_features) relative to the actual class labels 

of the test data. Evaluating the performance of the model depends on this predictive phase since it helps us 

to determine how well the classifier generalizes to unprocessed data. 

 

This paper evaluates the classifier's performance by computing the accuracy of the model on the test set by 

means of the accuracy_score function and presents a rather high percentage accuracy of the model to 

provide a complete picture of its classification performance. In addition, the tool generates comprehensive 

classification reports. This article presents key metrics, including precision, recall, F1 score, and class 

support. These steps assess how well the model handles imbalanced classes and whether it performs 

consistently across all dataset categories, providing a more comprehensive understanding of its 

performance. 

E.  Model Evaluation 

To obtain a more comprehensive evaluation, additional metrics, such as precision, recall, and the F1 score, 

are calculated using the model's predictions [23], [24]. Precision measures the ratio of correct positive 

predictions to total positive predictions, which highlights the accuracy of the model in predicting a 

particular class. Recall, on the other hand, estimates a model based on its ability to identify all relevant 

examples in the validation set, thereby underlining the sensitivity regarding real positives. The F1 score is 

the harmonic mean of precision and recall. Balances the two measures and provides a more detailed view 

of model performance when one is less important. Combining precision, recall, and F1-score ensures the 

completeness of judgment on a model's effectiveness. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (1) 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

 𝑟𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (4) 

              𝑇𝑃𝑅  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (5) 

 𝐹𝑃𝑅  =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (6) 

Where 𝑇𝑃 is True Positive, where the model correctly predicts the positive class. 𝑇𝑁 is True Negative, 

where the model correctly predicts the negative class. 𝐹𝑃 is False Positive, where the model incorrectly 

predicts the positive class when the actual class is negative, 𝐹𝑁 is False Negative, the model incorrectly 
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predicts the negative class when the actual class is positive. 𝑇𝑃𝑅  and 𝐹𝑃𝑅 are used to plot the Receiver 

Operating Characteristic (ROC). 

 

RESULT AND DISCUSSION 

A. Feature Extraction Result 

Using the pre-trained EfficientNetB0 model for feature extraction, the raw image data were successfully 

converted into a format that the XGBoost classifier could understand. The results are presented in Table 3. 

Table 3. Feature extraction 

 Train Test 

Shape 1,312 329 

Feature 1,280 1280 

 

Based on Table 3, the output indicates the conversion of the training set, comprising 1,312 images, into a 

feature matrix with dimensions of 1,312 rows and 1,280 columns. Similarly, a feature matrix with 329 rows 

and 1,280 columns now represents the test set of 329 images. The EfficientNetB0 model extracts distinct 

features from each of the 1,280 columns, and each row in these matrices corresponds to an image. 

 

The EfficientNetB0 model learned high-level visual information from these 1,280 features during its 

training on a massive image dataset, likely ImageNet. Instead of using raw pixel values, which can be high-

dimensional and noisy, this paper leverages these learned features that capture more discriminative and 

abstract image representations. The pre-trained models can acquire knowledge for our specific image 

classification task through this approach, known as transfer learning. 

 

A key turning point in our image classification system is the effective extraction of these 1280-dimensional 

feature vectors from the image datasets. The XGBoost classifier will learn to map these features to related 

image labels using these feature matrices as input. A strong and accurate image classification system can 

be achieved by combining deep learning for feature extraction with a robust machine learning algorithm, 

such as XGBoost. 

 

B. Feature Classification Result 

Training on features derived from the EfficientNetB0 model, the XGBoost model has shown extraordinary 

image classification performance. With an impressive accuracy of 95.74%, the classifier accurately 

predicted the class labels for most images in the test set. This exceptional accuracy demonstrates the 

effectiveness of transfer learning in combination with a robust machine learning method for image 

recognition. 

 

Examining the classification report closely repeatedly reveals high precision, recall, and F1 scores in all 

classes, with each score above 0.9. This indicates a well-balanced performance in which the classifier not 

only detects most of the instances matching each class (recall), but also finds the proper class with high 

confidence (precision). Harmonizing accuracy and recall, the F1 score strengthens the classifier's general 

performance across all classes. 

 

Many factors contribute to explaining this exceptional performance. Firstly, the extraction of features with 

EfficientNetB0 ensured the discriminative and informative components of the XGBoost model. Second, 

well known for its ability to handle complex datasets and find subtle relationships, the XGBoost algorithm 

effectively learned the mapping between the extracted features and the matching class labels. The 

classifier's exceptional performance ultimately stems from the meticulous selection of hyperparameters and 

the utilization of GPU devices. Table 4 presents a comprehensive analysis of the classification outcomes 

for each class. 
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Table 4. Feature classification result 

Class Precision Recall F1-Score Support 

0 0.963 0.9286 0.9455 56 

1 0.9302 0.9302 0.9302 43 

2 0.9146 0.9494 0.9317 79 

3 0.9878 0.9878 0.9878 82 

4 0.9853 0.971 0.9781 69 

Accuracy    329 

macro avg 0.9562 0.9534 0.9547 329 

weighted avg 0.958 0.9574 0.9576 329 

 

Details: 

Class 0: Alternaria leaf spot 

Class 1: Brown spot 

Class 2: Gray spot 

Class 3: Healthy leaf 

Class 4: Rust 

C. Confusion Matrix 

A confusion matrix is a common tool used to evaluate the performance of a classification model, 

specifically one designed to classify different types of data. Figure 5 shows a confusion matrix. The matrix 

compares the predicted types of apple tree leaf disease with the actual types of apple tree leaf disease. A 

variety of blue hues fill the cells, and darker blues represent the frequency of correct or incorrect predictions. 

This color gradient makes it easier to visualize the model’s accuracy and errors. 

