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Abstract 
 

The adjacency matrix 𝐴(𝐺) of a simple graph with 𝑛 vertices is a matrix of size 𝑛 ×  𝑛 with 

the 𝑖𝑗th entry (𝑖th row and 𝑗th column) having the value 0 or 1. The adjacency spectrum of a 

graph is denoted 𝑆𝑝𝑒𝑐 (𝐺) is a matrix of size 2 × 𝑝, with 𝑝 representing the number of 

different eigenvalues of 𝐴(𝐺). In this research, the author is looking for the formulation of the 

adjacency spectrum pattern of the circle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5 dan 𝑚𝐶6. Formulating the 

pattern begins by determining 𝐴(𝐺) of each graph for the values 𝑛 = 3, 4, 5  dan 6, then 

looking for the eigenvalues of 𝐴(𝐺) and their multiplicity. From these results, the spectrum of 

each graph is formulated into a theorem and its correctness is proven. 
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1. Introduction 

The study of relationships among objects that can be modeled as vertices and edges, 

enabling the analysis of network structures and properties, is known as graph theory [1]. 

A graph is defined as a mathematical structure consisting of a set of vertices and a set of 

edges, where the edges connect certain pairs of vertices [2]. In graph theory, one of the 

main aspects of interest is the graph spectrum, namely the set of eigenvalues of the 

graph’s adjacency matrix [3]. The graph spectrum contains important information about 

the graph’s structure and algebraic properties, which can be used for various analyses and 

practical applications. 

One interesting topic in graph theory is the study of cycle graphs and their copies. A 

cycle graph is a directed graph that represents cyclic relations, where each vertex is 

incident to exactly one incoming edge and one outgoing edge, forming a closed circuit [4]. 

In this study, the author focuses on the cycle graphs 𝐶3, 𝐶4, 𝐶5,and 𝐶6, which have 3, 4, 5, 

and 6 vertices, respectively. Research on copies of these graphs is important because it can 

produce larger and more complex graph structures, which often arise in various practical 

applications. 

The spectrum of the m-copy graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6 is a research area that 

offers many important insights. By analyzing the spectra of these graphs, various 

algebraic properties of the graphs can be understood. The graph spectrum can provide 
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information about graph stability, the existence of certain subgraphs, and other important 

parameters that can be used in network design and analysis. In addition, the graph 

spectrum also has applications in fields such as control theory, signal analysis, and 

optimization [5]. 

Valette in Switzerland (2017) studied the spectrum of the graph 𝑅𝑋, which is obtained 

from a connected graph 𝑋 by associating a new vertex to each edge of 𝑋 and connecting 

the endpoints of each edge of 𝑋 to the corresponding new vertex [6]. The result obtained 

is: 

𝑃𝑅𝑋(𝜆) = 2−𝑛(1 − 𝜆)𝑚−𝑛 (
3

2
− 𝜆)

𝑛

𝑃𝑋(2𝜆) 

The spectrum of the complete graph 𝐾𝑛was studied by Selvia, Narwen, and Zulakmal 

[7]. The results of their research are presented in Table 1 below: 

Table 1. Spectrum of the Complete Graph 𝑲𝒏 

Matrix Eigen Value Multiplicity 

Adjacency (𝑛 − 1) 1 1 (𝑛 − 1) 

Laplacian 𝑛 0 (𝑛 − 1) 1 

Signless Laplacian 2(𝑛 − 1) (𝑛 − 2) 1 (𝑛 − 1) 

Normalized Laplacian 𝑛

(𝑛 − 1)
0 

(𝑛 − 1) 1 

Seidel Adjacency −(𝑛 − 1) 1 1 (𝑛 − 1) 

Another study was conducted by Triyani, who succeeded in finding the general form 

of the spectrum of the prism graph 𝑃(2,𝑆) [8]. The result obtained is as follows: 

𝑆𝑝𝑒𝑐 𝑃(2,𝑆) = (
𝜆0 𝜆1,2𝑠−1 𝜆1,2𝑠−2

1 2 2
   
⋯ 𝜆1,2𝑠+1 𝜆𝑠

⋯ 2 1
) 

A recent study in 2022 was conducted by Agustina, Kusumastuti, and Fran [9]. In 

that study, they identified patterns of the adjacency spectra of the star graph, crown 

graph, and ladder graph as follows: 

a. The adjacency spectrum of the star graph 𝑆𝑛is 𝑆𝑝𝑒𝑐 (𝑆𝑛) = [−√𝑛 0 √𝑛
1 𝑛 − 1 1

] , 𝑛 ≥ 2. 

