EFEKTIVITAS BIOCHAR TERHADAP KETERSEDIAAN UNSUR HARA MIKRO PADA ULTISOL

Oksana Oksana, Irwan Taslapratama, Muhammad Ali Novia, Yusmar Mahmud, Tiara Septirosya, Raudhatu Shofiah

Abstract


Biochar with a high organic matter composition is considered to be an ameliorant for Ultisol. Providing biochar as an ameliorant needs to be studied because it will cause an increase in micronutrients, most of which are excessive in Ultisol. This study aims to determine the effect of several levels of biochar dosage from corn cob as a base material on changes in micronutrients in Ultisol soil. This research was conducted in a greenhouse and in the Laboratory of Agrostology, Feed Industry and Soil Science, State Islamic University of Sultan Syarif Kasim Riau. Experiments with several doses of biochar as treatment, e.g., 0%, 5%, 10%, and 15% of the composition of the growing media were arranged in a Completely Randomized Design (CRD) with six replications. The parameters observed were the micronutrient content of Boron (B), Copper (Cu), Zinc (Zn), Iron (Fe) and Aluminum (Al). The experimental results showed that giving corn cob biochar with doses of 0.5%, 10% and 15% did not significantly change the levels of B, Cu and Zn Ultisol. Biochar at a dose of 10% significantly increased the soil Zn content and decreased Al-dd Ultisol solubility.

 


Keywords


Aluminum, Acidic Soil, Copper, Iron, Zinc

Full Text:

PDF

References


Azadi, N., Raiesi, F. 2021 Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar 3, 485–498 https://doi.org/10.1007/s42773-021-00123-0

Balai Penelitian Tanah. 2009. Analisis Kimia Tanah, Tanaman, Air dan Pupuk. BBSDLP. Kementerian Pertanian. Bogor.

Eshwar, M., M. Srilatha, K. Bhanu Rekha and Harish Kumar Sharma, S. 2017. Characterization of Humic Substances by Functional Groups and Spectroscopic Methods. Int.J.Curr.Microbiol.App.Sci. 6(10): 1768-1774. https://doi.org/10.20546/ijcmas.2017.610.213

Gergichevich.C.M, M. Alberdi, A.G. Ivanov and M. Reyes-Díaz. 2010. Al3+- Ca2+ interaction in plants growing in acid soils: Al-phytotoxicuty response to calcareous amendments. Journal of Soil Science and Plant Nutrition 10(3):217 -243

Gunten, V.K., Hubmann, M., Ineichen, R, Gao. Y, Kurt.K.O, Allesi.D.S (2019).. Biochar-induced changes in metal mobility and uptake by perennial plants in a ferralsol of Brazil’s Atlantic forest. Biochar 1, 309–324 https://doi.org/10.1007/s42773-019-00018-1

Haryanti, I.Anas, Dwi. A.S dan Kurnia. D.S. 2018. Penggunaan Biochar Dan Dekomposer Dalam Proses Pengomposan Limbah Kulit Buah Kakao Serta Pengkayaan Mikrob Pelarut Fosfat (Mpf) Untuk Meningkatkan Kualitas Pupuk Organik. Jurnal ilmu Tanah dan Lingkungan., 20 (1): 25-32 http://dx.doi.org/10.29244/jitl.20.1.25-32

Hidayat. B. 2015. Remediasi Tanah Tercemar Logam Berat Dengan Menggunakan Biochar. Pertanian Tropik. 2.(1). 51- 61

Hossain, M.Z., Bahar, M.M., Sarkar, B. et al. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2, 379–420 (2020). https://doi.org/10.1007/s42773-020-00065-z.

Ifansyah H. 2013. Soil pH and Solubility of Aluminum, Iron, and Phosphorus in Ultisols: the Roles of Humic Acid. Journal of Tropical Soils 18 (3): 203-208. http://dx.doi.org/10.5400/jts.2013.18.1.1

Ifansyah. H. 2013. Soil pH and Solubility of Aluminum, Iron, and Phosphorus in Ultisols: the Roles of Humic Acid. Journal of Tropical Soil. 18 (3). 203 – 208. http://dx.doi.org/10.5400/jts.2013.18.1.1

Palanivell, P, Osumanu H.A, Omar. L, and Nik. M.A.M. 2020. Adsorption and Desorption of Nitrogen, Phosphorus, Potassium, and Soil Buffering Capacity Following Application of Chicken Litter Biochar to an Acid Soil. Applied Science, 10(1), 295; https://doi.org/10.3390/app10010295

Rajakumar R., Jayasree S.S. 2019. Effect of Biochar on Improving Soil Properties of Ultisols (Typic Plinthustults). Environment and Ecology 37 (4A) : 1336—1342.

Saraswati. 2006. Pupuk Organik dan Pupuk Hayati. Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Peneitian dan Pengembangan Pertanian. Bogor. 158 hal.

Sari, M.K dan Rusdiarso. (2022). The Study of pH and Ionic Strength on Ni(II) and Pb(II) sorption

using Humic Acid-Urea Formaldehyde (AHUF). Indonesian Journal of Chemical Science and Technology. 05 (1): 31-41. https://doi.org/10.24114/ijcst.v5i1.33144

Singh, H., Northup, B.K., Rice, C.W. Prasad. P.V.V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4, 8 (2022). https://doi.org/10.1007/s42773-022-00138-1

Suwardi 2019. Utilization and Improvement of Marginal Soils for Agricultural Development in Indonesia. IOP Conference Series: Earth and Environmental Science. 383. http://iopscience.iop.org/1755-1315/383/1/012047

Takahashi. T, M. Nanzyo, S. Hiradate. 2007. Aluminum status of synthetic Al–humic substance complexes and their influence on plant root growth. Soil Science and Plant Nutrition (2007) 53, 115–124. http://dx.doi.org/10.1111/j.1747-0765.2007.00114.x

Vahedi, R.; Rasouli-Sadaghiani, M.H.; Barin, M.; Vetukuri, R.R. 2022. Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes. 10 (2) 343. https://doi.org/10.3390/pr10020343

Weber. K. and Peter. Q. 2018. Properties of Biochar. Fuel. 217: 240 – 261. https://doi.org/10.1016/j.fuel.2017.12.054.

Widiastuti.M.M.D, Lantang.B. 2017. Pelatihan Pembuatan Biochar dari Limbah Sekam Padi

Menggunakan Metode Retort Kiln. Agrokreatif. Vol 3 (2): 129135.

Yan. S, Shaoliang. Z, Yan. P, Muhammad.A. 2022. Effect of biochar application method and amount on the soil quality and maize yield in Mollisols of Northeast China . Biochar. 4 (56) https://doi.org/10.1007/s42773-022-00180-z

Fu, C., Tu, C., Zhang, H., Li, Y., Li, L., Zhou, Q., Scheckel, K. G., & Luo, Y. (2020). Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China. Journal of Soils and Sediments, 20(10), 3712–3721. https://doi.org/10.1007/s11368-020-02676-2

Poggere, G., Gasparin, A., Barbosa, J. Z., Melo, G. W., Corrêa, R. S., & Motta, A. C. V. (2023). Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil. Journal of Trace Elements and Minerals, 4, 100059. https://doi.org/https://doi.org/10.1016/j.jtemin.2023.100059

Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E., & Davamani, V. (2023). A review on biochar’s effect on soil properties and crop growth . In Frontiers in Energy Research (Vol. 11). https://www.frontiersin.org/articles/10.3389/fenrg.2023.1092637

Romić, M., Matijević, L., Bakić, H., & Romić, D. (2014). Copper Accumulation in Vineyard Soils: Distribution, Fractionation and Bioavailability Assessment (M. C. Hernandez-Soriano (ed.); p. Ch. 28). IntechOpen. https://doi.org/10.5772/57266

Vijay, V., Shreedhar, S., Adlak, K., Payyanad, S., Sreedharan, V., Gopi, G., Sophia van der Voort, T., Malarvizhi, P., Yi, S., Gebert, J., & Aravind, P. V. (2021). Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations . In Frontiers in Energy Research (Vol. 9). https://www.frontiersin.org/articles/10.3389/fenrg.2021.710766

ZHU, Q.-H., PENG, X.-H., HUANG, T.-Q., XIE, Z.-B., & HOLDEN, N. M. (2014). Effect of Biochar Addition on Maize Growth and Nitrogen Use Efficiency in Acidic Red Soils. Pedosphere, 24(6), 699–708. https://doi.org/https://doi.org/10.1016/S1002-0160(14)60057-6




DOI: http://dx.doi.org/10.24014/ja.v14i2.26686

Refbacks

  • There are currently no refbacks.


 

Alamat : Jalan H.R Soebrantas KM 15 Panam, Pekanbaru, Riau.

Email : jurnalagroteknologi@yahoo.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats