
Jurnal CoreIT, Vol.11, No.2, December 2025
ISSN 2460-738X (Print)
ISSN 2599-3321 (Online)

DOI: 10.24014/coreit.v11i2.33174

186

Classification of Apple Tree Leaf Diseases using Pretrained

EfficientNetB0 and XGBoost

Bagus Al Qohar1*, Ahmad Ubai Dullah1, Aditya Yoga Darmawan1, Jumanto Unjung1

1Dept. of Computer Science, Universitas Negeri Semarang, Indonesia

bagusximipa6@students.unnes.ac.id*, ubaid@students.unnes.ac.id, darmoenoyoga@students.unnes.ac.id,
jumanto@mail.unnes.ac.id

Abstract. The diseases that affect apple tree leaves seriously compromise agricultural production; therefore, early and

accurate diagnosis is crucial for effective disease control. Machine learning's recent developments have opened up

fascinating possibilities for automating the detection process and enhancing precision agriculture methods. This study

aims to develop a robust classification model that can accurately and efficiently identify various diseases affecting

apple tree leaves. The approach combines the pre-trained EfficientNetB0 architecture for feature extraction with the

XGBoost model for classification, utilizing the advantages of both deep learning and gradient-boosting methods. With

high performance measures including a macro-average precision of 95.86%, recall of 95.44%, and F1 score of 95.64%,

the model achieved a classification accuracy of 95.74%. Furthermore, the average ROC-AUC score of 0.9964

highlights the model’s ability to effectively differentiate between the five disease categories. This work stands out due

to its hybrid approach, which integrates a robust pre-trained convolutional neural network (EfficientNetB0) with the

XGBoost model. This significantly improves the accuracy of disease classification. This approach presents a novel

pathway for precision agriculture, providing a reliable and effective instrument for the automatic identification of

diseases in apple orchards.

Keywords: Apple Leaf Diseases, Classification Model, EfficientNetB0, Machine Learning, XGBoost.

Received December 2024/ Revised August 2025/ Accepted December 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.

INTRODUCTION

The direct effect of apple leaf diseases on crop production and quality makes their identification a vital

focus of study. Automated solutions are driven by conventional disease detection approaches, which depend

on manual inspection and are often error-prone and labor-intensive. Recent developments in machine

learning (ML) and deep learning (DL) have created new paths for highly accurate and efficient leaf disease

detection. For example, [1] emphasized the need for ML to increase the accuracy of disease identification

by offering a comprehensive review of apple leaf disease detection methods [2]. Similarly, [3] predicted

diseases in apple leaves using multiclass support vector machines (SVMs). With more effective feature

extraction, they achieved a significantly improved classification. Researchers have investigated the junction

of DL models and machine learning classifiers in order to improve the detection accuracy even more. In

one study, [4] proposed a deep learning framework to detect apple leaf diseases using image processing

methods combined with convolutional neural networks (CNNs) for feature extraction [5]. Their technique

demonstrated notable improvements in accuracy and precision compared to conventional techniques.

Research by [6] discussed how well pre-trained networks, such as EfficientNet, find complex disease

patterns and examined new advances in deep learning approaches for disease detection on apple leaves.

Their study highlighted that more accurate and computationally efficient models are generated when

EfficientNet is combined with machine learning classifiers, such as XGBoost. This trend is especially

pertinent given the growing attention to hybrid models that combine DL architectures with conventional

ML classifiers for best performance. To search for diseases in apple leaves, [7] developed MCDCNet, a

multiscale limited deformable convolution network. It outperformed many baseline models in terms of

accuracy, precision, and recall, and effectively captured elements in space on varying scales. To greatly

increase detection accuracy, [8] also developed a deep evidence fusion framework for apple leaf disease

classification by including several data sources. These investigations highlight how well multiscale

evidence fusion techniques could improve the detection process.

