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Abstract. Defects that may arise in software during the development process can affect the quality of the software. The 

classification method is used to predict software defects to minimize defects. However, the dataset used in the 
classification process may contain less relevant or have too many features. This can be overcome by selecting features 

in the dataset. In this research, the Random Forest algorithm is applied for the classification process, and the Artificial 

Bee Colony (ABC) algorithm is used as a feature selection method. The research aims to determine the accuracy of 

Random Forest with ABC feature selection. From the results of research conducted on 3 Relink datasets, without feature 
selection, an average accuracy of 73% was obtained. After implementing ABC feature selection, the average accuracy 

increased to 82%. 
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INTRODUCTION 
The quality of a software cannot be doubted if no defects are found during the inspection and testing phases 

[1]. If the quality of the software is low, it can lead to significant losses and inflated maintenance costs [2]. 

Certainly, such losses are undesirable for any party involved in the software development process. As an 

effort to minimize the occurrence of errors or defects in software, software defect prediction is necessary 

[3]. Analyzing a software module that has the potential for defects using machine learning classifiers is the 

process of software defect prediction [4]. 

 

Classification techniques can predict the presence of defects in software [5]. One of the classification 

algorithms that has been applied for software defect prediction is the Random Forest algorithm. Random 

Forest is a classification algorithm that can outperform several other algorithms such as Decision Tree and 

Neural Network in detecting faults or defects in modules [6]. Moreover, it can also influence classification 

results positively even when there is missing data [7]. 

 

In the classification process, not all features can be used as some may be irrelevant to the classification 

outcome [8]. When irrelevant features and excessive feature numbers are addressed, this can improve 

classification performance [6]. According to [9], the number of features in software is usually high-

dimensional, and poor performance of a software defect prediction model is often caused by high-

dimensional data. Meanwhile, according to [10], with the advancement of technology, high-dimensional 

data increases complexity and negatively affects algorithm performance, often referred to as the "curse of 

dimensionality". Issues related to data dimensionality can affect the accuracy of classification algorithm 

performance in software defect prediction. One way to address this issue is by performing feature selection. 

 

Feature selection is an essential step in data preprocessing for machine learning. It can be employed in 

software defect prediction processes when dealing with high-dimensional datasets and noise [11]. By 

utilizing feature selection, the dimensionality of the dataset can be reduced, thereby identifying subsets of 

features and data with precision. Classifiers trained on feature spaces that have undergone feature selection 

tend to be stronger and more reproducible compared to those trained on feature spaces without prior feature 

selection [12]. 
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The Artificial Bee Colony (ABC) algorithm is a population-based algorithm that mimics the foraging 

behavior of bee colonies. ABC has been widely applied in various research fields, including data mining, 

with roles in clustering, feature selection, and rule discovery [13]. In a study by [14], ABC feature selection 

was used to enhance the performance of the CART classification algorithm, and it was found that ABC 

significantly influenced the accuracy of the CART algorithm compared to other feature selection techniques 

such as Particle Swarm Optimization (PSO) and Ant Colony Optimization. Beyond that, the ABC algorithm 

also has the ability to influence the performance of the Backpropagation algorithm and produce significant 

accuracy improvements [15]. 

 

In this research, a prediction of software defects was conducted using the Random Forest algorithm with 

feature selection using the ABC algorithm on the Relink dataset. Additionally, a comparison of performance 

was made between the Random Forest classification without feature selection and the Random Forest 

classification using feature selection.  

 

METHODS 

 

The research flow in this study is shown in the Figure 1. 

 

 
 

Figure 1. Research Flow 

 

Data Collecting 

The dataset used in this research is the Relink dataset, which consists of the Apache, Safe, and Zxing 
datasets [16]. This dataset can be downloaded from the following link: 
https://github.com/bharlow058/AEEEM-and-otherSDP-datasets/tree/master/dataset/Relink. This dataset 
has the same number of features but different numbers of records. There are two classes in the dataset: 
Buggy and Clean. Buggy indicates defective data, while Clean indicates non-defective data. The difference 
in the number of data is shown in Table 1. 

Table 1. The Number of data in Relink dataset. 

Dataset 
Number of 

Record 

Class 

Buggy Clean 

Apache 194 98 96 

Safe 56 22 34 

Zxing 399 118 281 
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Data Normalization 

Before the data is divided into training and testing data, it is normalized first. The normalization stage in 

predicting defects is considered important because often the existing features differ in order and magnitude 

[17]. One data normalization technique that can be used is z-score normalization. Z-score normalization is 

a standardization technique where the values of its attributes are normalized based on their mean and 

standard deviation. The formula for z-score is as follows. 

