Faktorisasi Matriks Pascal Melalui Matriks k-Tribonacci

Mirfaturiqa Mirfaturiqa, Sri Gemawati, Silfia Rini, weriono weriono, Sri Mawarni

Abstract


Artikel ini membahas  hubungan matriks Pascal  dan matriks k-tribonacci , dari hubungan dari kedua matriks tersebut diperoleh sebuah definisi matriks baru yaitu matriks . Kemudian, dengan matriks baru  diperoleh faktorisasi dari matriks Pascal melalui matriks k-tribonacci yaitu .


References


S. Falcon, “The k Fibonacci matrix and the Pascal matrix,” Central European Journal of Mathematics, vol. 9, hal. 1403 1410, 2011.

M. Feinberg, “Fibonacci tribonacci, Fibonacci Quartely,” vol.1, hal. 70 74, 1963.

T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New york, 2001.

J. Varnadore, “Pascal's triangle and Fibonacci numbers,” The Mathematics Theacher, vol. 84, hal. 314 316, 1991.

R. Lather dan M. Kumar, “Stability of k tribonacci functional equation in non Archimedean space,” International Journal of Computer Applications, Vol. 128, hal. 27 30, 2015.

J. L. Ramirez, “Incomplete tribonacci number and polynomials,” Journal of Integer Sequences, vol. 17 2014.

G. Kizilaslan, “The linear algebra of a generalized tribonacci matrix,” Math. Stat., vol. 17, no.1, pp.169-181, 2023.

R. Brawer dan M. Pirovino, “The linear algebra of the Pascal matrix,” Linear Algebra Applications, vol.174 , hal. 13 23, 1992.

G. S. Call dan D. J. Velleman, “Pascal's matrices,” The American Mathematical Monthly, vol. 100, hal.372 376, 1993.

N. Sabeth, S. Gemawati, dan H. Saleh, “A factorization of the tribonacci matrix and the Pascal matrix,” Applied Mathematical Sciences, vol. 11, hal. 489 497, 2017.

Mirfaturiqa, S. Gemawati, dan M.D.H. Gamal, “Tetranacci matrix via Pascal’s matrix,” Bulletin of Mathematics, vol. 9, no. 1, hal. 1 7, 2017.

Mirfaturiqa, Nurhasnah, dan M.B. Baheramsyah, “Faktorisasi matriks Pascal dan matriks tetranacci,” Jurnal Sainstek STTPekanbaru, vol. 11, no. 1, hal. 60 65, 2023.

F. Rasmi, S. Gemawati, dan M. D.H. Gamal, “Relation between stirling’s numbers of the second kind and tribonacci matrix,” Bulletin of Mathematics, vol. 10, no. 1, hal. 33 39, 2018.

Mirfaturiqa, Weriono, dan F. Palaha, “Hubungan matriks Stirling jenis kedua dengan matriks tetranacci,” Jurnal Sainstek STTPekanbaru, vol. 11, no. 2, hal. 102 105, 2023.

Mawaddaturrohmah, S. Gemawati, dan M. D. H. Gamal, “Hubungan antara matriks Stirling jenis kedua dan matriks k-Fibonacci,” Prosiding Seminar Nasional STIKIP PGRI Sumatera Barat, hal. 104-110, 2019.

S. Gemawati, Musraini, Mirfaturiqa, “The k-tribonacci matrix and the pascal matrix,” Jambura Journal of Mathematics, vol. 6, no. 1, hal. 125 130, 2024.

H. Anton, Elemtary Linear Algebra, 7 Edition. Jhon Wiley & Sons, Inc, 1994.

M. Bona, A Walk Through Combinatorics, University of Florida Press, USA, 2006.




DOI: http://dx.doi.org/10.24014/jsms.v12i1.38785

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Jurnal JSMS

p-ISSN     : 2460-4542 (print)
e-ISSN     : 2615-8663 (online)
Alamat   : Program Studi Matematika
                   Fakultas Sains dan Teknologi, UIN Suska Riau
                   Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail    :
jsmsfst@uin-suska.ac.id

   

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.