Klasifikasi Status Gizi Balita Berdasarkan Indikator Antropometri Berat Badan Menurut Umur Menggunakan Learning Vector Quantization

Elvia Budianita, Novriyanto Novriyanto

Abstract


Determination of nutritional status is an effort made in order to improve the health of children. Common method used for the assessment of nutritional status is anthropometry. To classify the nutritional status of children into malnutrition, malnutrition, good nutrition and nutrition then used anthropometric indices weight for age (W / A). In Rimbo data Puskesmas, calculation of anthropometric indices for the assessment of nutritional status of children is done manually using z-scores table lists or standard deviation (SD) WHO NCHS. In this research, the authors tried to establish a classification system based nutritional anthropometric indices weight for age (W / A) by applying the Learning Vector Quantization algorithm uses two functions, namely euclidean and manhattan distance. The variables used were gender, age, weight, family economic status, mother's education, father's occupation. From the results of research and discussion conducted, Learning Vector Quantization algorithm using euclidean distance function can recognize the pattern with the best accuracy percentage of 80% whereas the manhattan distance function only 20% of 110 training data and test data amounted to 10. The amount of training data and the diversity of patterns that exist in the class used nutritional status affects learning outcomes and the accuracy of the systems
Keywords: Antropometri, Euclidean, Learning Vektor Quantization, Manhattan, Z-skor

Full Text:

PDF

References


Anggreini R, Indrarti A, Klasifikasi Status Gizi Balita Berdasarkan Indeks Antropometri (BB/U) Menggunakan Jaringan Saraf Tiruan, Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Gunadharma, 2010

Azizi M, Fithri Q, Perbandingan Antara Metode Backpropagation dengan Metode Learning Vektor Quantization (LVQ) pada Pengenalan Citra Barcode, Jurusan Matematika Fakultas Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas negeri Semarang, 2013

Hidayah F ,Yutari, Implementasi dan Perbandingan Metode Learning Vektor Quantization (LVQ) dan Backpropagation Untuk Memeriksa Keaslian Mata Uang Kertas, Program Studi Ekstensi S1 Ilmu Komputer Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara Medan, 2014

Fausett, L.,Fundamentals of NeuralNetworks ; Architectures, Algorithms, and Applications, Englewood Cliffs, Prentice Hall, 1994

Kusumadewi S., dan Hartati, S.,NeuroFuzzy :IntegrasiSistem Fuzzy danJaringanSyaraf,Edisipertama, GrahaIlmu, Yogyakarta, 2006

Fadlil. A, Program Sederhana Sistem Pengenalan Wajah Menggunakan Fungsi Jarak , Telkomnika. Vol.4, No.3, Juli 2006

Kementerian Kesehatan RI, 2011, “Keputusan Menteri Kesehatan Republik Indonesia Nomor: 1995/Menkes/SK/VII/2010 Tentang Standar Antropometri Penilaian Status Gizi Anak” Direktorat Bina Gizi


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id