 

𝑍 =  
𝑋−𝑚𝑒𝑎𝑛

𝑆𝑡𝑑
                      (1) 

 

X is the observed value (original data), Mean is the mean value, and Std is the standard deviation value. 

 

Split Data 

Splitting data in data science is used to divide data into two or more parts. Training data is used to train the 

model, while testing data is for proper performance assessment [18]. The data is divided based on a certain 

ratio to determine how much is used for training data and likewise for testing data. In this study, the 

separation ratio used is 80:20. 80% of the data will be used to train the model, and the remaining 20% will 

be used to test the model afterward. The separation is done in a stratified manner, so the dataset remains in 

the same class proportions. Table 2 shows the results of the dataset split performed. 

 
Table 2. Split data results 

Dataset 
Amount of 

training data 

Amount of 

Testing data 

Apache 155 39 

Safe 44 12 

Zxing 319 80 

 

 

Feature Selection 

 

Artificial Bee Colony (ABC) is a population-based algorithm that operates similarly to a colony of bees 

searching for food sources. There are three groups of bees in the ABC structure, namely onlooker bees, 

employed bees, and scout bees. The way it works is as follows: first, employed bees will head towards the 

food source. Once they have found the food source, employed bees will perform a waggle dance to provide 

information to onlooker bees waiting at the hive. The information conveyed by bees in this process includes 

three important aspects: direction, distance, and quality of the nectar. The general structure of the ABC 

algorithm [19] is as follows. 

1. Initializing food sources. 

2. Employee bees head towards the food sources and determine the amount of food. 

3. Upon receiving signals from employee bees, onlooker bees head towards the food sources to determine 

the amount of nectar. 

4. Scout bees then search for new food sources. 

5. Remember the best food source obtained. 

Repeat Steps 1-5 until the specified number of iterations. 

 

The ABC algorithm has been widely applied in various research fields, including data mining, with roles 

in clustering, feature selection, and rule discovery [13]. Compared to other metaheuristic algorithms, the 

ABC algorithm has many advantages. Firstly, its working structure is simpler. Secondly, it has fewer 

control parameters compared to other algorithms. Thirdly, the ABC algorithm is easy to implement [20]. 

The steps for feature selection using ABC are as follows. 

a. Initializing Food Source. Food sources are determined randomly using the following equation. 

Xi,j  = Xmin.j + rand(0,1)(Xmax.j – Xmin.j)              (2) 

 

Explanation: 

X  : initial position 

Xmax : upperbound 

Xmin : lowerbound 
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Each food source will be converted into a bit vector, where each vector consists only of the numbers 1 

and 0 [21]. 

 

b. Calculate the initial fitness values using the Random Forest algorithm. These fitness values are 

considered as the evaluation results of the initial population. 

c. Employed bees then begin exploration by selecting food sources. Exploration is done using the 

following equation. 

Vij = Xij + Φij (Xij - Xkj)   (3) 

Explanation: 

X   : Food Sources 

Φij  : random value betweeen -1 and 1 

i dan j : random variable 

k   : value within the range N (solution) and not equal to i 

 

d. Calculate the fitness of the employed bee by determining its accuracy, update the fitness if the fitness 

of the employed bee is better than the initial fitness. Then determine the probability value using the 

following formula: 

𝑃𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝐹
𝑛=1

    (4) 

 

e. Onlooker bee is distributed and then determine the neighboring solution. Then go back to the previous 

step. 

f. The scout bee performs random selection to update the solution from the abandoned solution. 

g. The final solution is formed. 

 

 
Figure 2. Feature Selection Process ABC 

Classification 

In this stage, classification will be performed using Random Forest. The data, which consists of selected 

features after previous feature selection, will be trained on the Random Forest classification. Then, testing 

will be conducted using testing data adjusted to the selected features. 

 

Random Forest 

Random forest is an algorithm widely used for classification and regression. It is part of the ensemble 

methods that combine many decision trees to improve prediction accuracy. Random Forest is a 

development of the Decision Tree algorithm and contains many decision trees. In the classification process, 
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these decision trees are filled with each sample of the input data [6]. Leo Breiman first introduced this 

algorithm in 2001 with several advantages. Among them are better classification performance, lower error 

rates, and the ability to handle large amounts of data [22]. The general structure of random forest is shown 

in Figure 3 below. 

