Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM)
Vol. 8, No. 3, November 2025, pp. 788 — 799
p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 788

Analysis of SQL Injection and Cross-Site Scripting (XSS)
Attacks on Web Server Logs Using Machine Learning
Adi Septian, 2Atep Aulia Rahman,

12Department of Informatics Engineering, Widyatama University, Indonesia
Email: *adi.septian@widyatama.ac.id, 2atep.aulia@widyatama.ac.id

Avrticle Info ABSTRACT

Article history: The increasing complexity of cyber threats requires accurate detection
Received Sep 29th, 2025 systems to identify attack patterns on web servers. This study aims to
Revised Nov 15th, 2025 detect SQL Injection and Cross-Site Scripting (XSS) attacks in Nginx
Accepted Nov 31th, 2025 access logs using machine learning algorithms. Log data were

processed through regular expressions for parsing and labeling,
resulting in 1,650,615 samples. Data imbalance was addressed using a

:\(/leywh(_)rd:L . combination of ADASYN and Random Undersampling. Two
N;ﬁ]xme earning algorithms, Random Forest and Support Vector Machine (SVM), were

compared based on accuracy, precision, recall, F1-score, and ROC
curve metrics. The results show that Random Forest achieved the best
performance with 99.92% accuracy, 99.94% F1-score, and 0.9994
AUC, while SVM obtained an accuracy of 96.45%. The combination
of resampling and ensemble learning significantly enhances the
effectiveness of log-based attack detection, providing a promising
foundation for the development of adaptive Intrusion Detection
Systems (IDS) in web server environments.

Copyright © 2025 Puzzle Research Data Technology

Random Forest
SQL Injection
XSS

Corresponding Author:
Third Author,
Department of Informatics Engineering, Widyatama University,
Street of Cikutra No. 204A, Sukapada, Cibeunying Kidul, Bandung City,
West Java 40124, Indonesia.
Email: adi.septian@widyatama.ac.id
DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.38397

1. INTRODUCTION

The increasing complexity of cyber threats has placed web server security as a top priority. Attacks
such as SQL Injection and Cross-Site Scripting (XSS) have become serious concerns, as both exploit
vulnerabilities in web applications to steal sensitive data, manipulate systems, or disrupt operations [1].
According to OWASP, in 2021 SQL Injection ranked 3rd with a total of 274,000 incidents, and XSS is one of
the major vulnerabilities included in the list [2]. OWASP Top 10 Web Vulnerabilities 2017-2021 can be seen
Figure 1.

2017 2021
AD1:2017-Injection — o7 A01:2021-Broken Access Control
AD2:2017-Broken Authenticatior) - --.___,«-_'"'_'— > M02:2021-Cryptographic Failures
AD3:2017-Sensitive Data Exposure —= 7 T»A03:2021-njection
AD4:2017-XML External Entities (XXE) e {Miw) AD4:2021-Insecure Design
AD5:2017-Broken Access Control e, = ADS:2021-Security Misconfiguration
ADG:2017-Security Misconfiguration — .o MOB:2021-Vulnerable and Outdated Compaonents
ADT:2017-Cross-5ite Scripting (X55) = " AD7:2021-Identification and Authentication Failures
ADE; 2017 -Insecure Deserialization === {Mew) ADB:2021-Software and Data Integrity Failures
AD9:2017-Using Components with Known Yulnerabilities = o ADD:2021-Security Logging and Monitoring Fallures®
A10:2017-Insufficient Logging & Maonitoring — (Mew) A10:2021-Server-5ide Request Forgery [SSRF)*

* From the Survey

Figure 1. OWASP Top 10 Web Vulnerabilities 2017-2021

In this context, it is crucial to develop detection methods that are not only accurate but also efficient
in maintaining the integrity of information systems. One relevant approach is the application of machine

Journal homepage: http://ejournal.uin-suska.ac.id/index.php/IJAIDM/index

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 789

learning as a tool for classification and attack pattern detection. This study covers the process from collecting
attack datasets to implementing machine learning algorithms specifically Random Forest and Support Vector
Machine (SVM) in detecting SQL Injection and XSS attacks through the analysis of user input patterns and
relevant log attributes. The dataset used includes various SQL Injection and XSS attack patterns obtained from
Nginx web server access log files, which were previously parsed and labeled using regular expression (regex)
techniques according to the attack types being tested. Validation and preprocessing procedures were carried
out to ensure data quality, including normalization and relevant feature extraction. With this approach, the
resulting model is expected to detect attacks with high accuracy while providing deeper insight into complex
attack patterns [3].

In its application, the Random Forest algorithm is a relevant choice because it can process data with
many features and is less prone to overfitting. In previous research, the Random Forest algorithm demonstrated
the highest performance in detecting SQL Injection vulnerabilities with 99.78% accuracy, while the SVM
algorithm ranked next with 94% accuracy [4]. The approach was further extended by [5] hrough the integration
of Random Forest with a multi-channel deep learning architecture for XSS detection, resulting in nearly perfect
accuracy across multiple public datasets. Based on these values, both algorithms will be adopted in this study.
The study conducted by [6] implemented several machine learning algorithms, including SVM, KNN, and
Naive Bayes, to detect SQL Injection attacks based on payload analysis and demonstrated competitive
classification performance across various testing scenarios. A similar approach was proposed by [7] who
developed a two-stage classification pipeline utilizing feature extraction and ensemble learning, resulting in
consistent improvements in SQL Injection detection accuracy on structured datasets. In the context of XSS
attacks, [8] introduced a hybrid CNN-LSTM model capable of detecting both SQL Injection and XSS
simultaneously, with experimental results on the HTTP CSIC 2010 dataset showing high accuracy in
identifying content-based attack patterns in HTTP requests. Overall, these studies affirm the effectiveness of
machine learning in detecting web-based attacks, although most still rely on public or structured datasets rather
than real-world web server logs.