Focusing on improving the robustness and generalization of the model, recent studies have continued to

investigate advanced approaches for detecting apple leaf disease. [9] investigated various deep learning and

http://dx.doi.org/10.24014/coreit.v11i2.33174
mailto:bagusximipa6@students.unnes.ac.id
mailto:ubaid@students.unnes.ac.id2
mailto:darmoenoyoga@students.unnes.ac.id3
mailto:jumanto@mail.unnes.ac.id4
http://creativecommons.org/licenses/by/4.0/

187

machine learning techniques extensively for detecting diseases on apple leaves. They found that the most

successful hybrid models were those that combined the best features of both approaches. Emphasizing the

importance of feature extraction to enhance model precision, [10] also examined the effectiveness of

machine learning and deep learning methods for classifying apple leaf disease. [11] conducted the last work

classifying lepidoptera using EfficientNet-B0. This indicated that it could support the possible use in

identifying and extracting characteristics for classification activities. These works validate the trend of

using hybrid models and pre-trained networks for enhanced disease detection in precision agriculture.

The uniqueness of hybridizing machine learning classifiers, such as XGBoost, with deep learning

architectures, including EfficientNet and MCDCNet, lies in increasing both accuracy and generalizability.

Through adaptive feature capture approaches, researchers such as [12] and [13] have focused on enhancing

segmentation and detection, underscoring the potential of these cutting-edge methods to continually

improve classification performance. However, existing studies have not fully addressed the challenge of

distinguishing visually similar leaf diseases under real-world variations. To bridge this gap, this research

addresses these challenges by developing a hybrid classification framework that integrates a pretrained

EfficientNetB0 model for deep feature extraction with the XGBoost classifier to improve decision

boundaries. The novelty of this research leverages the unique properties of the EfficientNetB0 model, which

serves as a powerful yet lightweight backbone, and the adaptive ensemble characteristics of XGBoost.

Consequently, the deeper neural network achieves better performance on limited or imbalanced datasets.

The hybrid model improved the generalization and classification of apple tree leaf diseases.

METHODS

The proposed method for classifying apple tree leaf diseases uses the strengths of both deep learning and

machine learning approaches [14], [15]. This paper utilizes EfficientNetB0, a compact yet highly effective

convolutional neural network (CNN), to extract features. Pre-trained weights from the ImageNet dataset is

used to transfer its learning abilities. This paper also extracts deep feature representations from apple leaf

images and subsequently feeds these features to an XGBoost model, a gradient boosting method known for

great accuracy and robustness in classification problems. EfficientNetB0's feature extraction, combined

with XGBoost's classification, offers a hybrid model that successfully strikes a balance between

computational efficiency and performance accuracy [11]. Using criteria including precision, recall, F1

score, and ROC-AUC, this article evaluated the model's performance and found notable improvements in

the identification of several apple leaf diseases. Figure 1 shows a method flowchart diagram.

Figure 1. Method flowchart

A. Import Data

In this research, the dataset used consists of an apple tree leaf disease dataset from five different categories.

These diseases include alternating leaf spot, gray spot, brown spot, and rust. The data are collected from

the Kaggle website [16], and the overall number of images is 1641. The data is then divided into separate

training and testing sets. The distribution of data for each class is shown in Table 1.

188

Table 1. Apple tree leaf disease dataset distribution

Class Number of Images

Alternia Leaf Spot 278

Brown Spot 215

Gray Spot 395

Healthy Leaf 409

Rust 344

Total 1641

B. Images Preprocessing

The preprocessing of the dataset ensures an optimal structure for the training and testing of the machine

learning models in this work. The preprocessing starts with creating training and testing sets from the data.

As shown in the code, the split data function divides the images from the source directory into separate

directories for training and testing, thereby automating this process. Using the split ratio parameter allows

one to vary the allocation of images, with 80% allocated to the training set and the remaining 20% to the

testing set. Every class of a picture is arranged in line with its related directory.

The TensorFlow Keras API initiates preprocessing as soon as the data is split. The pre-process input

function of the image data generator class establishes a standard pixel value for images. Deep learning relies

on standardization, as it ensures the appropriate scaling of input data, enhances model convergence, and

yields better results. This is especially important when using pre-trained models, such as InceptionV3,

where the input must conform to a specific structure.

From the training and test directories, the Image Data Generator then generates batches of images [17]. The

images are loaded straight from their directories, resized to the suitable input shape of 224x224 pixels, and

created batches of a specified size, in this case 32 images per batch using the flow from directory method.

Setting class mode to None and shuffle to False helps the generator prepare images without labels, which

can subsequently be used for classification chores once the model is fully trained. Figure 2 and Figure 3

show the different images before and after pre-processing.