b. The adjacency spectrum of the crown graph 𝑆𝑛
0 is 

𝑆𝑝𝑒𝑐 (𝑆𝑛
0) = [

𝑛 − 1 1 −1
1 𝑛 − 1 𝑛 − 1

   
1 − 𝑛

1
] , 𝑛 ≥ 2. 

c. The adjacency spectrum of the ladder graph 𝐿𝑛 is 

𝑆𝑝𝑒𝑐 (𝐿𝑛) = [1 + 2 𝑐𝑜𝑠 (
𝑛𝜋

𝑛+1
) ⋯ −1 + 2 𝑐𝑜𝑠 (

𝑛𝜋

𝑛+1
)

1 ⋯ 1
  ] , 𝑛 ≥ 2. 

Based on these previous studies, the author is interested in examining the general 

form of the m-copy cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6. This research aims to explore in 

depth the spectra of the m-copy cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6. It will discuss how 

the eigenvalues of the adjacency matrix change when the cycle graphs 𝐶3, 𝐶4, 𝐶5, and 𝐶6 

are replicated into 𝑚 copies. In addition, the patterns that emerge in the spectra of these 

copy graphs will be investigated. By understanding the spectra of these copy graphs, this 

study is expected to make a significant contribution to the development of graph theory 

and its applications in various fields. 

 

2. Research Methodology  
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The method used in this study is a literature review. This research is conducted to 

examine the general form of the spectra of the cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6. The 

steps in this study are as follows: 

1. Drawing the cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6. 

2. Determining the adjacency matrices of the cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, and 𝑚𝐶6. 

3. Determining the characteristic polynomials of the cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, 

and 𝑚𝐶6 in order to obtain their eigenvalues and algebraic multiplicities. 

4. Formulating the general form of the spectra of the cycle graphs 𝑚𝐶3, 𝑚𝐶4, 𝑚𝐶5, 

and 𝑚𝐶6. 

 

2.1 Graph 

Definition 2.1 [10] A graph 𝐺 is defined as an ordered pair (𝑉, 𝐸), where 𝑉 is a non-empty 

set of vertices (or nodes) and 𝐸 is a set of edges that connect pairs of vertices. 

 

2.2 Cycle Graph 

A cycle graph is a connected graph in which every vertex has degree 2. A cycle graph 

with 𝑛 vertices is denoted by 𝐶𝑛. In other words, a cycle graph is a graph that contains a 

cycle, namely a path that starts and ends at the same vertex through a sequence of edges, 

without visiting the same vertex more than once, except for the starting and ending vertex 

[11]. 

In the context of cycle graphs, each vertex is connected to exactly two other edges. 

Therefore, a cycle graph is often represented as a simple circuit or polygon, where the 

vertices correspond to the corners and the edges represent the graph edges connecting 

those vertices [4]. 

2.3. Graph Copies 

A graph copy can be obtained by replicating all vertices and edges of the original 

graph [12]. In other words, a copy of a graph is a graph that is isomorphic to the original 

graph, as explained in Definition 2.2 below: 

Definition 2.2 [10] Two graphs 𝐺1and 𝐺2 are said to be isomorphic ( 𝐺1 ≅ 𝐺2 ) if there 

exists a one-to-one correspondence between the vertices and edges of both graphs such 

that, if an edge 𝑒 is incident to vertices 𝑢and 𝑣 in 𝐺1, then the corresponding edge 𝑒′ must 

also be incident to the corresponding vertices 𝑢′ and 𝑣′ in 𝐺2. 

 

2.4.Matrix 

A matrix is a rectangular arrangement of numbers. The numbers in the arrangement are 

called the entries of the matrix [13]. The general form of a matrix is: 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] 

where 𝐴 is the name of the matrix, 𝑚 is the number of rows, 𝑛 is the number of columns, 

and 𝑚 × 𝑛 is the order (dimension) of the matrix. 
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2.5.Block Matrix 

A block matrix can be visualized as an original matrix with horizontal and vertical 

lines that break it (partition it) into a collection of smaller matrices [13]. 

Definition 2.3 [14] A block matrix, or partitioned matrix, is a matrix that is partitioned 

into several smaller matrices by inserting horizontal and vertical lines between its rows 

and columns. The smaller matrices resulting from the partition are called submatrices. 