 

 
Figure 3. General structure of a random forest 

Evaluation 

Evaluation in the classification of the random forest algorithm uses accuracy values. Accuracy is a 

benchmark for assessing how precise the classification is, predicting the class of data based on previously 

trained data [23]. One of the most popular methods of machine learning evaluation. Accuracy is commonly 

used for balanced data. 

 

RESULT AND DISCUSSION 
Classification results of the Random Forest algorithm with Artificial Bee Colony feature selection for 

software defect prediction will be described as follows. 

 

In this study, the parameters used are N (number of solutions) which is twenty-six solutions, T (number of 

iterations) namely 10, 50, and 100, Max_limit (maximum limit) is 5, Upperbound = 1 and Lowerbound = 

0, and threshold = 0.5. The value of N is 26 because the number of solutions is equal to the number of 

features in the dataset [24]. Feature selection is performed based on 3 different numbers of iterations, 

namely ten, fifty, and one hundred. With the use of 3 datasets and 3 different iterations (in Table 3 and 

Table 4), feature selection is performed nine times. 

 
Table 3. Fitness values feature selection 

Dataset 
Fitness Values 

iteration 10 iteration 50 iteration 100 

Apache 0,261219 0,225079 0,189827 

Safe 0,18320 0,197281 0,182430 

Zxing 0,253868 0,271291 0.269151 

 
Table 4. Number of selected features 

Dataset 

Number of selected features 

iteration 

10 

iteration 

50 

iteration 

100 

Apache 10 10 13 

Safe 14 14 12 

Zxing 13 10 17 

 

In the selected number of features, the feature selection results indicate a change in the number of features 

in each different iteration. More iterations do not guarantee that the selected features will decrease or 
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increase. Meanwhile, the fitness value, the better the fitness value obtained, can affect the accuracy results 

obtained. After feature selection is performed, all resulted in a selected number of features not exceeding 

seventeen features out of the 26 features in the dataset, as seen in Table 4. In these feature data, the number 

of iterations does not affect the quantity of selected features. However, when viewed based on the frequency 

of selected features overall, it is as follows (Figure 4). 

 

 
Figure 4. Selected Features 

From the total of nine feature selection processes from each dataset and number of iterations, the graph 

above shows which features frequently appear and which ones rarely appear. The most frequently selected 

features are 'CountLineCodeDecl' and 'CountStmtDecl', which appear seven times out of nine feature 

selection processes. Meanwhile, the rarely selected feature is 'MaxCyclomaticStrict', which is only selected 

once, specifically in the Apache dataset with 100 iterations. 

 

The accuracy results are compared between two different conditions that have been specified: the accuracy 

results of random forest classification without feature selection performed beforehand, and random forest 

classification with feature selection already conducted. 
 

Table 5. Accuracy Results 

Dataset 
Accuracy Results Without 

Feature Selection 

Accuracy Results with Feature Selection 

iteration 10 iteration 50 iteration 100 

Apache 74,3% 64,1% 69,2% 79,5% 

Safe 83,3% 75% 83,3% 91,6% 

Zxing 62,5% 71,25% 68,8% 75% 

Average Accuracy 73,37% 70,12% 73,7% 82,03% 

 

 
Figure 5. Accuracy results 
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Table 5 and Figure 5 show the overall results of the classification process. Feature selection was conducted 

in 3 different numbers of iterations, namely 10, 50, and 100. In terms of Accuracy evaluation results, it 

indicates an increase in accuracy with an increase in the number of iterations, except for the Zxing dataset 

which decreased when the number of iterations was 50, at 68.8%. The highest accuracy results for each 

dataset were achieved with 100 iterations. Accuracy of 79.5% for the Apache dataset, 91.6% for the Safe 

dataset, and 75% for the zxing dataset. Meanwhile, the overall average accuracy for each dataset in every 

iteration, the results with 100 iterations had the highest accuracy value at 82.03%. 
 

 

CONCLUSION 

The study found that the Artificial Bee Colony (ABC) algorithm can improve the performance of the 

Random Forest algorithm in software prediction tasks. The dataset Relink was used for testing, and the 

results showed an average accuracy of 82.03% after applying feature selection with the ABC algorithm. 

This is a significant improvement compared to the average accuracy of 73.37% before feature selection. 

The ABC algorithm was able to increase the performance of the Random Forest algorithm in predicting 

software defects. 
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