Figure 2. Sample of images before preprocessing

189

Figure 3. Sample of images after preprocessing

C. Feature Extraction

In this work, for feature extraction, the ImageNet dataset is pre-trained using EfficientNetB0, a powerful

convolutional neural network (CNN) architecture [18], [19]. EfficientNetB0's effective scaling of depth,

width, and resolution has shown outstanding performance in many image classification challenges. This

paper seeks to extract high-quality features from our apple tree leaf dataset using pre-trained weights,

avoiding the need to build the whole model from scratch. It is perfect for feature extraction, since the

architecture is used without a top classification layer. Figure 4 shows a summary of the EfficientNetB0

architecture model.

Figure 4. EfficientNetB0 architecture model

Following the base model, this paper adds a Global Average Pooling 2D (GAP) layer to further hone the

EfficientNetB0 extracted features. By reducing the spatial dimensions of the output feature maps, the GAP

layer substitutes for conventional fully connected layers and retains the most significant information. By

concatenating the feature maps into a single value per feature, this layer reduces the general complexity of

the feature vectors. Using GAP produces compact and globally representative features from the input

images that fit downstream applications, including classification. Figure 4 shows model architecture of

EfficientNetB0.

Feature extraction is applied with a Keras model that combines the GAP layer with EfficientNetB0. The

raw images form the model's input; the feature vectors produced following the GAP layer form its output.

This paper uses a custom function, extract_features, to effectively manage this process. Using the pre-

trained EfficientNetB0 model, this function iteratively over ImageDataGenerator's produced image batches

forecasts the feature vectors. Dividing the total sample count by the batch size helps us determine the

number of steps needed to handle the dataset. To ensure that the model generates significant feature vectors

for both the training and testing sets, feature vectors are also extracted for both sets. The main input for

additional analysis or training of the machine learning pipeline is these derived features. For every dataset,

the function outputs feature arrays that allow us to examine the dimensions and understand the scale and

190

organization of the data obtained. For instance, the form of the feature arrays reveals the number of feature

vectors generated for every image, which is a crucial insight for the next model construction.

D. Feature Classification

In this work, the obtained features are classified using the XGBoost model. Particularly in large datasets,

XGBoost is a strong and very efficient implementation of gradient boosting that shines in speed and

accuracy [20], [21], [22]. XGBoost generates a strong classifier capable of fast differentiating between the

five classes of apple tree leaf images by using pre-extracted feature vectors as input. The model is trained

with the hyperparameter method shown in Table 2.

Table 2. Hyperparameter for classification

Hyperparameter Value Description

n_estimators 500 Number of trees in the ensemble (boosting rounds)

max_depth 5 Maximum depth of each tree. Controls the complexity of the model.

learning_rate 0.1 Shrinks the contribution of each tree to prevent overfitting.

random_state 42 Seed for random number generation to ensure reproducibility

device GPU Specifies the use of GPU for faster training

The XGBoost classifier learns from the features acquired for training. The classifier receives training from

the feature vectors of the training set train_features, even if the class labels from train_gen.classes do not

match. Following training, the classifier projects the test set (test_features) relative to the actual class labels

of the test data. Evaluating the performance of the model depends on this predictive phase since it helps us

to determine how well the classifier generalizes to unprocessed data.

This paper evaluates the classifier's performance by computing the accuracy of the model on the test set by

means of the accuracy_score function and presents a rather high percentage accuracy of the model to

provide a complete picture of its classification performance. In addition, the tool generates comprehensive

classification reports. This article presents key metrics, including precision, recall, F1 score, and class

support. These steps assess how well the model handles imbalanced classes and whether it performs

consistently across all dataset categories, providing a more comprehensive understanding of its

performance.