 

3. Block Diagonal Matrix 

A block diagonal matrix is a block matrix that is square, in which the main diagonal 

blocks are square matrices and all off-diagonal blocks are zero matrices [15]. The general 

form of a block diagonal matrix is: 

𝐴 = [

𝐴1 0 ⋯ 0
0 𝐴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑛

] 

where 𝐴𝑘 is a square matrix for each 𝑘 = 1,2,… , 𝑛.  

 

Theorem 2.1 [16] If 𝐴1, 𝐴2, … , 𝐴𝑘are square matrices on the diagonal, then the determinant 

of matrix 𝐴can be written as: 

det(A) = ∏det (

𝑘

𝑖=1

𝐴𝑖) 

This can also be expressed as: 

 

det(A) = det(𝐴) = det(𝐴1) × det(𝐴2) × … × det(𝐴𝑘) 

4. Determinant 

The determinant function is denoted by det . Let 𝐴 be a square matrix; then det (𝐴) can 

be formulated as the sum of all elementary products of 𝐴 [17]. 

Theorem 2.2 [17] Suppose 𝐴 is a square matrix. The minor of 𝑎𝑖𝑗, denoted by 𝑀𝑖𝑗, is the 

determinant of the submatrix that remains after deleting the 𝑖-th row and the 𝑗-th column. 

The cofactor of 𝑎𝑖𝑗 is denoted by 𝐶𝑖𝑗 and is given by 𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗 . For 1 ≤ 𝑖 ≤ 𝑛 and 

1 ≤ 𝑗 ≤ 𝑛, the determinant can be written as: 

det(𝐴) = 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 + ⋯ + 𝑎𝑖𝑛𝐶𝑖𝑛 (Cofactor expansion along the i-th row). 

det(𝐴) = 𝑎1𝑗𝐶1𝑗 + 𝑎2𝑗𝐶2𝑗 + ⋯ + 𝑎𝑚𝑗𝐶𝑚𝑗  (Cofactor expansion along the j-th column). 

 

5. Characteristic Polynomial 

The determinant of a matrix yields a characteristic polynomial, and the eigenvalues 

are obtained from the roots of this characteristic polynomial. This is described in the 

following definition: 

Definition 2.3 [18] Let 𝐴 be an 𝑛 × 𝑛 matrix. A scalar 𝜆 is an eigenvalue of 𝐴 if there exists 

a nonzero vector 𝑥𝑛×1 ≠ 0 such that 𝐴𝑥 = 𝜆𝑥. A vector satisfying this equation is called an 

eigenvector corresponding to the eigenvalue 𝜆. The characteristic polynomial of 𝐴 is the 
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polynomial det (𝜆𝐼 − 𝐴). The roots of the characteristic polynomial are the eigenvalues of 

the matrix 𝐴.  

 

6. Spektrum Graf 

To determine the spectrum of a graph, it is necessary to introduce terminology related 

to the adjacency matrix, eigenvalues, and multiplicities. Further explanation is provided 

in Definition 2.4. 

Definisi 2.4 [19] If 𝐺 is a graph with 𝑛 vertices 𝑣1, 𝑣2, … , 𝑣𝑛, then the adjacency matrix of 𝐺 

is an 𝑛 × 𝑛 matrix 𝐴(𝐺) = (𝑎𝑖𝑗), where 𝑎𝑖𝑗 is the number of edges connecting vertices 𝑣𝑖 

and 𝑣𝑗 . 

The spectrum of a graph 𝐺 is the list of eigenvalues of the adjacency matrix of 𝐺 

together with their multiplicities [3]. The graph spectrum can be obtained through matrix 

operations, such as computing determinants to derive the characteristic polynomial and 

its eigenvalues. Spectral graph analysis has many applications in science and technology, 

including studying geometric properties of a network related to the Cheeger constant, 

analyzing signals on graphs, and examining features of random walks on graphs via 

stochastic transition matrices [20]. 

  

Theorem 2.3 [20] If the distinct eigenvalues of the adjacency matrix are 𝜆0 > 𝜆1 > ⋯ >

𝜆𝑛−1 with multiplicities 𝑚(𝜆0), 𝑚(𝜆1),… ,𝑚(𝜆𝑛−1), then it can be written as: 

𝑆𝑝𝑒𝑐 𝐺 =  [
𝜆0 𝜆1 … 𝜆𝑛−1

𝑚(𝜆0) 𝑚(𝜆1) … 𝑚(𝜆𝑛−1)
]. 

