PRODUCT RECOMMENDATION SYSTEM USING IMPLICIT FEEDBACK BASED ON COLLABORATIVE FILTERING IN E-COMMERCE
Abstract
The high growth of e-commerce produces transaction data on a massive scale can be used as a marketing strategy by companies. One of strategy is a recommendation system that is used to predict interesting product information based on the characteristics of each user. However, recommendation systems generally use explicit feedback as a value of user interest in a product which creates a data limitation problem (cold-start) because only based on transaction data that has been rated by the user. Another solution could be using implicit feedback to avoid cold-start problems based on the number of user transactions for stores and product categories. In this study, the algorithm used is Singular Value Decomposition (SVD) to find similarities between one user and another based on the feedback value. The results of the model show good performance with score RMSE ± 0,865 and MAE ± 0,508.
Full Text:
PDFReferences
H. Februariyanti, A. D. Laksono, J. S. Wibowo and M. S. Utomo, "Implementasi Metode Collaborative Filtering Untuk Sistem Rekomendasi Penjualan Pada Toko Mebel," Jurnal Khatulistiwa Informatika, vol. IX, no. 1, 2021.
A. Mulyana and S. Yuliyanti, "Aplikasi E-commerce Dengan Sistem Rekomendasi Berbasis Collaborative Filtering: Pada Toko Nocturnal," Jurnal Teknologi Informasi dan Komunikasi, vol. VII, no. 2, 2018.
R. Burke, "Hybrid Web Recommender Systems," in The Adaptive Web : Methods and Strategies of Web Personalization, Heidelberg, Springer, 2007, pp. 377-408.
B.-H. Huang and B.-R. Dai, "A Weighted Distance Similarity Model to Improve The Accuracy of Collaborative Recommender System," in 2015 16th IEEE International Conference on Mobile Data Management, Pittsburgh, IEEE, 2015, pp. 104-109.
S. Sylvia and S. Lestari, "Implementasi K-Means Dalam Mengatasi Masalah Cold Star Pada Collaborative Filtering," in Prosiding Seminar Nasional Darmajaya, Yogyakarta, 2002.
N. Nurmalasari, Y. Yanita and I. M. Arnawa, "Faktorisasi Matriks," Jurnal Matematika UNAND, vol. VIII, no. 1, pp. 242-248, 2019.
C. Wibisono, L. S. Haryadi, J. E. Widyaya and S. L. Liliawati, "Sistem Rekomendasi Suku Cadang Berdasarkan Item Based Filtering," Jurnal Teknik Informatika dan Sistem Informasi, vol. VII, no. 1, pp. 10-19, 2021.
Refbacks
- There are currently no refbacks.
FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU
Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id