Identifikasi Pembicara dengan Menggunakan Mel Frequency Cepstral Coefficient (MFCC) dan Self Organizing Map (SOM)

Inggih Permana, Benny Sukma Negara

Abstract


This study tested the accuracy of speaker identification by using the MFCC (Mel Frequency Cepstral Coefficient) and SOM (Self Organizing Map). MFCC is used as feature extraction of voice signal. SOM is used to clustering the feature vectors that obtained from the MFCC. Weight vectors that obtained from the clustering will be used as a codebook. Voice testing is measured the proximity from the codebook by using the Euclidean Distance. The smallest value of the measurement results is the winner vector that representing a particular person. Test results show the SOM can be used for the identification of the speaker but with the highest average accuracy for female speaker only 54.4%, male speaker 75.6% and for all speaker 62.5%.

 

Keywords:  Codebook, Euclidean Distance,  MFCC, SOM, Speaker Identification


Full Text:

PDF

References


Alex SP. ASR Dependent Techniques for Speaker Recognition. MSc Thesis. Massachusetts: Department of Electrical Engineering and Computer Science of MIT. 2002.

Thang Wee Keong. Voice Print Analysis for Speaker Recognition. BSc Thesis. Singapore: SIM University. 2009.

Lindasalwa M, Mumtaj B, I Elamvazuthi. Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques. Journal of Computing. 2010; 2(3): 138-142.

Sri K. Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu. 2003.

Abeer MAH. Text Independent Speaker Identification System. BSc Thesis. Nablus: Electrical Engineering Department An-Najah National University. 2010.

Magnus N. Speaker Verification in Java. MSc Thesis. School of Microelectronic Engineering of Griffith University. 2001.

Mikael L, Jens KR. JOPSPEECH Embedded Java Speech Recognition SDK. Denmark: Copenhagen Business School. 2006

Gregorius SB, Liliana, Steven H. Cluster Analysis untuk Memprediksi Talenta Pemain Basket Menggunakan Jaringan Saraf Tiruan Self Organizing-Map (SOM). UK Petra. Surabaya. 2006

Arum M. Clustering Specimen Daun Dikotiledon Dengan Menggunakan SOM. Bogor: Institut Pertanian Bogor. 2003

Simon H. Neural Network A Comprehensive Foundation. Edisi 2. Singapore: Pearson Prentice Hall. 2005: 465-501.

ong JS, Jaringan Syaraf Tiruan dan Pemograman Menggunakan MATLAB. Andi: Yogyakarta. 2005:143


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id