3. Result dan Discussion  

3.1. Spectrum of the m-Copy Cycle Graph 𝒎𝑪𝟑 

The first step in determining the general form of the spectrum of the m-copy cycle 

graph 𝑚𝐶3 is to draw the graph. The following figure shows the general form of the m-

copy cycle graph 𝑚𝐶3. 

v2 

v1 v3 

v5

v4 v6               

vn-1

vn-2 vn  
Figure 1. General form of the m-copy cycle graph 𝑚𝐶3 

 

Next, based on Theorem 2.2, the general form of the characteristic polynomial of the 

m-copy cycle graph 𝑚𝐶3 is obtained, which serves as the initial step in determining the 

spectrum of this copy graph. Table 2 presents the characteristic polynomials of the m-

copy cycle graph 𝑚𝐶3for 𝑛 = 1,2,3,4,5, … , 𝑚. 

 

Table 2. Characteristic polynomial of the m-copy cycle graph 𝑚𝐶3 

Cycle Graph 𝒎𝑪𝟑 Characteristic Polynomial 

1𝐶3 (𝜆 − 2)(𝜆 + 1)2 

⋯ 
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2𝐶3 ((𝜆 − 2)(𝜆 + 1)2)
2
 

3𝐶3 ((𝜆 − 2)(𝜆 + 1)2)
3
 

4𝐶3 ((𝜆 − 2)(𝜆 + 1)2)
4
 

5𝐶3 ((𝜆 − 2)(𝜆 + 1)2)
5
 

⋮ ⋮ 
𝑚𝐶3 ((𝜆 − 2)(𝜆 + 1)2)

𝑚
 

 

From Table 2, Theorem 3.1 is obtained as follows: 

Theorem 3.1 

The spectrum of the m-copy cycle graph 𝑚𝐶3 is: 

𝑆𝑝𝑒𝑐 𝑚𝐶3 = (
2 −1
𝑚 2𝑚

) 

Proof. 

The adjacency matrix of the m-copy cycle graph 𝑚𝐶3 is: 

𝐴 =

[
 
 
 
 
 
 
0 1 1 ⋯ 0 0 0
1 0 1 ⋯ 0 0 0
1 1 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 1 1
0 0 0 ⋯ 1 0 1
0 0 0 ⋯ 1 1 0]

 
 
 
 
 
 

 

 

Based on matrix 𝐴, the eigenvalues and eigenvectors of this block diagonal matrix can be 

determined by solving det (𝐴) = 0. Thus, we obtain the following matrix:          

                    

A − 𝜆𝐼 =

[
 
 
 
 
 
 

λ −1 −1 ⋯ 0 0 0
−1 λ −1 ⋯ 0 0 0
−1 −1 λ ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −λ −1 −1
0 0 0 ⋯ −1 λ −1
0 0 0 ⋯ −1 −1 λ ]

 
 
 
 
 
 

 

 

Let 𝐵 = [
λ −1 −1

−1 λ −1
−1 −1 λ

], then A − 𝜆𝐼 = (

𝐵 0 ⋯ 0
0 𝐵 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐵

). By Theorem 2.1, we have: 

 
𝑑𝑒𝑡 (𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 (𝐵) × 𝑑𝑒𝑡 (𝐵) × …× 𝑑𝑒𝑡 (𝐵) 

 

Next, using the cofactor expansion method as in Theorem 2.2, the determinant of matrix 

𝐵is computed by expanding along the first row, yielding: 
𝑑𝑒𝑡  (𝐵) = (𝜆 − 2)(𝜆 + 1)2 

Since  
𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = (det(𝐵))𝑚 

it follows that: 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = ((𝜆 − 2)(𝜆 + 1)2)
𝑚

 
𝑑𝑒𝑡(𝐴 −𝜆𝐼) = (𝜆 − 2)𝑚((𝜆 + 1)2)𝑚 
𝑑𝑒𝑡(𝐴 −𝜆𝐼) = (𝜆 − 2)𝑚(𝜆 + 1)2𝑚 
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Based on Definition 2.3, the eigenvalues are the roots of the characteristic polynomial. 

Therefore, the eigenvalues are: 

𝜆1 = 2  dan 𝜆2 = −1 

From these eigenvalues, and using Theorem 2.3, the multiplicities are 𝑚(2) = 𝑚and 

𝑚(−1) = 2𝑚. Hence, the spectrum can be written as: 

𝑆𝑝𝑒𝑐 𝑚𝐶3 = (
2 −1
𝑚 2𝑚

). 