The research gap addressed in this study lies in the aspects of data sources, detection levels, and
combined attack types. Most previous studies detect SQL Injection or XSS attacks at the application level using
simulated payloads or public datasets such as CSE CIC IDS2018 and the Kaggle SQL Injection Dataset, which
are structured and do not represent real-world server log conditions. Moreover, previous research generally
focuses on detecting a single type of attack either SQL Injection or XSS without considering the possibility of
hybrid attacks that may occur simultaneously within a single web traffic flow. The novelty of this research
bridges these gaps by introducing a new approach that detects both SQL Injection and XSS attacks based on a
local dataset derived from actual Nginx web server logs rather than public datasets, thereby producing results
that more accurately reflect real world conditions. Additionally, this study proposes a preprocessing pipeline
based on regular expression (regex) for the parsing and labeling process of both SQL Injection and XSS attacks.

Furthermore, this study compares the performance results of the two algorithms in detecting attacks
using evaluation criteria such as accuracy, precision, recall, and F1 score as indicators of model performance.
In addition, an analysis is conducted on input features that have a significant influence on the classification
process, enabling the model not only to detect attacks but also to provide deeper insight into the characteristics
of each attack type. With this approach, the findings of this research are expected to make a tangible
contribution to the development of automated detection-based security systems that can adapt to the rapidly
evolving landscape of cyber threats.

2. RESEARCH METHOD

This study applies a comparative experimental method with a quantitative approach to evaluate the
performance of various machine learning algorithms in identifying SQL Injection and XSS attacks based on
web server log data. This experiment compares the performance of the Random Forest and SVM algorithms
using the same Nginx web server log dataset to ensure the validity of the comparison results. The research flow
is illustrated in Figure 2. In general, the research process is divided into six main stages:
Collection of Nginx Log Data
Log Parsing and Information Extraction
Data Labeling
Preprocessing and Feature Extraction
Sequential Resampling Strategy
Model Training and Evaluation

ook wmnpE

2.1. Data Collection
The raw data used in this study were obtained from Nginx access logs collected from a real web server
environment. These logs are typically stored as text files on the server and contain records of every request

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

790 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

made to the web server. The format of Nginx logs may vary depending on the configuration and type of request.
The default format typically includes information such as the client’s IP address, timestamp, HTTP method
(e.g., GET, POST), requested URL, HTTP status code (e.g., 200, 404, 503), user agent (which typically
indicates the browser name), and other relevant parameters. An example of a log entry is shown in Figure 3.

Each log line represents a single user request, including the IP address, HTTP method, accessed
URL, response status code, and data size. This raw data is stored as a log file (access.log) and serves as the
primary source for analysis.

Pengumpulan data . Label data SQLi & Preprocessing
{Nginx Log) Hparsmg o {regexH s H TF_lDFI st }
.

y
Train Model Balance Data)
End Evaluasi (RF+SVM), Cross- ADASYN + 00% TS"! i d;;gﬁ ot
alidation undersampling rain, &s

Figure 2. Research Flow

192.168.1.1 - - [18/0ct/2823:13:55:36 +80868] "GET /findex.html HTTP/1.1% 288 612 “-" "Mozill

af5.8 [(Windows NT 18.8; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko)} Chrome/58.8.3829.
118 Safari/537.3"

Figure 3. Example of Log Entry

2.2. Data Preprocessing

Data preprocessing is a crucial stage in this research because the obtained web server log data is still
in raw form and contains various information such as IP address, timestamp, HTTP method, URL, status code,
and user agent. Without preprocessing, this data cannot be directly utilized by machine learning algorithms,
thus, it needs to be processed to ensure it is more structured, clean, and suitable for analysis [9].

2.3. Log Data Parsing

Parsing is performed to extract relevant information from each log line, which will later be used to
construct a structured dataset. Regex techniques were chosen because of their flexibility in matching complex
text patterns and their suitability for extracting specific information from logs, such as IP address, timestamp,
HTTP method, URL, status code, and response size [10]. Additionally, regex is easy to integrate with the
Python programming language used in this study [11]. Log parsing regex script is shown in Figure 4.

A PPeipetdey deyovdey vd+) = = A FP<timestamps=[fY]]+)0] " 7P=method>'w+] [PP<url=[*]+)

TPAvdy . \d™ (7P<status=\d+) (?P<size=\d+] *-" "(7P<user_agent=[*"]+)"

Figure 4. Log Parsing Regex Script

The result of the parsing process is raw data that has been successfully extracted and organized into a
CSV format, enabling further processing by machine learning algorithms. Irrelevant elements have been
removed, leaving only the necessary information for the next stages. With a cleaner and more organized
structure, the parsed data is now ready for further processing. The first ten rows of parsing results can be seen
Table 1.

Table 1. The first ten rows of parsing results.

No IP Date Method URL Status_code Size
0 103.78.195.111 29-Aug-24 POST cron.php’?doing_wp_crc/)\;lvgi724930667.81729698.. 200 31
1 52167144222 29-Aug-24 GET /?kx52967w4ywl 200 26101
2 52.167.144.138 29-Aug-24 GET /?product%2FP%3F662747=wgatemenz 200 26101
3 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cr(/)\:lvfi_[724930811.96527004.. 200 31
4 52.167.144.222 29-Aug-24 GET /?qulzcwma 200 26101

Ipage/3/?MecDisplay=default&eventDate=2022-

5 85.208.96.206 29-Aug-24 GET 200 22792

IJAIDM Vol. 8, No. 3, November 2025: 788 — 799

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 791

No IP Date Method URL Status_code Size
6 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cr(/)\rqvgi742265457.27636504.. 200 31
7 66.249.66.196 29-Aug-24 GET /kocok/?buruné=BONUSlZS 404 19593
8 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cr(/)\;vgi742265543.67830801.. 200 31
9 52.167.144.145 29-Aug-24 GET /index.php?‘z/R3868983 301 5

This table consists of 1,650,615 rows and 6 columns, where each column represents important
information related to user or bot activities accessing a website. From all features in the Nginx access log file,
only the IP, date, method, URL, status code, and size features are used for analysis, as shown in Table 2 for
the attribute dataset. The remaining features, namely timestamp and user-agent, are not included because they
are less relevant to the detection patterns of SQL Injection and XSS attacks.

Table 2. Dataset Attributes

Attribute Description
IP Client IP address
Date Access date
Method HTTP request method sent to the server
URL URL path accessed by the client
Status_code HTTP response code returned by the server
Size Response size (in bytes)

The regex pattern used was specifically designed to extract six primary attributes. These attributes
include the client IP address (ip), date and time components (date), HTTP method (method), accessed URL
path (url), HTTP response status code (status_code), and response size (size). The extraction of the url column
is particularly critical because it serves as the main textual input expected to contain potential attack payloads.

2.4. Data Labeling

After the parsing stage, the dataset is labeled based on detected attack patterns. The labeling technique
was performed using regex to identify characteristics of malicious behavior. In this research, two types of
attacks are the primary focus: SQL Injection and XSS. Both are categorized as injection attacks, which remain
among the most critical threats to web applications. The regex patterns used to detect SQL Injection attacks in
the log, particularly within the url attribute, involve matching specific indicators such as single quotes followed
by harmful SQL commands like UNION, SELECT, INSERT, DROP, or logical conditions like OR 1=1,
database table names such as information_schema, wp, xp, or command separators commonly exploited to
manipulate queries [12]. For XSS detection, the regex rules target malicious scripts injected on the client side,
such as the <script> tag, inline event attributes (on...=), JavaScript: scheme usage, and access attempts to the
document. cookie, DOM manipulation actions (innerHTML, window.location), as well as the execution of
functions like eval(), base(), and innerHTML [13].

The data labeling process provides contextual categorization to each parsed log entry, enabling the
dataset to include attributes that can be effectively utilized in advanced analysis, such as machine learning
model training. This labeling aims to identify and classify request types into specific categories based on
detected patterns, particularly from the url column where attack parameters are typically embedded. The results
shows the newly formed dataset containing an attack type column as a label for each data row.

Table 3. The first ten rows of data labeling results.

No Ip Date Method url Status_ Size Altack_
code type
Iwp-
0 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cron=1724930667.8172 200 31 normal
9698...
1 52.167.144.222 29-Aug-24 GET /?kxs2967wdywl 200 26101 normal
2 52.167.144.138 29-Aug-24 GET [?product%2FP%3F662747=wgatemenz 200 26101 normal
Iwp-
3 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cron=1724930811.9652 200 31 normal
7004...
52.167.144.222 29-Aug-24 GET [?yqwzcwma 200 26101 normal
8520896206 20-Aug24 GET [PROC//PMecDisplymdefauliGeventDate=2 a0y 55792 normal
Iwp-
6 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cron=1742265457.2763 200 31 Normal
6504...

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

792 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

No Ip Date Method url Status_ Size Attack_
code type
7 66.249.66.196 29-Aug-24 GET /kocok/?burung=BONUS123 404 19593 normal
Iwp-
8 103.78.195.111 29-Aug-24 POST cron.php?doing_wp_cron=1742265543.6783 200 31 normal
0801...
9 52.167.144.145 29-Aug-24 GET /index.php?z/R3868983 301 5 normal

2.5. Data Cleaning

The data cleaning stage was carried out to improve the quality of the dataset by removing irrelevant
special characters, checking and ensuring that there are no missing values in essential attributes, and
eliminating duplicate data that could potentially introduce bias into the model [14]. Data cleaning was
performed by removing duplicate records, deleting empty values in the URL and attack type columns, and
removing non-alphabetic characters to maintain consistency during tokenization. The Missing Value Check
Result is presented in Table 4.

Table 4. Missing Value Check Result

Attribute Missing value
IP
Date
Method
URL
Status_code
Size
Attack_size

[eNeoNoloNeNoNe)

It has been confirmed that there are no missing values in the dataset, allowing the process to proceed
to the next stage without further processing.

2.6. Feature Extraction

The sampled data must then be converted into a numerical representation suitable for machine learning
algorithms. Feature engineering involves handling both textual features (url) and numerical features (status
code, size).

2.6.1. Textual Feature Extraction Using TF-IDF Vectorization
The URL column is the most informative feature vector. The Term Frequency Inverse Document
Frequency (TF-IDF) method is selected for text transformation. The principle of TF-IDF is to assign specific
scores or weights to each word or character in the data [15]. Words that frequently appear within a single URL
but rarely across the entire dataset are assigned higher weights. In the context of IDS, attack-related terms (e.g.,
union, script, eval) are uncommon in normal traffic, making TF IDF useful for highlighting important tokens
that indicate attacks. The TfidfVectorizer module from the scikit-learn library is used to transform the url
column into a high-dimensional feature matrix. The parameters used are as follows:
1. Max_features = 5000
Limits the number of features to the top 5000 TF-IDF-weighted terms, preventing excessive
dimensionality and reducing computation time, especially given the high variability of URLSs in the
log dataset.
2. Ngram_range = (1, 2)
Considers both unigrams (single words) and bigrams (two-word combinations).
3. Lowercase = True
Converts all tokens to lowercase to maintain consistency and prevent duplicate features due to case
differences.
4. token_pattern =r’[A-Za-z0-9_@./?&=-]+
Customized for URL structure, which includes alphanumeric characters and symbols such as /, =, ?,
and &.

The output of TF-IDF is a high-dimensional, sparse feature matrix, well-suited for classification
models such as SVM.

2.6.2. Numerical Feature Transformation Using Standard Scaler

Two numerical features, status_code and size, must be standardized before being combined with TF-
IDF output. The StandardScaler technique from scikit-learn is applied. StandardScaler normalizes each feature
so that its mean becomes 0 and its standard deviation becomes 1 [16].

IJAIDM Vol. 8, No. 3, November 2025: 788 — 799

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 793

The parameter with_mean = False is used because TF-IDF produces a sparse matrix, making mean-
centering impractical without disrupting sparsity. This ensures efficient memory usage while maintaining an
equal feature scale. Scaling is crucial because the size attribute may range from tens to millions of bytes,
significantly larger than other attributes. Without standardization, models, especially distance-based ones like
SVM, would be dominated by this feature, diminishing the influence of attack-related patterns captured by TF-
IDF. Standard scaling ensures all features contribute proportionally, enabling optimal learning.

2.7. Data Splitting

In this study, the data is split using an 80:20 ratio, where 80% is used for model training and 20% for
performance testing. This ratio is widely applied in text classification and intrusion detection research, as it
effectively balances learning and validation datasets. The splitting process utilizes the train_test_split function
from scikit-learn, with the stratify parameter enabled to maintain class balance in both the training and testing
sets. This approach is crucial for web attack datasets, which are often imbalanced, ensuring that minority attack
classes are properly represented and reducing model bias toward majority classes. The data splitting can be
seen Figure 5.

166 Distribusi Kelas - Training Set Distribusi Kelas - Test Set

1.2 300000 -

1.0 250000
g g
£ 0.8 £ 200000 -
o]
(% [
F= =
T 0.6 S 150000 4
E E
2 2

0.4 100000 4

0.2 50000 4

0.0 : 0- T

N o o
« & # & & & o ¢
& .\é\?‘ SQQ & .\{'\\?’ (‘Qu(\
Wﬁ/ _\(-‘\\b (g/ _\(—\\&
N N
510‘ 5:0‘
attack_type attack_type

Figure 5. Data Split
2.8. Data Imbalance Analysis
The class distribution in the dataset indicates a severe class imbalance issue. Out of a total of 1,650,615
samples, the majority represent normal traffic. Initial class distribution of the dataset can be seen Table 5.

Table 5. Initial Class Distribution of the Dataset

Number of

Attack Type Samples Percentage
Normal 1,649,331 99.92%
SQL Injection 852 0.05%
XSS 125 0.007%
SQL Injection, XSS 307 0.018%
Total Attacks 1,284 0.08%

There are also samples classified as dual-label (sgl_injection, xss), representing a single request that
carries attack payloads from both types. This severe imbalance has serious implications: a model trained
without mitigation will tend to classify all requests as “normal,” resulting in high accuracy but an attack
detection rate close to zero [17].

2.9. Sequential Resampling Strategy

The collected dataset exhibited a severe class imbalance, with normal traffic (majority class)
dominating over 99.9% of the samples, while attack instances (minority class) constituted less than 0.1%. To
mitigate the bias towards the majority class and improve the model's sensitivity to attacks, a sequential hybrid
resampling technique was implemented.

To ensure that the model is not biased toward the majority class, resampling techniques must be
integrated into the training method. In the context of IDS, minimizing False Negatives is the highest operational
priority. This process was executed in two sequential steps:

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

794 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

1. Adaptive Synthetic Sampling (ADASYN)
Used to generate synthetic samples from the minority classes. ADASY N is chosen because it focuses
on creating new samples around minority class samples that are difficult to classify (those near the
decision boundary) [18].

2. Random Undersampling
Used to reduce the number of samples from the majority class (normal). This step has a dual purpose:
reducing the dominance of the normal class during training and saving significant computational
resources on such a large dataset [19].

By sequentially applying ADASYN followed by Random Undersampling, the dataset achieved a
balanced distribution. This hybrid approach ensures that the model learns complex attack boundaries
effectively (via ADASYN) while maintaining computational efficiency and reducing majority class bias (via
Undersampling).

Resampling is integrated into the pipeline (using ImbPipeline from imblearn) and is strictly applied
only to the 80% training data. This procedure prevents data leakage, ensuring that the 20% test data remains
untouched and provides an unbiased performance evaluation.

1e6 Sebelum Resampling 1e6 Setelah ADASYN le6 Setelah ADASYN + UnderSampling
124 12 1.2
104 10 1014
T T o
g & g
£ 08 E 05 £ 08
5 5 5
& A @A
k 0.6 K 0.6 k: 0.6
E E E
2 FS FS
04 04 0.4
02 0z 02
00 00 00-
& o o > & o 5o > o o o
& & ¥ # & & il * & & hd i
& & & & & & ® & &

Figure 6. Before and After Resampling

2.10. Machine Learning Model Training

The training process compares the performance of two primary algorithms, SVM and Random Forest,
selected due to their complementary characteristics and proven effectiveness in text classification and cyber-
attack detection. The parameters used for training both algorithms will be discussed in the table 6.

Table 6. Machine Learning Model Parameters

Model Parameter Description
Support VVector Machine Kemel:l l(l)near ¢ Suitable for high-dimensional data
n_estimators = Prevents overfitting and handles
Random Forest 200max_depth = 15 nonlinear data

To ensure that the obtained results are not limited to a specific dataset, a Stratified K-Fold Cross-
Validation technique [20] with k = 3 was applied.

2.11. Model Evaluation

After training, the generated models are evaluated using a separate testing dataset. In this stage, the
confusion matrix is employed, which provides several metrics such as precision, recall, and accuracy in
classifying SQL Injection, XSS attacks, or both. Additionally, the ROC Curve will be presented along with
comparative performance metric graphs for each of the machine learning algorithms utilized.

3. RESULTS AND ANALYSIS

The objective of this experiment is to detect SQL Injection and XSS attacks using the Random Forest
and SVM algorithms. The initial analysis results indicate that the class distribution is highly imbalanced, where
normal traffic dominates more than 99% of the data. Therefore, data balancing was performed using a
combination of ADASYN and Random Undersampling techniques. All modeling processes were carried out
using the scikit-learn library in a Google Colab environment, with an 80% and 20% split for training and

IJAIDM Vol. 8, No. 3, November 2025: 788 — 799

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 795

testing, respectively. The optimal parameters were obtained through hyperparameter tuning and cross-
validation.

3.1. Model Training Results

The model training process utilized the K-fold cross-validation method with k = 3 on a subset of
100,000 resampled samples. Subsequently, the model was retrained on the entire synthetic dataset to obtain the
final performance results on the test data, which consists of 20% of the total 330,123 samples.

Table 7. Cross-Validation Results
Test

Model CV Accuracy CVF1 Accuracy Test F1 Precision Recall
Random Forest 0.9973 £ 0.0002 0.9974 £ 0.0003 0.9992 0.9994 0.9996 0.9992
SVM 0.8978 + 0.0004 0.9008 + 0.0002 0.9645 0.9813 0.9992 0.9645

Random Forest demonstrates the highest performance across all evaluation metrics, both during cross-
validation and final testing. The testing accuracy reaches 99.92%, with an F1-score of 99.94%, indicating that
the model effectively classifies both attacks and normal traffic. The difference in accuracy values between
cross-validation and testing results is also very small (around 0.2%), which suggests that the model is stable
and does not experience overfitting. Meanwhile, the SVM with a Linear kernel shows fairly good results with
a testing accuracy of 96.45%. The precision and recall values are also considered high for the majority class,
but the F1-score is relatively lower compared to Random Forest. This can be interpreted as meaning that
although SVM is capable of correctly detecting most data patterns, the model tends to be less adaptive to feature
variations in the minority class, especially due to the highly imbalanced nature of the data.

3.2. Classification Analysis
3.2.1. Random Forest

The model demonstrates very strong performance in detecting the normal class, with a precision of
1.0000, a recall of 0.9992, and an F1-score of 0.9996, indicating an almost perfect ability to accurately classify
normal traffic. For the SQL _injection class, the model also performs quite well, with a precision of 0.7257, a
recall of 0.9647, and an F1-score of 0.8283, indicating that the model can correctly identify most SQL Injection
attacks with relatively low error rates. However, the performance decreases significantly in the classes
sgl_injection, xss and xss. The SQL injection and XSS classes have a low precision of 0.2533, although the
recall is high (0.9194), indicating that there are many false positive predictions for these classes. Meanwhile,
the XSS class achieves a precision of 0.3860 and a recall of 0.8000, with an F1-score of 0.5366, suggesting
that the model still struggles to accurately recognize XSS attack patterns.

Table 8. Random Forest Classification Report

Precision Recall F1-score Support

Class Normal 10.000 0.9992 0.9996 329866
Class sql_injection 0.7257 0.9647 0.8283 170
Class sql_injection, xss 0.2533 0.9194 0.3972 62
Class xss 0.3860 0.8800 0.5266 25

Accuracy 0.9992 330123

Macro avg 0.5912 0.9408 0.6904 330123

Weighted avg 0.9996 0.9992 0.9994 330123

Overall, the model achieves an accuracy of 99.92%, but the macro average F1-score is only 0.6904,
indicating a performance imbalance across classes. The high weighted average (0.9994) indicates that this high
accuracy is primarily driven by the significantly larger number of normal class data. Therefore, although the
model appears highly accurate in general, its performance on minority classes, particularly XSS attacks and
the combined SQL Injection and XSS class, still needs improvement through data imbalance handling or model
parameter optimization.

3.2.2. Support Vector Machine

The SVM classification report indicates that the model’s performance remains suboptimal,
particularly in recognizing minority attack classes. The normal class has a perfect precision score of 1.0000
and a recall of 0.9646, resulting in a high F1 score of 0.9819. This means that the model performs very well in
identifying normal traffic and rarely makes errors for this class. However, performance drops drastically for
the attack classes. For the SQL injection class, the precision score is 0.0784, with a recall of 0.8706 and an F1-
score of 0.1438. This indicates that although the model is relatively successful in identifying SQL Injection

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

796 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

attacks, the rate of false positive predictions is extremely high. The SQL injection and XSS classes show even
lower performance, with a precision of only 0.0060, a recall of 0.8387, and an F1-score of 0.0120, indicating
that the model frequently misclassifies this combined attack type. Similarly, for the XSS class, precision is
0.0148, recall is 0.8400, and the resulting F1-score is 0.0290, indicating a severe imbalance between precision
and recall. Overall, although the model achieves a total accuracy of 96.45%, this metric is not entirely reliable
because it is heavily dominated by the significantly larger normal class. The low macro average F1-score
(0.2917) and macro precision (0.2748) show that the model fails to provide balanced performance across
classes. Thus, this SVM model has a strong bias toward the majority class (normal).

Table 9. SVM Classification Report

Precision recall F1-score Support

Class Normal 10.000 0.9646 0.9819 329866
Class sql_injection 0.0784 0.8706 0.1438 170
Class sql_injection, xss 0.0060 0.8387 0.0120 62
Class xss 0.0148 0.8400 0.0290 25

Accuracy 0.9645 330123

Macro avg 0.2748 0.8785 0.2917 330123

Weighted avg 0.9992 0.9645 0.9813 330123

3.3. Confusion Matrix Analysis

In the Random Forest model, the performance is remarkably high with an accuracy of 99.9%. The
normal class is classified extremely well, where 329,607 samples (99.9%) are correctly detected as normal
traffic, with only a very small portion misclassified into other classes. The sql_injection class also shows
excellent results with 96.5% correct predictions, while the sgl_injection, xss and xss classes each achieve
correct classification rates of 91.9% and 88.0%, respectively. Misclassifications in this model are relatively
very low, demonstrating the superior capability of Random Forest in distinguishing each type of attack
accurately. Meanwhile, the SVM model results in a lower accuracy of 96.4%. The normal class is still detected
well (96.5% correct), but there is an increase in misclassification into other classes such as sgl_injection and
sgl_injection, xss. The sql_injection class has a correct prediction rate of 87.1%, while the sgl_injection, xss
and xss classes achieve only 83.9% and 84.0%, respectively. This indicates that SVM still struggles to
differentiate attacks that share similar characteristics, especially between sql_injection and sql_injection, xss.

Confusion Matrix - Random Forest Confusion Matrix - SWM
Accuracy: 0.999 Accuracy: 0.964

129607 [EE 168 2 - 300000 EVESEZM 17324 BSe4 1394 300000

Class normal SRl o 0 0%) Class normal -WETEERN (0.5%) (2.6%) (0.4%)

250000 - 250000

_ N 4 164 0 2 _ A 4 148 14 4
T Classsqlinjection- 5 yor) (a6.50%) (0.0%) (1.29%) 200000 , B Classsalinjection - 5 4oy (g7 10:) (B2%) (2.4%) 200000
m E m =
- s 4 =
g 3 1 57 1 150000 3 8 2 4 52 4 1500008
= Class sqgl_injection, xss - [4.8%) (1.6%) (91.9%) (1.6%) 100000 |= Class sgl_injection, xss - (32%) (6.5%) (83.9%] (6.5%) | L o0000
I 2 0 22 - 50000 .o 2 2 21 - 50000
Class¥ss- 13 0%) (8.0%) (0.0%) 188.0%) Classxss= g0%) (8.0%) (8.0%) (84.0%)
' ' | | -0 ' [' 0 -0
- e w s = c w w
g 2 § k] g 2 § £
A = k=] o] = o =
kg = o o) w
G g £ =i g £
g 3 i3
0 u @
= m
o o
Predicted Label Predicted Label

Figure 7. Confusion Matrix of Random Forest and SVM

3.4. ROC Curve Analysis

A performance comparison between the Random Forest model (left) and the SVM model (right) in
distinguishing each attack class. In the Random Forest model, the curves for the normal, sql injection,
sql_injection, xss, and xss classes lie very close to the top-left axis, indicating a high True Positive Rate (TPR)
and an extremely low False Positive Rate (FPR). The AUC (Area Under the Curve) values for each class are
also nearly perfect, namely 0.999 for normal, 0.999 for sql_injection, 0.999 for sql injection, xss, and 1.000 for
xss. These findings indicate that the Random Forest model can distinguish normal traffic from various attacks
with very high accuracy. In the SVM model, the results are slightly lower compared to Random Forest,
although they still show reasonably good performance. The AUC value for the normal class is 0.996, 0.985 for

IJAIDM Vol. 8, No. 3, November 2025: 788 — 799

IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150 a 797

sgl_injection, 0.970 for sqgl injection, xss, and 0.981 for xss. The ROC curves for SVM tend to be slightly
farther from the top-left axis, indicating that this model has a higher detection error rate compared to Random
Forest. Overall, both models demonstrate strong classification capabilities, but Random Forest proves to be
superior in separating attack classes with higher accuracy and more consistent performance across all classes.

True Positive Rate

ROC Curves - Random Forest

ROC Curves - SVM

1.0

0.8

o
o

14
=

= normal {AUC = 0.999)

—— sqgl_injection (AUC = 0.999)
—— sql_injection, xss (AUC = 0.933)
— xss (AUC = 1.000)

True Positive Rate

0.8

14
&

o
=

0.2

0.0

= normal (AUC = 0.936)

—— sql_injection (AUC = 0.985)
—— sqlinjection, xss (AUC = 0,970)
— xss (AUC = 0.981)

0.0 02 0.4 0.6 X3 10 0.0 a2 04 06 0.8 10
False Positive Rate False Positive Rate

Figure 8. ROC Curve of Random Forest and SVM

3.5. Discussion

Based on all test results, Random Forest has been proven to provide the best performance in detecting
web attacks from HTTP log data. Its ability to handle large datasets and non-linear features makes it superior
compared to SVM. In addition, the ensemble learning mechanism in Random Forest helps reduce prediction
variations caused by differences in training data and increases the stability of predictions. On the other hand,
SVM with a Linear kernel performs well on binary data, but is less optimal for multi-class imbalanced data,
especially when minority classes have very similar patterns. The low precision value indicates that there are
still a relatively high number of false positives, which in the context of cybersecurity can lead to increased
manual analysis workload.

0.989

Berbandingan Metrik Performa Model

0.964

Model
mm Random Forest
m—SvM

0.8

0.6 4

Score

0.4+

02+

0.0

Precision

Accuracy Recall Fl-Scare

Metric

Figure 9. Performance Metric Comparison of Random Forest and SVM

The Random Forest model consistently achieves higher metric values compared to SVM across all
evaluation aspects based on the graph. Overall, the integration of the ADASYN method with Random Forest
has proven effective in addressing class imbalance and improving the detection of low frequency attacks. With
an almost perfect AUC and an accuracy of 99.9%, this model is suitable to be used as the foundation for a
machine learning based Intrusion Detection System (IDS) for web servers. Although the results show high
performance on the Nginx log dataset, further evaluation is needed on different web servers, considering that
the differences in log structure and attack patterns on other servers such as Apache or I1S may reduce model
accuracy. Testing using external log datasets is recommended to assess the generalization ability and stability
of the model, ensuring that threat detection remains effective across various server environments and is not
limited to local data.

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

798 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

4. CONCLUSION

The primary issue in this study is data imbalance, where the number of normal data is significantly
larger than that of the attack data. To address this issue, a combination of the ADASYN method and Random
Undersampling was used, which proved effective in balancing the class distribution. The Random Forest
algorithm demonstrated the best performance compared to SVM, achieving an accuracy of 99.92%, an F1-
score of 99.94%, and an AUC of 0.9994. These results indicate the model’s strong ability to distinguish
between normal traffic and attacks during both training and testing stages.

The SVM algorithm also provided fairly good performance; however, it tends to struggle in
identifying minority classes, especially in multi-class classification cases with uneven data distribution. The
low precision value for attack classes indicates that this model still produces a considerable number of false
positives, which may impact the efficiency of the detection system when implemented in real environments.
The use of various evaluation metrics, such as precision, recall, F1-score, and the ROC Curve, provides a more
comprehensive performance assessment than relying solely on accuracy. This approach ensures that the model
achieves high accuracy while maintaining optimal capability in detecting attack patterns with minimal errors.
Thus, this study successfully demonstrates that the combination of appropriate resampling strategies and
ensemble learning approaches, such as Random Forest, can significantly enhance the performance of web
attack detection systems. These findings suggest that machine learning—based methods are a viable solution
for automated attack detection using HTTP logs.

Practically, the resulting Random Forest model has the potential to be implemented as part of an
adaptive Intrusion Detection System (IDS) on web servers, as mentioned in the abstract. This system can
monitor logs in real-time, detect SQL Injection and XSS patterns, and provide early warnings to enhance the
security of web applications. For future research, it is recommended to conduct real-time testing in production
environments, evaluate the model on log datasets from other web servers (such as Apache or 1IS) to assess
generalization capability, and explore Deep Learning algorithms (such as CNN-LSTM or Transformer-based
models) that have the potential to capture more complex and varied attack patterns.

ACKNOWLEDGEMENTS

The author would like to express sincere gratitude to all lecturers, colleagues, and supporting
institutions that provided guidance, technical assistance, and valuable feedback throughout the completion of
this research on analyzing SQL Injection and Cross-Site Scripting (XSS) attacks on web server logs using
machine learning.

REFERENCES

[1] Chen Y, Liang G, Wang Q. Research on SQL Injection Detection Technology Based on Content Matching and
Deep Learning. Computers, Materials and Continua 2025;84:1145-67. https://doi.org/10.32604/cmc.2025.063319.

[2] OWASP Top 10:2021 n.d. https://owasp.org/Top10/A03_2021-Injection/ (accessed September 18, 2025).

[3] Kavitha C, Saravanan M, Gadekallu TR, Nimala K, Kavin BP, Lai WC. Filter-Based Ensemble Feature Selection
and Deep Learning Model for Intrusion Detection in Cloud Computing. Electronics (Switzerland) 2023;12.
https://doi.org/10.3390/electronics12030556.

[4] Rahayu A, Yulyanti E, Ghalib M. Systematic Literature Review: SQL Injection Detection Vulnerability Using
Machine Learning. Jurnal Media Infotama 2025;21:15-20. https://doi.org/10.37676/jmi.v21i1.6702.

[5] Qin Q, Li Y, Mi Y, Shen J, Wu K, Wang Z. Detecting XSS with Random Forest and Multi-Channel Feature
Extraction. Computers, Materials and Continua 2024;80:843—74. https://doi.org/10.32604/cmc.2024.051769.

[6] Triloka J, Hartono H, Sutedi S. Detection of SQL Injection Attack Using Machine Learning Based On Natural
Language Processing. International Journal ~ of Artificial Intelligence Research 2022;6.
https://doi.org/10.29099/ijair.v6i2.355.

[7] Rosca CM, Stancu A, Popescu C. Machine Learning Models for SQL Injection Detection. Electronics (Switzerland)
2025;14. https://doi.org/10.3390/electronics14173420.

[8] Tadhani JR, Vekariya V, Sorathiya V, Alshathri S, El-Shafai W. Securing web applications against XSS and SQLI
attacks using a novel deep learning approach. Sci Rep 2024;14. https://doi.org/10.1038/s41598-023-48845-4.

[91 Alsarhan A, Hussein F, Moh S, El-Salhi FS. The Effect of Preprocessing Techniques, Applied to Numeric Features,
on Classification Algorithms’ Performance. Data (Basel) 2021. https://doi.org/10.3390/data6020011.

[10] Chen Q, Banerjee A, Demiralp C, Durrett G, Dillig I. Data Extraction via Semantic Regular Expression Synthesis.
Proceedings of the ACM on Programming Languages 2023;7. https://doi.org/10.1145/3622863.

[11] McKenzie J, Rajapakshe R, Shen H, Rajapakshe S, Lin A. A Semiautomated Chart Review for Assessing the
Development of Radiation Pneumonitis Using Natural Language Processing: Diagnostic Accuracy and Feasibility
Study. JMIR Med Inform 2021;9. https://doi.org/10.2196/29241.

[12] SQL injection cheat sheet n.d. https://portswigger.net/web-security/sql-injection/cheat-sheet (accessed September
18, 2025).

[13] Cross-site scripting (XSS) cheat sheet n.d. https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
(accessed September 18, 2025).

IJAIDM Vol. 8, No. 3, November 2025: 788 — 799

IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 799

[14]
[15]

[16]

[17]

(18]

[19]

[20]

Jin Z. Principle, Methodology and Application for Data Cleaning techniques. BCP Business & Management FIBA
2022;26. https://doi.org/10.54691/bcpbm.v26i.2032.

Lan F. Research on Text Similarity Measurement Hybrid Algorithm with Term Semantic Information and TF-IDF
Method. Advances in Multimedia 2022. https://doi.org/10.1155/2022/7923262.

Firmansyah MR, Astuti YP. Stroke Classification Comparison with KNN through Standardization and
Normalization Techniques. Advance Sustainable Science, Engineering and Technology 2024;6.
https://doi.org/10.26877/asset.v6i1.17685.

Kamal H. Advanced Hybrid Transformer-CNN Deep Learning Model for Effective Intrusion Detection Systems
with Class Imbalance Mitigation Using Resampling Techniques. Future Internet 2024;16.
https://doi.org/10.3390/fi16120481.

Zakariah M, AlQahtani SA, Al-Rakhami MS. Machine Learning-Based Adaptive Synthetic Sampling Technique
for Intrusion Detection. Applied Sciences (Switzerland) 2023;13. https://doi.org/10.3390/app13116504.

Ratnasari AP. Performance of Random Oversampling, Random Undersampling, and SMOTE-NC Methods in
Handling Imbalanced Class in Classification Models. International Journal of Scientific Research and Management
(IUSRM) 2024;12:494-501. https://doi.org/10.18535/ijsrm/v12i04.m03.

Yustanti W, Iriawan N, Irhamah. Categorical encoder based performance comparison in preprocessing imbalanced
multiclass classification. Indonesian Journal of Electrical Engineering and Computer Science 2023;31:1705-15.
https://doi.org/10.11591/ijeecs.v31.i3.pp1705-1715.

BIBLIOGRAPHY OF AUTHORS

Adi Septian is a student at Universitas Widyatama specializing in Applied Networking. Born in Bandung
on September 30, 1990, his academic interests include network management, server security, and
virtualization technologies for IT infrastructure optimization. He currently serves as a Network and Server
Administrator at a private university in Indonesia, where he applies his technical expertise to support
research and educational systems.

Atep Aulia Rahman, born on December 9, 1983, in Bandung, Indonesia, is a Lektor and specialist lecturer
in IT networking. He holds a Master's in Information Systems from STMIK LIKMI Bandung (2017), a
Bachelor's in Computer Engineering from STMIK LPKIA Bandung (2005-2007), and a Diploma from
Politeknik LPKIA Bandung (2002—2005). Currently teaching at Universitas Widyatama (2021—present)
in subjects including Linux System Administration, Computer Networking (Cisco & Mikrotik), Network
Security, and Digital Forensics, he previously lectured at Telkom University (2023) and PKN STMIK
LPKIA (2014-2023). Rahman also serves as a professional trainer for Cisco, Mikrotik, Al, and Cyber
Security certifications at institutions like B One Corporation, OSTech Indonesia, and BNSP.

Analysis of SQL Injection and Cross-Site Scripting... (Septian and Rahman)