E. Model Evaluation

To obtain a more comprehensive evaluation, additional metrics, such as precision, recall, and the F1 score,

are calculated using the model's predictions [23], [24]. Precision measures the ratio of correct positive

predictions to total positive predictions, which highlights the accuracy of the model in predicting a

particular class. Recall, on the other hand, estimates a model based on its ability to identify all relevant

examples in the validation set, thereby underlining the sensitivity regarding real positives. The F1 score is

the harmonic mean of precision and recall. Balances the two measures and provides a more detailed view

of model performance when one is less important. Combining precision, recall, and F1-score ensures the

completeness of judgment on a model's effectiveness.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

 𝑟𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4)

 𝑇𝑃𝑅  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

 𝐹𝑃𝑅  =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (6)

Where 𝑇𝑃 is True Positive, where the model correctly predicts the positive class. 𝑇𝑁 is True Negative,

where the model correctly predicts the negative class. 𝐹𝑃 is False Positive, where the model incorrectly

predicts the positive class when the actual class is negative, 𝐹𝑁 is False Negative, the model incorrectly

191

predicts the negative class when the actual class is positive. 𝑇𝑃𝑅 and 𝐹𝑃𝑅 are used to plot the Receiver

Operating Characteristic (ROC).

RESULT AND DISCUSSION

A. Feature Extraction Result

Using the pre-trained EfficientNetB0 model for feature extraction, the raw image data were successfully

converted into a format that the XGBoost classifier could understand. The results are presented in Table 3.

Table 3. Feature extraction

 Train Test

Shape 1,312 329

Feature 1,280 1280

Based on Table 3, the output indicates the conversion of the training set, comprising 1,312 images, into a

feature matrix with dimensions of 1,312 rows and 1,280 columns. Similarly, a feature matrix with 329 rows

and 1,280 columns now represents the test set of 329 images. The EfficientNetB0 model extracts distinct

features from each of the 1,280 columns, and each row in these matrices corresponds to an image.

The EfficientNetB0 model learned high-level visual information from these 1,280 features during its

training on a massive image dataset, likely ImageNet. Instead of using raw pixel values, which can be high-

dimensional and noisy, this paper leverages these learned features that capture more discriminative and

abstract image representations. The pre-trained models can acquire knowledge for our specific image

classification task through this approach, known as transfer learning.

A key turning point in our image classification system is the effective extraction of these 1280-dimensional

feature vectors from the image datasets. The XGBoost classifier will learn to map these features to related

image labels using these feature matrices as input. A strong and accurate image classification system can

be achieved by combining deep learning for feature extraction with a robust machine learning algorithm,

such as XGBoost.

B. Feature Classification Result

Training on features derived from the EfficientNetB0 model, the XGBoost model has shown extraordinary

image classification performance. With an impressive accuracy of 95.74%, the classifier accurately

predicted the class labels for most images in the test set. This exceptional accuracy demonstrates the

effectiveness of transfer learning in combination with a robust machine learning method for image

recognition.

Examining the classification report closely repeatedly reveals high precision, recall, and F1 scores in all

classes, with each score above 0.9. This indicates a well-balanced performance in which the classifier not

only detects most of the instances matching each class (recall), but also finds the proper class with high

confidence (precision). Harmonizing accuracy and recall, the F1 score strengthens the classifier's general

performance across all classes.

Many factors contribute to explaining this exceptional performance. Firstly, the extraction of features with

EfficientNetB0 ensured the discriminative and informative components of the XGBoost model. Second,

well known for its ability to handle complex datasets and find subtle relationships, the XGBoost algorithm

effectively learned the mapping between the extracted features and the matching class labels. The

classifier's exceptional performance ultimately stems from the meticulous selection of hyperparameters and

the utilization of GPU devices. Table 4 presents a comprehensive analysis of the classification outcomes

for each class.

192

Table 4. Feature classification result

Class Precision Recall F1-Score Support

0 0.963 0.9286 0.9455 56

1 0.9302 0.9302 0.9302 43

2 0.9146 0.9494 0.9317 79

3 0.9878 0.9878 0.9878 82

4 0.9853 0.971 0.9781 69

Accuracy 329

macro avg 0.9562 0.9534 0.9547 329

weighted avg 0.958 0.9574 0.9576 329

Details:

Class 0: Alternaria leaf spot

Class 1: Brown spot

Class 2: Gray spot

Class 3: Healthy leaf

Class 4: Rust

C. Confusion Matrix

A confusion matrix is a common tool used to evaluate the performance of a classification model,

specifically one designed to classify different types of data. Figure 5 shows a confusion matrix. The matrix

compares the predicted types of apple tree leaf disease with the actual types of apple tree leaf disease. A

variety of blue hues fill the cells, and darker blues represent the frequency of correct or incorrect predictions.