 

3.3. Spectrum of the m-Copy Cycle Graph 𝒎𝑪𝟒 

The first step in determining the general form of the spectrum of the m-copy cycle 

graph 𝑚𝐶4 is to draw the graph. The following figure shows the general form of the m-

copy cycle graph 𝑚𝐶4. 

                         

v1 v2 

v4 v3 

v5 v6

v8 v7

V4n-3 V4n-2

V4n V4n-1
 

Figure 2. General form of the m-copy cycle graph 𝑚𝐶4 

 

Next, based on Theorem 2.2, the general form of the characteristic polynomial of the 

m-copy cycle graph 𝑚𝐶4 is obtained, which serves as the initial step in determining the 

spectrum of this copy graph. Table 3 presents the characteristic polynomials of the m-

copy cycle graph 𝑚𝐶4 for 𝑛 = 1,2,3,4,5, … , 𝑚. 

Table 3. Characteristic polynomial of the m-copy cycle graph 𝑚𝐶4 

Cycle Graph 𝒎𝑪𝟒 Characteristic Polynomial 

1𝐶4 𝜆4 − 4𝜆2 

2𝐶4 (𝜆4 − 4𝜆2)2 
3𝐶4 (𝜆4 − 4𝜆2)3 
4𝐶4 (𝜆4 − 4𝜆2)4 
5𝐶4 (𝜆4 − 4𝜆2)5 
⋮ ⋮ 

𝑚𝐶4 (𝜆2(𝜆 − 2)(𝜆 + 2))𝑚 

 

From Table 3, Theorem 3.2 is obtained as follows: 

Theorem 3.2 

The spectrum of the m-copy cycle graph 𝑚𝐶4 is: 

𝑆𝑝𝑒𝑐 𝑚𝐶4 = (
−2 0 2
𝑚 2𝑚 𝑚

) 

 

Proof. 

The adjacency matrix of the m-copy cycle graph 𝑚𝐶4 is: 

 

⋯ 
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𝐶 =

[
 
 
 
 
 
 
 
 
0 1 0 1 ⋯ 0 0 0 0
1 0 1 0 ⋯ 0 0 0 0
0 1 0 1 ⋯ 0 0 0 0
1 0 1 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1 0 1
0 0 0 0 ⋯ 1 0 1 0
0 0 0 0 ⋯ 0 1 0 1
0 0 0 0 ⋯ 1 0 1 0]

 
 
 
 
 
 
 
 

 

 

Based on matrix 𝐶, the eigenvalues and eigenvectors of this block diagonal matrix can be 

determined by solving det (𝐶) = 0. Thus, we obtain the following matrix: 

                             

C − 𝜆𝐼 =

[
 
 
 
 
 
 
 
 
−𝜆 1 0 1 ⋯ 0 0 0 0
1 −𝜆 1 0 ⋯ 0 0 0 0
0 1 −𝜆 1 ⋯ 0 0 0 0
1 0 1 −𝜆 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋮ ⋮ ⋮
0 0 0 0 ⋯ −𝜆 1 0 1
0 0 0 0 ⋯ 1 −𝜆 1 0
0 0 0 0 ⋯ 0 1 −𝜆 1
0 0 0 0 ⋯ 1 0 1 −𝜆]

 
 
 
 
 
 
 
 

 

 

Let 𝐷 = [

−𝜆 1 0 1
1 −𝜆 1 0
0 1 −𝜆 1
1 0 1 −𝜆

], then C − 𝜆𝐼 = (

𝐷 0 ⋯ 0
0 𝐷 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐷

).  

 

Based on Theorem 2.1, we have: 
𝑑𝑒𝑡 (𝐶 − 𝜆𝐼) = 𝑑𝑒𝑡 (𝐷) × 𝑑𝑒𝑡 (𝐷) × …× 𝑑𝑒𝑡 (𝐷) 

Next, using the cofactor expansion method as in Theorem 2.2, the determinant of matrix 𝐷 

is computed by expanding along the first row, yielding: 
𝑑𝑒𝑡  (𝐷) = 𝜆4 − 4𝜆2 

Since 
𝑑𝑒𝑡(𝐶 −𝜆𝐼) = (det(𝐷))𝑚 

it follows that: 
𝑑𝑒𝑡(𝐶 −𝜆𝐼) = (𝜆4 − 4𝜆2)𝑚 

𝑑𝑒𝑡(𝐶 − 𝜆𝐼) = (𝜆2(𝜆 − 2)(𝜆 + 2))𝑚 
𝑑𝑒𝑡(𝐶 − 𝜆𝐼) = (𝜆2𝑚(𝜆 − 2)𝑚(𝜆 + 2)𝑚). 

Based on Definition 2.3, the eigenvalues are the roots of the characteristic polynomial. 

Therefore, the eigenvalues are: 

𝜆1 = 0, 𝜆2 = −2 and 𝜆3 = 2. 

From these eigenvalues, and using Theorem 2.3, the multiplicities are 𝑚(−2) = 𝑚, 

𝑚(0) = 2𝑚, and 𝑚(2) = 𝑚. Hence, the spectrum can be written as: 

𝑆𝑝𝑒𝑐 𝑚𝐶4 = (
−2 0 2
𝑚 2𝑚 𝑚

). 

 

3.4. Spectrum of the m-Copy Cycle Graph 𝒎𝑪𝟓 
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The first step in determining the general form of the spectrum of the m-copy cycle 

graph 𝑚𝐶5 is to draw the graph. The following figure shows the general form of the m-

copy cycle graph 𝑚𝐶5. 
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Figure 3. General form of the m-copy cycle graph 𝑚𝐶5 

 

Next, based on Theorem 2.2, the general form of the characteristic polynomial of the 

m-copy cycle graph 𝑚𝐶5 is obtained, which serves as the initial step in determining the 

spectrum of this copy graph. Table 4 presents the characteristic polynomials of the m-

copy cycle graph 𝑚𝐶5 for 𝑛 = 1,2,3,4,5, … , 𝑚. 

Table 4. Characteristic polynomial of the m-copy cycle graph 𝑚𝐶5 

Cycle Graph 𝒎𝑪𝟒 Characteristic Polynomial 

1𝐶5 (𝜆 − 2)(𝜆2 + 𝜆 − 1)2 

2𝐶5 ((𝜆 − 2)(𝜆 + 1)2)
2
 

3𝐶5 ((𝜆 − 2)(𝜆 + 1)2)
3
 

4𝐶5 ((𝜆 − 2)(𝜆 + 1)2)
4
 

5𝐶5 ((𝜆 − 2)(𝜆 + 1)2)
5
 

⋮ ⋮ 
𝑚𝐶5 ((𝜆 − 2)(𝜆 + 1)2)

6
 

 

From Table 4, Theorem 3.3 is obtained as follows: 

 

Theorem 3.3 

The spectrum of the m-copy cycle graph 𝑚𝐶5 is: 

𝑠𝑝𝑒𝑐 𝑚𝐶5 = (2 −
1

2
+

1

2
 √5 −

1

2
−

1

2
 √5

𝑚 2𝑚 2𝑚
) 

Proof. 

The adjacency matrix of the m-copy cycle graph 𝑚𝐶5 is: 
 

𝐸 =

[
 
 
 
 
 
 
 
 
 
 
0 1 0 0 1 ⋯ 0 0 0 0 0

1 0 1 0 0 ⋯ 0 0 0 0 0

0 1 0 1 0 ⋯ 0 0 0 0 0

0 0 1 0 1 ⋯ 0 0 0 0 0

1 0 0 1 0 ⋯ 0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 ⋯ 0 1 0 0 1

0 0 0 0 0 ⋯ 1 0 1 0 0

0 0 0 0 0 ⋯ 0 1 0 1 0

0 0 0 0 0 ⋯ 0 0 1 0 1

0 0 0 0 0 ⋯ 1 0 0 1 0]
 
 
 
 
 
 
 
 
 
 

 

⋯ 
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Based on matrix 𝐸, the eigenvalues and eigenvectors of this block diagonal matrix can be 

determined by solving det (𝐸) = 0. Thus, we obtain the following matrix: 

                             

E − 𝜆𝐼 =

[
 
 
 
 
 
 
 
 
 
 

λ −1 0 0 −1 ⋯ 0 0 0 0 0

−1 λ −1 0 0 ⋯ 0 0 0 0 0

0 −1 λ −1 0 ⋯ 0 0 0 0 0

0 0 −1 λ −1 ⋯ 0 0 0 0 0

−1 0 0 −1 λ ⋯ 0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 ⋯ λ −1 0 0 −1

0 0 0 0 0 ⋯ −1 λ −1 0 0

0 0 0 0 0 ⋯ 0 −1 λ −1 0

0 0 0 0 0 ⋯ 0 0 −1 λ −1

0 0 0 0 0 ⋯ −1 0 0 −1 λ ]
 
