PENGARUH INTRODUKSI ISOLAT RIZOBAKTERIA INDIGENUS TERHADAP PERTUMBUHAN DAN HASIL TANAMAN KENTANG (Solanum tuberosum L.) DAN DINAMIKA POPULASI GULMA DI ALAHAN PANJANG, SUMATERA BARAT

FRISKIA HANATUL QOLBY, IRAWATI CHANIAGO, INDRA DWIPA, ZURAI RESTI

Abstract


Potato (Solanum tuberosum L.) is of important major crops for its carbohydrate and plays important roles to support food sovereignty along with rice, wheat, corn, and sorghum. Potato growth and yield at West Sumatra has not reached its maximum potential due to some factors including cultivation. One major important constraint in potato growing in West Sumatra is the fact that farmers use the 8th to 12th generation of potato seedlings which have a very low agronomic potential. Yet, weeds have caused another problem in the field and reduce potato yield. An experiment has been conducted at the Laboratory of Microbiology, Faculty of Agriculture, Universitas Andalas and Nagari Alahan Panjang, Subdistrict Lembah Gumanti, Solok Regency from November 2018 to March 2019. The experiment was aimed at determining the best indigenous rhizobactria isolates to increase the growth and yield of potato plants as well as weed population dynamics associated with potato plants. Six isolates of indigenous rhizobacteria and a control treatment group were tested in a completely randomised design with three replicates. The isolates were L1 S3.1, L1 S3.2, L1 S4.4, L2 S1.2, L2 S2.3, L2 S3. 2. Data were analyzed with analysis of variance and mean separation with Duncan's New Multiple Range Test (DNMRT) at 5%. Results showed that isolate L1 S4.4 was best in increasing the number of branches, number of tubers, and weight of potato yield. The isolates tested affected weed populations dynamics, prior to treatments there were 8 species of weeds found at the field i.e Bidens pilosa L., Leptochloa chinensis, Eleusine indica L., Agerathum conyzoides, Richardia sp, Galinsoga parviflora, and Sonchus arvensis. During potato growing at the field, weed species of Eleusine indica L. and Gynura divaricata dissappeared from the soil. In contrast,  Amaranthus spinosus emerged demonstrating that weed population dynamic has occurred.


Keywords


indigenous rhizobacteria, potato plants, weed population

Full Text:

PDF

References


Abbasi, M.K., Musa, N., Manzoor, M., 2015, Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences, 12, 4607–4619.

Ahmad, M., and W.T. Frankenberger Jr. 2005. Microbial production of plant growth regulators. p. 307-347. In F.B. Meeting, Jr. (Ed.). Soil Microbial Ecology. Applications in Agricultural and Environmental Management. Marcel Dekker, Inc. New York.

Andrews, S.C., Robinson, A.K. and Rodríguez-Quiñones, F., 2003, Bacterial iron homeostasis. FEMS Microbiol Rev 27:215-237.

Armada, E., Portela, G., Roldan, A. and Azcon, R. 2016. Combined use of beneficial soil microorganism and agrowaste residue to cope with plantwater limitation under semiarid conditions. Geoderma, 232, 640-648.

Badan Pusat Statistik. 2017. Produksi Tanaman Kentang. http://www.bps.go.id. Accessed at 23 August 2018.

Balai Pengkajian Teknologi Pertanian Sukarami. 2010. Tanaman Kentang (Solanum tuberosum L): Komoditi Unggulan Wilayah Dataran Tinggi Kabupaten Solok. CV Hin’s & Son Printing Solok. Departemen Pertanian.

Banach, A., Kuźniar, A., Mencfel, R., and Wolińska, A., 2019, The Study on the Cultivable Microbiome of the Aquatic Fern Azolla filiculoides L. as New Source of Beneficial Microorganisms, Appl. Sci. 9, 2143; doi:10.3390/app9102143.

Barto, E.K., Hilker, M., Muller, F., Mohney, B.K., Weidenhamer, J.D., and Rillig, M.C., 2011, The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE, 6, e27195.

Beneduzi, A., Ambrosini, A. and Passaglia, L.M.P., 2012, Genetics and Molecular Biology, 35, 4 (suppl), 1044-1051.

Beneduzi, A., Ambrosini, A. and Passaglia, L.M.P., 2012, Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents, Genetics and Molecular Biology, 35, 4 (suppl), 1044-1051.

Bertholdsson N-O, 2012, Allelopathy - a toll to improve the weed comptetive ability of wheat to herbicide-resistant black-grass (Alopecurus myosuroides Huds), Agronomy, 2:284-294, doi:10.3390/agronomy2040284.

Carvalho, D.D.C., Campos, V.P., Correa, R.S.B., Coimbra, J.L., Guimaraes, R.M. and Oliveira, D.F., 2007. Rhizobacteria able to produce phytotoxic metabolites. Brazilian Journal of Microbiology 38:759-765.

Chaniago, I., Warnita, and Resti, Z.; 2019, Exploration of indigenous rhizobacteria: in search for their potential as plant growth promoting bacteria at two potato producing areas in West Sumatra; IOP Conf. Ser.: Earth Environ. Sci. 347 012022; doi:10.1088/1755-1315/347/1/012022.

Chauhan, B.S., Gill, G., Preston, C., 2006. Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Science 54, 669-676.

Compant, H. 2005. Ethylene. Chemistry of Plant Hormones. J. CRC Press Inc. Boca Raton, Florida. P. 249-264.

Cummings, S.P., 2009. The Application of Plant Growth Promoting Rhizobacteria (PGPR) in Low Input and Organic Cultivation of Graminaceous Crops; Potential and Problems. Environmental Biotechnology 5(2):43-50.