This color gradient makes it easier to visualize the model’s accuracy and errors.

Figure 5. Confusion matrix

Figure 5 presents the five distinct classes that a classification model can predict for apple tree leaf disease.

This paper sets up the matrix as a 5x5 grid, where each column represents the predicted class, and each row

represents the true class. The model correctly classified 52 samples in class 0, 40 in class 1, 75 in class 2,

81 in class 3, and 67 in class 4, with diagonal values of 52, 40, 75, 81, and 67 for each class, respectively.

Examining off-diagonal values reveals misclassifications. In class 0, for example, the model misclassified

one sample as class 1, another as class 2, another as class 3, and still another as class 4. In class 1, the model

also incorrectly predicted three samples, as it did in class 2. In class 2, the model misclassified two samples

as class 0 and another two as class 1. For class 3, the model misclassified only one sample, projecting it as

class 2. Finally, class 4 misinterpreted two samples as class 2.

Based on the higher diagonal values and relatively lower misclassification rates, the model demonstrated

excellent general performance for most classes. With 81, Class 3 boasts the most accurate predictions;

Category 1 has the fewest misclassifications, with only 3 incorrect predictions. With a minor uncertainty

between similar classes, such as between classes 1 and 2, and between classes 2 and 4, misclassifications

appear to be rare, and the model is able to precisely differentiate between the various disease categories.

193

This implies that diseases in these categories may share similar visual traits; therefore, the model would

find it more challenging to distinguish them.

D. AUC-ROC Analysis

Figure 6 shows the Receiver Operating Characteristic (ROC) curve, which illustrates the ability of the

model to differentiate between the five categories of apple leaf disease. Plotting the ROC curves for every

class allows one to see the trade-off between the false positive rate across many threshold values and the

true positive rate (sensitivity).

Figure 6. AUC-ROC curve

The Area Under the Curve (AUC) values for each class are especially notable, with class 0 achieving

99.43%, class 1 achieving 99.96%, class 2 achieving 99.32%, class 3 achieving 99.95%, and class 4

achieving 99.93%. With almost flawless discrimination between classes, these high AUC values indicate

excellent model performance. The model's efficiency in differentiating between apple leaf diseases is shown

by the closely approaching top-left corner's high true positive rates with low false positives.

E. Discussion

Table 5 compares the findings of this work with those of earlier studies on the classification of apple tree

leaf diseases. Specifically, the proposed model, which integrates XGBoost model for classification and

EfficientNetB0 for feature extraction, excels across all evaluation criteria. The model performs

exceptionally well in confusion matrix evaluations such as precision, recall, and F1-score, demonstrating

its ability to accurately classify a variety of apple leaf diseases, including Alternaria leaf spot, Brown spot,

Gray spot, Healthy Leaf, and Rust. The model achieves a high AUC-ROC score of 99.7%.

Table 5. Comparison with previous study

Study Dataset Objective Method Result

[3] • The dataset includes

500 apple leaf images.

To detect

diseases in

apple leaves

using machine

learning

Multiclass SVM Multiclass SVM

achieves 96%

accuracy in

identifying

diseases.

[4] • The dataset is collected

from the Kaggle

repository.

• Apple leaf images are

used for classification.

• The dataset is split into

training and testing

sets.

To diagnose

apple leaf

diseases

accurately

using deep

learning

VGG16 The VGG16

framework achieves

93.3% validation

accuracy in the

apple leaf data set.

194

[6] • The dataset is sourced

from the Cornell

Initiative for Digital

Agriculture.

• It consists of around

3600 labeled training

images.

To enhance

apple leaf

disease

detection

accuracy using

deep learning

EfficientNet-

DenseNet

The proposed

method

outperformed the

others with 98%

accuracy.

[8] • The AppleLeaf9

dataset includes 14,582

images of 8 disease

classes.

• Dataset from

Northwest AF

University contains

26,377 apple leaf

images.

To achieve

high accuracy

in leaf disease

classification.

EfficientNetV2-S The experimental

results show

improved

classification

accuracy, achieving

98.1% in

EfficientNetV2-S.

Proposed

Method
• The study uses a

dataset of 1641 apple

leaf images.

• The dataset is collected

from the Kaggle

repository.

To create a

strong

classification

model for

apple leaf

diseases.

EfficientNetB0

for feature

extraction and

XGBoost model

for classification.

Achieved 95.74%

classification

accuracy and

0.9964 ROC AUC

score.

CONCLUSION

This paper demonstrated the effectiveness of a hybrid model that combines the best features of the XGBoost

model and a pre-trained EfficientNetB0 CNN in classifying apple tree leaf diseases. The model achieved

95.74% classification accuracy, 95.64% F1-score, and 95.64% macro-average precision by extracting

features using EfficientNetB0 and XGBoost. The model's average ROC AUC score of 0.9964 accurately

distinguishes the five disease categories. These findings suggest that hybrid models, which combine deep

learning feature extraction with machine learning classifiers, may facilitate the identification of crop

diseases. This study utilizes a pre-trained CNN model and an XGBoost classifier to detect agricultural

diseases. This method enables farmers and agricultural experts to identify and control apple leaf diseases

by enhancing computational efficiency and improving classification accuracy. Further research can

examine other pretrained models, expand the dataset, or test this hybrid approach on different crops and

diseases to prove its adaptability.

REFERENCES
[1] S. Bashir, F. Firdous, and S. Z. Rufai, “A Comprehensive Review on Apple Leaf Disease

Detection,” in 2023 IEEE 8th International Conference for Convergence in Technology (I2CT),

IEEE, Apr. 2023, pp. 1–6. doi: 10.1109/I2CT57861.2023.10126487.

[2] V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of Apple Plant

Diseases Using Leaf Images Through Convolutional Neural Network,” IEEE Access, vol. 11, pp.

6594–6609, 2023, doi: 10.1109/ACCESS.2022.3232917.

[3] S. Chakraborty, S. Paul, and M. Rahat-uz-Zaman, “Prediction of Apple Leaf Diseases Using

Multiclass Support Vector Machine,” in 2021 2nd International Conference on Robotics, Electrical

and Signal Processing Techniques (ICREST), IEEE, Jan. 2021, pp. 147–151. doi:

10.1109/ICREST51555.2021.9331132.

[4] S. K, V. R. P, R. P, P. K. M, and P. S, “Apple Leaf Disease Detection using Deep Learning,” in

2022 6th International Conference on Computing Methodologies and Communication (ICCMC),

IEEE, Mar. 2022, pp. 1063–1067. doi: 10.1109/ICCMC53470.2022.9753985.

[5] Y. Zhong and M. Zhao, “Research on deep learning in apple leaf disease recognition,” Comput.

Electron. Agric., vol. 168, p. 105146, Jan. 2020, doi: 10.1016/j.compag.2019.105146.

[6] E. Kannan, C. M. B. M J, A. D. S, R. N. N, A. Begum, and H. D, “Deep Learning Techniques

Advancements in Apple Leaf Disease Detection,” Procedia Comput. Sci., vol. 235, pp. 713–722,

2024, doi: 10.1016/j.procs.2024.04.068.

195

[7] B. Liu, X. Huang, L. Sun, X. Wei, Z. Ji, and H. Zhang, “MCDCNet: Multi-scale constrained

deformable convolution network for apple leaf disease detection,” Comput. Electron. Agric., vol.

222, p. 109028, Jul. 2024, doi: 10.1016/j.compag.2024.109028.

[8] H. Wang, J. Zhang, Z. Yin, L. Huang, J. Wang, and X. Ma, “A deep evidence fusion framework

for apple leaf disease classification,” Eng. Appl. Artif. Intell., vol. 136, p. 109011, Oct. 2024, doi:

10.1016/j.engappai.2024.109011.

[9] B. U. Rani, K. Pavani, S. Bhavani, and G. Alapati, “A Systematic Analysis of Deep Learning and

Machine Learning Methods for Identifying Apple Leaf Disease,” in 2023 4th International

Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE, Jul. 2023, pp.

761–765. doi: 10.1109/ICESC57686.2023.10192948.

[10] M. Sebastian, S. M S, and C. M. Antony, “Apple Leaf Disease Detection: Machine Learning &

Deep Learning Techniques,” in 2023 Intelligent Computing and Control for Engineering and

Business Systems (ICCEBS), IEEE, Dec. 2023, pp. 1–5. doi:

10.1109/ICCEBS58601.2023.10449037.

[11] H. Syamsudin, S. Khalidah, and J. Unjung, “Lepidoptera Classification Using Convolutional

Neural Network EfficientNet-B0,” Indones. J. Artif. Intell. Data Min., vol. 7, no. 1, p. 47, Nov.

2023, doi: 10.24014/ijaidm.v7i1.24586.

[12] S. Zhu, W. Ma, J. Lu, B. Ren, C. Wang, and J. Wang, “A novel approach for apple leaf disease

image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss,”

Comput. Electron. Agric., vol. 204, p. 107539, Jan. 2023, doi: 10.1016/j.compag.2022.107539.

[13] C. Yan and K. Yang, “FSM-YOLO: Apple leaf disease detection network based on adaptive feature

capture and spatial context awareness,” Digit. Signal Process., vol. 155, p. 104770, Dec. 2024, doi:

10.1016/j.dsp.2024.104770.

[14] O. H. Kesav and R. G. K, “A Systematic Study on Enhanced Deep Learning Based Methodologies

for Detection and Classification of Early Stage Cancers,” in 2023 IEEE 5th International

Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), IEEE,

Oct. 2023, pp. 328–333. doi: 10.1109/ICCCMLA58983.2023.10346973.

[15] S. Qian, T. Peng, Z. Tao, X. Li, M. S. Nazir, and C. Zhang, “An evolutionary deep learning model

based on XGBoost feature selection and Gaussian data augmentation for AQI prediction,” Process

Saf. Environ. Prot., vol. 191, pp. 836–851, Nov. 2024, doi: 10.1016/j.psep.2024.08.119.

[16] Kaggle, “Apple Tree Leaf Disease Dataset,” Kaggle. Accessed: Oct. 02, 2024. [Online]. Available:

https://www.kaggle.com/datasets/nirmalsankalana/apple-tree-leaf-disease-dataset

[17] N. R. Billa, B. P. Das, M. Biswal, and M. Okade, “CNN based image resizing forensics for double

compressed JPEG images,” J. Inf. Secur. Appl., vol. 81, p. 103693, Mar. 2024, doi:

10.1016/j.jisa.2023.103693.

[18] M. T R, M. Gupta, A. T A, V. Kumar V, O. Geman, and D. Kumar V, “An XAI-enhanced

efficientNetB0 framework for precision brain tumor detection in MRI imaging,” J. Neurosci.

Methods, vol. 410, p. 110227, Oct. 2024, doi: 10.1016/j.jneumeth.2024.110227.

[19] Bhoomika and G. Verma, “Enhancing Coffee Plant Disease Identification with EfficientNetB0 and

Deep Learning,” in 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics

and Cloud) (I-SMAC), IEEE, Oct. 2024, pp. 1423–1427. doi: 10.1109/I-

SMAC61858.2024.10714676.

[20] M. Niazkar et al., “Applications of XGBoost in water resources engineering: A systematic literature

review (Dec 2018–May 2023),” Environ. Model. Softw., vol. 174, p. 105971, Mar. 2024, doi:

10.1016/j.envsoft.2024.105971.

[21] K. M. K. Raghunath, V. V. Kumar, M. Venkatesan, K. K. Singh, T. R. Mahesh, and A. Singh,

“XGBoost Regression Classifier (XRC) Model for Cyber Attack Detection and Classification

Using Inception V4,” J. Web Eng., Apr. 2022, doi: 10.13052/jwe1540-9589.21413.

[22] D. A. A. Pertiwi, K. Ahmad, S. N. Salahudin, A. M. Annegrat, and M. A. Muslim, “Using Genetic

Algorithm Feature Selection to Optimize XGBoost Performance in Australian Credit,” J. Soft

Comput. Explor., vol. 5, no. 1, pp. 92–98, Apr. 2024, doi: 10.52465/joscex.v5i1.302.

[23] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE

Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

[24] L.-E. Pomme, R. Bourqui, R. Giot, and D. Auber, “Relative Confusion Matrix: Efficient

Comparison of Decision Models,” in 2022 26th International Conference Information

Visualisation (IV), IEEE, Jul. 2022, pp. 98–103. doi: 10.1109/IV56949.2022.00025.