 
 
 
 
 
 
 
 
 

 

 

Let 𝐹 =

[
 
 
 
 

λ −1 0 0 −1

−1 λ −1 0 0

−1 −1 λ −1 0

0 0 −1 λ −1

−1 0 0 −1 λ ]
 
 
 
 

, then E − 𝜆𝐼 = (

𝐹 0 ⋯ 0
0 𝐹 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐹

). By Theorem 2.1: 

 
𝑑𝑒𝑡 (𝐸 − 𝜆𝐼) = 𝑑𝑒𝑡 (𝐹) × 𝑑𝑒𝑡 (𝐹) × … × 𝑑𝑒𝑡 (𝐹) 

 

Next, using the cofactor expansion method as in Theorem 2.2, the determinant of matrix 

𝐹is computed by expanding along the first row, yielding: 

 
det  (𝐹) = (𝜆 − 2)(𝜆2 + 𝜆 − 1)2 

Since 

𝑑𝑒𝑡(𝐸 −𝜆𝐼) = (det(𝐹))𝑚 

it follows that: 

𝑑𝑒𝑡(𝐸 − 𝜆𝐼) = (𝜆 − 2)(𝜆2 + 𝜆 − 1)2 

𝑑𝑒𝑡(𝐸 −𝜆𝐼) = ((𝜆 − 2)(𝜆2 + 𝜆 − 1)2)
𝑚

 

𝑑𝑒𝑡(𝐸 −𝜆𝐼) = (𝜆 − 2)𝑚(𝜆2 + 𝜆 − 1)2𝑚 . 

Based on Definition 2.3, the eigenvalues are the roots of the characteristic polynomial. 

Therefore, the eigenvalues are: 

𝜆1 = 2 , 𝜆2 = −
1

2
+

1

2
 √5 dan 𝜆3 = −

1

2
−

1

2
 √5 

From these eigenvalues, and using Theorem 2.3, the multiplicities are 𝑚(2), 2𝑚 (−
1

2
+

1

2
 √5) , 2𝑚 (−

1

2
−

1

2
 √5). Hence, the spectrum can be written as: 

𝑆𝑝𝑒𝑐 𝑚𝐶5 = (2 −
1

2
+

1

2
 √5 −

1

2
−

1

2
 √5

𝑚 2𝑚 2𝑚
). 

 

3.5. Spectrum of the m-Copy Cycle Graph 𝒎𝑪𝟔 

The first step in determining the general form of the spectrum of the m-copy cycle 

graph 𝑚𝐶6 is to draw the graph. The following figure shows the general form of the m-

copy cycle graph 𝑚𝐶6. 
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Figure 4. General form of the m-copy cycle graph 𝑚𝐶6 

 

Next, based on Theorem 2.2, the general form of the characteristic polynomial of the 

m-copy cycle graph 𝑚𝐶6 is obtained, which serves as the initial step in determining the 

spectrum of this copy graph. Table 5 presents the characteristic polynomials of the m-

copy cycle graph 𝑚𝐶6 for 𝑛 = 1,2,3,4,5, … , 𝑚. 

Table 5. Characteristic polynomial of the m-copy cycle graph 𝑚𝐶6 

Copy Cycle Graph 𝒎𝑪𝟔 Characteristic Polynomial 

1𝐶6 𝜆6 − 6𝜆4 + 9𝜆2 − 4 

2𝐶6 (𝜆6 − 6𝜆4 + 9𝜆2 − 4)2 
3𝐶6 (𝜆6 − 6𝜆4 + 9𝜆2 − 4)3 
4𝐶6 (𝜆6 − 6𝜆4 + 9𝜆2 − 4)4 
5𝐶6 (𝜆6 − 6𝜆4 + 9𝜆2 − 4)5 
⋮ ⋮ 

𝑚𝐶6 ((𝜆 − 2)(𝜆 − 1)2(𝜆 + 1)2(𝜆 + 2))𝑚 

 

From Table 5, the spectrum of the m-copy cycle graph 𝑚𝐶6 is obtained as follows: 

 

Theorem 3.4 

The spectrum of the m-copy cycle graph 𝑚𝐶6 is: 

𝑆𝑝𝑒𝑐 𝑚𝐶6 = (
−2 −1 1 2
𝑚 2𝑚 2𝑚 𝑚

) 

Proof. 

The adjacency matrix of the m-copy cycle graph 𝑚𝐶6 is: 
 

𝐺 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 1 ⋯ 0 0 0 0 0 0
1 0 1 0 0 0 ⋯ 0 0 0 0 0 0
0 1 0 1 0 0 ⋯ 0 0 0 0 0 0
0 0 1 0 1 0 ⋯ 0 0 0 0 0 0
0 0 0 1 0 1 ⋯ 0 0 0 0 0 0
1 0 0 0 1 0 ⋯ 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 ⋯ 0 1 0 0 0 1
0 0 0 0 0 0 ⋯ 1 0 1 0 0 0
0 0 0 0 0 0 ⋯ 0 1 0 1 0 0
0 0 0 0 0 0 ⋯ 0 0 1 0 1 0
0 0 0 0 0 0 ⋯ 0 0 0 1 0 1
0 0 0 0 0 0 ⋯ 1 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Based on matrix 𝐺, the eigenvalues and eigenvectors of this block diagonal matrix can be 

determined by solving det (𝐺) = 0. Thus, we obtain the following matrix: 

                             

⋯ 
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G − 𝜆𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝜆 1 0 0 0 1 ⋯ 0 0 0 0 0 0
1 −𝜆 1 0 0 0 ⋯ 0 0 0 0 0 0
0 1 −𝜆 1 0 0 ⋯ 0 0 0 0 0 0
0 0 1 −𝜆 1 0 ⋯ 0 0 0 0 0 0
0 0 0 1 −𝜆 1 ⋯ 0 0 0 0 0 0
1 0 0 0 1 −𝜆 ⋯ 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 ⋯ −𝜆 1 0 0 0 1
0 0 0 0 0 0 ⋯ 1 −𝜆 1 0 0 0
0 0 0 0 0 0 ⋯ 0 1 −𝜆 1 0 0
0 0 0 0 0 0 ⋯ 0 0 1 −𝜆 1 0
0 0 0 0 0 0 ⋯ 0 0 0 1 −𝜆 1
0 0 0 0 0 0 ⋯ 1 0 0 0 1 −𝜆]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Let 𝐻 =

[
 
 
 
 
 
−𝜆 1 0 0 0 1

1 −𝜆 1 0 0 0

0 1 −𝜆 1 0 0

0 0 1 −𝜆 1 0

0 0 0 1 −𝜆 1

1 0 0 0 1 −𝜆]
 
 
 
 
 

, then G − 𝜆𝐼 = (

𝐻 0 ⋯ 0
0 𝐻 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐻

).  

 

By Theorem 2.1: 
𝑑𝑒𝑡 (𝐺 − 𝜆𝐼) = 𝑑𝑒𝑡 (𝐻) × 𝑑𝑒𝑡 (𝐻) × …× 𝑑𝑒𝑡 (𝐻) 

 

Next, using the cofactor expansion method as in Theorem 2.2, the determinant of matrix 

𝐻is computed by expanding along the first row, yielding: 

 
𝑑𝑒𝑡  (𝐻) = (𝜆6 − 6𝜆4 + 9𝜆2 − 4)𝑚 

Since 

𝑑𝑒𝑡(𝐺 −𝜆𝐼) = (det(𝐻))𝑚 

it follows that: 

𝑑𝑒𝑡(𝐺 −𝜆𝐼) = (𝜆6 − 6𝜆4 + 9𝜆2 − 4)𝑚 

𝑑𝑒𝑡(𝐺 −𝜆𝐼) = ((𝜆 − 2)(𝜆 − 1)2(𝜆 + 1)2(𝜆 + 2))𝑚 

𝑑𝑒𝑡(𝐺 −𝜆𝐼) = (𝜆 − 2)𝑚(𝜆 − 1)2𝑚(𝜆 + 1)2𝑚(𝜆 + 2)𝑚 

Based on Definition 2.3, the eigenvalues are the roots of the characteristic polynomial. 

Therefore, the eigenvalues are: 

𝜆1 = −2, 𝜆2 = −1, 𝜆3 = 1, 𝜆4 = 2. 

From these eigenvalues, and using Theorem 2.3, the multiplicities are 𝑚(−2) = 𝑚, 

𝑚(−1) = 2𝑚, 𝑚(1) = 2𝑚, and 𝑚(2) = 𝑚. Hence, the spectrum can be written as: 

𝑆𝑝𝑒𝑐 𝑚𝐶6 = (
−2 −1 1 2
𝑚 2𝑚 2𝑚 𝑚

). 
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