Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear
Abstract
then removed all existing derivative in order to obtain the new iteration method to solve nonlinear
equations. Analytically, indicated that the method has produced seven order of convergence. Numerical
computation shows the resulting method is superior to the other methods discussed.
Keywords: free derivative method, iterative method, nonlinear equations, order of convergence
Full Text:
PDFReferences
J. H. Mathewa dan K. D Fink, Numerical Method Using Matlab, 3rd Ed, Prentice Hall, New
Jersey, 1999.
Liang Fang, Li Sun, dan Guoping He, An Efficient Newton-Type Method with Fifth-Order
Convergence for Solving Nonlinear Equations, Computational & Applied Mathematics, 27
(2008), 269-274.
Neha Choubey dan J. P . Jaiswal, Derivative-Free Method of Eight-Order For Finding
Simple Root of Nonlinear Equation, Communication in Numerical Analysis, 2 (2015), 90-
Rao V. Dukkipati, Numerical Method New Age International (p) Limited, New Delhi, 2010.
R. G. Bartle dan D. R. Shebert. Introduction to Real Analysis, 4st Ed, Jhon Wiley & Sons,
Inc., New York, 1999.
S. K. Khattri dan I. K. Argyros, How to Develop Fourth and Seventh Order Iterative
Methods?, Novi Sad J. Math, 48 (2010), 61-67.
Traub, J. F., Iterative Methods for the Solution of Equations, Chelsea Publishing
Company, New York, 1977.
Weerakon, S., T. G. I Fernando, A Variant of Newton’s Method with Accelerated ThirdOrder Convergence, Applied Mathematics Latters, 13 (1999), 87-93.
Refbacks
- There are currently no refbacks.
FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU
Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id