 

 
Figure 5. Confusion matrix 

 

Figure 5 presents the five distinct classes that a classification model can predict for apple tree leaf disease. 

This paper sets up the matrix as a 5x5 grid, where each column represents the predicted class, and each row 

represents the true class. The model correctly classified 52 samples in class 0, 40 in class 1, 75 in class 2, 

81 in class 3, and 67 in class 4, with diagonal values of 52, 40, 75, 81, and 67 for each class, respectively. 

Examining off-diagonal values reveals misclassifications. In class 0, for example, the model misclassified 

one sample as class 1, another as class 2, another as class 3, and still another as class 4. In class 1, the model 

also incorrectly predicted three samples, as it did in class 2. In class 2, the model misclassified two samples 

as class 0 and another two as class 1. For class 3, the model misclassified only one sample, projecting it as 

class 2. Finally, class 4 misinterpreted two samples as class 2. 

 

Based on the higher diagonal values and relatively lower misclassification rates, the model demonstrated 

excellent general performance for most classes. With 81, Class 3 boasts the most accurate predictions; 

Category 1 has the fewest misclassifications, with only 3 incorrect predictions. With a minor uncertainty 

between similar classes, such as between classes 1 and 2, and between classes 2 and 4, misclassifications 

appear to be rare, and the model is able to precisely differentiate between the various disease categories. 
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This implies that diseases in these categories may share similar visual traits; therefore, the model would 

find it more challenging to distinguish them. 

 

D. AUC-ROC Analysis 

Figure 6 shows the Receiver Operating Characteristic (ROC) curve, which illustrates the ability of the 

model to differentiate between the five categories of apple leaf disease. Plotting the ROC curves for every 

class allows one to see the trade-off between the false positive rate across many threshold values and the 

true positive rate (sensitivity). 

 

 
Figure 6. AUC-ROC curve 

 

The Area Under the Curve (AUC) values for each class are especially notable, with class 0 achieving 

99.43%, class 1 achieving 99.96%, class 2 achieving 99.32%, class 3 achieving 99.95%, and class 4 

achieving 99.93%. With almost flawless discrimination between classes, these high AUC values indicate 

excellent model performance. The model's efficiency in differentiating between apple leaf diseases is shown 

by the closely approaching top-left corner's high true positive rates with low false positives. 

E. Discussion 

Table 5 compares the findings of this work with those of earlier studies on the classification of apple tree 

leaf diseases. Specifically, the proposed model, which integrates XGBoost model for classification and 

EfficientNetB0 for feature extraction, excels across all evaluation criteria. The model performs 

exceptionally well in confusion matrix evaluations such as precision, recall, and F1-score, demonstrating 

its ability to accurately classify a variety of apple leaf diseases, including Alternaria leaf spot, Brown spot, 

Gray spot, Healthy Leaf, and Rust. The model achieves a high AUC-ROC score of 99.7%. 

Table 5. Comparison with previous study 

Study Dataset Objective Method Result 

[3] • The dataset includes 

500 apple leaf images. 

To detect 

diseases in 

apple leaves 

using machine 

learning 

Multiclass SVM Multiclass SVM 

achieves 96% 

accuracy in 

identifying 

diseases. 

[4] • The dataset is collected 

from the Kaggle 

repository. 

• Apple leaf images are 

used for classification.  

• The dataset is split into 

training and testing 

sets. 

 

To diagnose 

apple leaf 

diseases 

accurately 

using deep 

learning 

VGG16 The VGG16 

framework achieves 

93.3% validation 

accuracy in the 

apple leaf data set. 
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[6] • The dataset is sourced 

from the Cornell 

Initiative for Digital 

Agriculture.  

• It consists of around 

3600 labeled training 

images. 

 

To enhance 

apple leaf 

disease 

detection 

accuracy using 

deep learning 

EfficientNet-

DenseNet 

The proposed 

method 

outperformed the 

others with 98% 

accuracy. 

[8] • The AppleLeaf9 

dataset includes 14,582 

images of 8 disease 

classes.  

• Dataset from 

Northwest AF 

University contains 

26,377 apple leaf 

images. 

To achieve 

high accuracy 

in leaf disease 

classification. 

EfficientNetV2-S The experimental 

results show 

improved 

classification 

accuracy, achieving 

98.1% in 

EfficientNetV2-S. 

Proposed 

Method 
• The study uses a 

dataset of 1641 apple 

leaf images. 

• The dataset is collected 

from the Kaggle 

repository. 

  

To create a 

strong 

classification 

model for 

apple leaf 

diseases. 

EfficientNetB0 

for feature 

extraction and 

XGBoost model 

for classification. 

Achieved 95.74% 

classification 

accuracy and 

0.9964 ROC AUC 

score. 

 

 

CONCLUSION 

This paper demonstrated the effectiveness of a hybrid model that combines the best features of the XGBoost 

model and a pre-trained EfficientNetB0 CNN in classifying apple tree leaf diseases. The model achieved 

95.74% classification accuracy, 95.64% F1-score, and 95.64% macro-average precision by extracting 

features using EfficientNetB0 and XGBoost. The model's average ROC AUC score of 0.9964 accurately 

distinguishes the five disease categories. These findings suggest that hybrid models, which combine deep 

learning feature extraction with machine learning classifiers, may facilitate the identification of crop 

diseases. This study utilizes a pre-trained CNN model and an XGBoost classifier to detect agricultural 

diseases. This method enables farmers and agricultural experts to identify and control apple leaf diseases 

by enhancing computational efficiency and improving classification accuracy. Further research can 

examine other pretrained models, expand the dataset, or test this hybrid approach on different crops and 

diseases to prove its adaptability. 
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