Dalimartha, S. 2006. Atlas Tumbuhan Obat Indonesia. Jakarta : Puspa Swara.198p.

Dawwam, G.E., Elbeltagy, A., Emara, H.M., Abbas, I.H., Hassan, M.M., 2013, Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant, Annals of Agricultural Science 58(2), 195–201.

Egamberdiyeva, D. 2007. The effect of PGPR on Growth and Nutrient Uptake of Maize in Two Different Soils. J. Applied Soil Ecology. Vol.36(1): 184-189.

Glick, B.R., 2012. Plant growth-promoting bacteria: mechanisms and applications, Scientifica 1–15.

Glick, B.R., Cheng, Z., Czarny, J. and Duan, J., 2007, Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329-39.

Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. 2015, The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320.

Heyne, K. 2011. Tumbuhan Berguna Indonesia, Volume II, Yayasan Sarana Wana Jaya : Diedarkan oleh Koperasi Karyawan, Badan Litbang Kehutanan, Jakarta. 2521p.

Krewulak, K.D. and Vogel, H.J., 2008, Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781-1804.

Mehring, G.A.,Strenger, J.E. and Hatterman-Valenti, H.M., 2016,Weed control with cover crops in irrigated potatoes, Agronomy, 6:3, doi:10.3390/agronomy6010003.

Mpanga, I.K., Dapaah, H.K., Geistlinger, J., Ludewig, U. and Neumann, G., 2018, Soil Type-Dependent Interactions of P-Solubilizing Microorganisms with Organic and Inorganic Fertilizers Mediate Plant Growth Promotion in Tomato, Agronomy, 8, 213; doi:10.3390/agronomy8100213.

Munawar, A. 2011. Kesuburan Tanah dan Nutrisi Tanaman. IPB Press. Jakarta: Penebar Swadaya. 250p.

Mus, F., Crook, M.B., Garcia, K., Costas, A.G., Geddes, B.A., Kouri, E.D., and Paramasivan, P., 2016. Symbiotic Nitrogen fixation and the challenges to its extension to nonlegumes, Appl. Environ. Microbiol. 82(13), 3698–3710.

Nelson, D.C. and Giles, J.F., 1989,Weed management in two potato (Solanum tuberosum L.) cultivars using tillage and pendimethalin,Weed Sci., 37:229–232.

Nelson, D.C. and Thoreson, M.C., 1981, Competition between potatoes (Solanum tuberosum) and weeds. Weed Sci., 29:672–677.

Osório, H., Martinez, V., Nieto, P.A., Holmes, D.S. and Quatrini, R., 2008, Microbial iron management mechanisms in extremely acidic environments: Comparative genomics evidence for diversity and versatility. BMC Microbiology 8:203.

Paiman., P., Yudono, D. Indra dan B. Sunarminto. 2012. Keragaman Komunitas Gulma pada berbagai Kedalaman Tanah. J Gulma. 1 (1) : 1 – 10.

Patten, C.L. and Glick, B.R., 2002, Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795-3801.

Pérez-Fernández, M. and Alexander, V., 2017, Enhanced Plant Performance in Cicer arietinum L. Due to the Addition of a Combination of Plant Growth-Promoting Bacteria, Agriculture, 7, 40; doi:10.3390/agriculture7050040.

Raza, W., Yousaf, S., and Rajer, F.U., 2016. Plant growth promoting activity of volatile organic compounds produced by Bio-control strains. Sci. Lett. 4(1): 40-43.

Reddy S S, Stahlman P W and Geier P W, 2013, Downy brome (Bromus tectorum L.) and broadleaf weed control in winter wheat with Acetolactate Synthase-Inhibiting herbicides Agronomy 3 340-348, doi:10.3390/agronomy3020340.

Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.C.; Glick, B.R., 2016, Plant growth-promoting bacterial endophytes. Microbiol. Res., 183, 92–99.

Stoffella, P.J., He, Z.I., Wilson, S.B., Ozores-Hampton, M., Roe, B.E., 2014, Compost Utilization in Subtropical Horticultural Cropping Systems. In I International Symposium on Organic Matter Management and Compost in Horticulture; Biala, J., Prange, R., Raviv, M., Eds.; Acta Horticulturae: Adelaide, Australia,; pp. 95–108.

Sutariati, G.A.K. 2014. Perlakuan Benih dengan Agen Biokontrol untuk Pengendalian Penyakit Antraknosa, Peningkatan Hasil dan Mutu Benih Cabai. [Disertasi]. Sekolah Pascasarjana IPB. Bogor.

Suveltri, B., Z. Syam, dan Solfiyeni. 2014. Analisa Vegetasi Gulma Pada Pertanaman Jagung (Zea mays L) Pada Lahan Olah Tanah Maksimal di Kabupaten Lima Puluh Kota. Jurnal Biologi Universitas Andalas, 3(2).

Thonar, C., Lekfeldt, J.D.S., Cozzolino, V., Kundel, D., Kulhánek, M., Mosimann, C., Neumann, G., Piccolo, A., Rex, M., Symanczik, S., 2017, Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem. Biol. Technol. Agric. 4, 7.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Boyce, A. M., 2016., Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review, Molecules, 21, 573; doi:10.3390/molecules21050573.

Zhou, X., Qiao, M., Wang, F.H., Zhu, Y.G., 2017, Use of commercial organic fertilizer increases the abundance ofantibiotic resistance genes and antibiotics in soil. Environ. Sci. Pollut. Res., 24, 701–710.




DOI: http://dx.doi.org/10.24014/ja.v11i1.9411

Refbacks

  • There are currently no refbacks.


 

Alamat : Jalan H.R Soebrantas KM 15 Panam, Pekanbaru, Riau.

Email : jurnalagroteknologi@yahoo.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats