Analisis Klaster dalam Pembentukan Portofolio Robust Mean-Variance

Epha Diana Supandi, Yogi Anggara

Abstract


Pembentukan portofolio adalah proses menggabungkan beberapa aset dengan tujuan menghasilkan return tertinggi pada tingkat risiko terendah. Portofolio optimal model Mean-Variance (MV) sangat sensitif terhadap keberadaan outlier. Salah satu cara untuk mengatasi kelemahan portofolio MV adalah dengan menggunakan estimasi robust. Data penelitian menggunakan saham-saham yang terdaftar di Jakarta Islamic Index (JII) dimana pada tahap awal digunakan teknik clustering dengan metode K-Means. Hasil analisis kelompok terbentuk dua klaster, dimana klaster pertama terdiri dari saham ITMG, ADRO, PTBA, dan MDKA sedangkan klaster kedua terdiri dari saham INDF, TLKM, KLBF, dan UNTR. Hasil analisis kinerja saham menunjukkan bahwa klaster pertama model portofolio klasik Obj-10 paling baik karena memiliki sharpe ratio tertinggi. Sedangkan pada klaster kedua portofolio robust model Obj-100 paling baik

Full Text:

PDF

References


E. J. Elton and M. J. Gruber, Modern Portfolio Theory and Investment Analysis, 9th ed. New York: John Wiley and Sons, Inc., 2014.

H. M. Markowitz, “Portfolio Selection,” Journal of Finance, no. 7, pp. 77–91, 1952.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. Prentice Hall, 2007.

A. H. Foss and M. Markatou, “Kamila: Clustering Mixed-Type Data in R and Hadoop,” Journal of Statistical Software., vol. 83, pp. 1–44, 2018.

N. C. Long, N. Wisitpongphan, P. Meesad, and H. Unger, “Clustering Stock Data for Multi-objective Portfolio Optimization,” International Journal of Computational Intelligence and Applications, vol. 13, no. 2, 2014.

S. R. Nanda, B. Mahanty, and M. K. Tiwari, “Clustering Indian Stock Market Data for Portfolio Management,” Expert Systems with Applications., vol. 37, no. 12, pp. 8793–8798, 2010.

L. Gubu, D. Rosadi, and Abdurakhman, “Robust Mean-Variance Portfolio Selection with Time Series Clustering,” AIP Conference Proceedings, vol. 2329, 2021.

R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory and Methods. John Wiley and Sons, 2006.

S. Ceria and R. A. Stubbs, “Incorporating Estimation Errors into Portfolio Selection: Robust Portfolio Construction,” Asset Management: Portfolio Construction, Performance and Returns, pp. 270–294, 2016.

V. DeMiguel and F. J. Nogales, “Portfolio Selection with Robust Estimation,” SSRN Electronic Journal, 2007.

E. D. Supandi, D. Rosadi, and Abdurakhman, “An Empirical Comparison between Robust Estimation and Robust Optimization to Mean-Variance Portfolio,” Journal of Modern Applied Statistical Methods, vol. 16, no. 1, p. 32, 2017.

M. Fadli Azim et al., “Optimasi Bobot Portofolio Menggunakan Algoritma Genetika,” Jurnal Sains Matematika dan Statistika, vol. 7, no. 1, pp. 58–64, 2021.

P. Rousseeuw and V. ’Yohai, “Robust Regression by Means of S-Estimators,” no. 26. Springer, New York, pp. 256–272, 1984.




DOI: http://dx.doi.org/10.24014/jsms.v9i1.19003

Refbacks

  • There are currently no refbacks.


Jurnal JSMS

p-ISSN     : 2460-4542 (print)
e-ISSN     : 2615-8663 (online)
Alamat   : Program Studi Matematika
                   Fakultas Sains dan Teknologi, UIN Suska Riau
                   Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail    :
jsmsfst@uin-suska.ac.id