Penentuan Nilai Eigen Tak Dominan Matriks Hermit Menggunakan Metode Pangkat Invers Dengan Nilai Shift

Fitri Ariyani, Rizka Dini Humairoh

Abstract


Inverse power method, can only be used to determine the eigenvalues of the matrix whose eigenvalues are real numbers. To determine the eigenvalues with complex matrices can be determined by using the value shift from implementing Gerschgorin theorem. Theorem Gerchgorin used in algebra to find the range of the complex eigenvalues of matrix berordo nx n. This shift value is the value of the approach was the dominant eigenvalues. This method is called inverse power method with shift value. Selection of a value shift greatly affect the number of iterations performed. In the process of determining the dominant eigenvalues do not need the initial vector. No dominant eigenvalues being used is not the dominant eigenvalues smallest of the eigenvalues no other dominant. This study discusses the eigenvalues not dominant on the berordo Hermit matrix 3 × 3, 4 × 4 and 5 × 5. Results obtained from the discussion is that no dominant eigenvalues of the third matrix is not too far from the election of his shift value.
Keywords: Hermit matrix, not the dominant eigenvalues, the inverse power method with a shift value,

Full Text:

PDF

References


Adriani, Yuli. Menentukan Nilai Eigen tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift. Jurnal Penelitian Sains. 2011 Vol 14, No. 1 (A), hal. 14103-8. [2] Brakken, Sean. Gershgorin’s Theorem for Estimating Eigenvalues. sthal@ups.edu. 2007 Vol 1.

Anton, Howard. Aljabar Linear Elementer. Edisi ketiga. Jakarta: Erlangga. 1984 [4] Anton, Howard. Aljabar Linear Elementer Edisi kedelepan jilid I. Jakarta: Erlangga. 1997

Anton, H. dan Panatur Silaban. Aljabar Linear Elementer Edisi kelima. Jakarta: Erlangga.1987

Hadley, G. Aljabar Linear. Jakarta: Erlangga. 1983

Marc, Lipson dan Seymour Lipschutz. Aljabar Linear. Edisi ketiga. Jakarta: Erlangga. 2004

Munir, Rinaldi. Metode Numerik. Bandung: Informatika. 2008

Pallouras, J.D. Peubah Kompleks untuk Ilmuan dan Insinyur. Terjemahan Wibisono Gunawan. Surabaya: Erlangga. 1975

Setiadji. Aljabar Linear. Yogyakarta: Graha Ilmu. 2008.

Steven. Aljabar Linear dan Aplikasinya. Jakarta: Erlangga. 2001

Farida, Noor. Aplikasi Metode Pangkat dan Metode Deflasi dalam Mengaproksimasi Nilai Eigen dan Vektor Eigen dari Matriks. Skripsi tidak diterbitkan. Malang: Fakultas Sains dan Teknologi UIN Malang. 2007


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id