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 The increasing complexity of cyber threats requires accurate detection 

systems to identify attack patterns on web servers. This study aims to 

detect SQL Injection and Cross-Site Scripting (XSS) attacks in Nginx 

access logs using machine learning algorithms. Log data were 

processed through regular expressions for parsing and labeling, 

resulting in 1,650,615 samples. Data imbalance was addressed using a 

combination of ADASYN and Random Undersampling. Two 

algorithms, Random Forest and Support Vector Machine (SVM), were 

compared based on accuracy, precision, recall, F1-score, and ROC 

curve metrics. The results show that Random Forest achieved the best 

performance with 99.92% accuracy, 99.94% F1-score, and 0.9994 

AUC, while SVM obtained an accuracy of 96.45%. The combination 

of resampling and ensemble learning significantly enhances the 

effectiveness of log-based attack detection, providing a promising 

foundation for the development of adaptive Intrusion Detection 

Systems (IDS) in web server environments. 
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1. INTRODUCTION 

The increasing complexity of cyber threats has placed web server security as a top priority. Attacks 

such as SQL Injection and Cross-Site Scripting (XSS) have become serious concerns, as both exploit 

vulnerabilities in web applications to steal sensitive data, manipulate systems, or disrupt operations [1]. 

According to OWASP, in 2021 SQL Injection ranked 3rd with a total of 274,000 incidents, and XSS is one of 

the major vulnerabilities included in the list [2]. OWASP Top 10 Web Vulnerabilities 2017–2021 can be seen 

Figure 1. 

 

Figure 1. OWASP Top 10 Web Vulnerabilities 2017–2021 
 

In this context, it is crucial to develop detection methods that are not only accurate but also efficient 

in maintaining the integrity of information systems. One relevant approach is the application of machine 
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learning as a tool for classification and attack pattern detection. This study covers the process from collecting 

attack datasets to implementing machine learning algorithms specifically Random Forest and Support Vector 

Machine (SVM) in detecting SQL Injection and XSS attacks through the analysis of user input patterns and 

relevant log attributes. The dataset used includes various SQL Injection and XSS attack patterns obtained from 

Nginx web server access log files, which were previously parsed and labeled using regular expression (regex) 

techniques according to the attack types being tested. Validation and preprocessing procedures were carried 

out to ensure data quality, including normalization and relevant feature extraction. With this approach, the 

resulting model is expected to detect attacks with high accuracy while providing deeper insight into complex 

attack patterns [3]. 

In its application, the Random Forest algorithm is a relevant choice because it can process data with 

many features and is less prone to overfitting. In previous research, the Random Forest algorithm demonstrated 

the highest performance in detecting SQL Injection vulnerabilities with 99.78% accuracy, while the SVM 

algorithm ranked next with 94% accuracy [4]. The approach was further extended by [5] hrough the integration 

of Random Forest with a multi-channel deep learning architecture for XSS detection, resulting in nearly perfect 

accuracy across multiple public datasets. Based on these values, both algorithms will be adopted in this study. 

The study conducted by [6] implemented several machine learning algorithms, including SVM, KNN, and 

Naïve Bayes, to detect SQL Injection attacks based on payload analysis and demonstrated competitive 

classification performance across various testing scenarios. A similar approach was proposed by [7] who 

developed a two-stage classification pipeline utilizing feature extraction and ensemble learning, resulting in 

consistent improvements in SQL Injection detection accuracy on structured datasets. In the context of XSS 

attacks, [8] introduced a hybrid CNN–LSTM model capable of detecting both SQL Injection and XSS 

simultaneously, with experimental results on the HTTP CSIC 2010 dataset showing high accuracy in 

identifying content-based attack patterns in HTTP requests. Overall, these studies affirm the effectiveness of 

machine learning in detecting web-based attacks, although most still rely on public or structured datasets rather 

than real-world web server logs. 

The research gap addressed in this study lies in the aspects of data sources, detection levels, and 

combined attack types. Most previous studies detect SQL Injection or XSS attacks at the application level using 

simulated payloads or public datasets such as CSE CIC IDS2018 and the Kaggle SQL Injection Dataset, which 

are structured and do not represent real-world server log conditions. Moreover, previous research generally 

focuses on detecting a single type of attack either SQL Injection or XSS without considering the possibility of 

hybrid attacks that may occur simultaneously within a single web traffic flow. The novelty of this research 

bridges these gaps by introducing a new approach that detects both SQL Injection and XSS attacks based on a 

local dataset derived from actual Nginx web server logs rather than public datasets, thereby producing results 

that more accurately reflect real world conditions. Additionally, this study proposes a preprocessing pipeline 

based on regular expression (regex) for the parsing and labeling process of both SQL Injection and XSS attacks. 

Furthermore, this study compares the performance results of the two algorithms in detecting attacks 

using evaluation criteria such as accuracy, precision, recall, and F1 score as indicators of model performance. 

In addition, an analysis is conducted on input features that have a significant influence on the classification 

process, enabling the model not only to detect attacks but also to provide deeper insight into the characteristics 

of each attack type. With this approach, the findings of this research are expected to make a tangible 

contribution to the development of automated detection-based security systems that can adapt to the rapidly 

evolving landscape of cyber threats. 

 

2.  RESEARCH METHOD 

This study applies a comparative experimental method with a quantitative approach to evaluate the 

performance of various machine learning algorithms in identifying SQL Injection and XSS attacks based on 

web server log data. This experiment compares the performance of the Random Forest and SVM algorithms 

using the same Nginx web server log dataset to ensure the validity of the comparison results. The research flow 

is illustrated in Figure 2. In general, the research process is divided into six main stages: 

1. Collection of Nginx Log Data 

2. Log Parsing and Information Extraction 

3. Data Labeling 

4. Preprocessing and Feature Extraction 

5. Sequential Resampling Strategy 

6. Model Training and Evaluation 

 

2.1.   Data Collection 

The raw data used in this study were obtained from Nginx access logs collected from a real web server 

environment. These logs are typically stored as text files on the server and contain records of every request 



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 8, No. 3, November 2025:  788 – 799 

790 

made to the web server. The format of Nginx logs may vary depending on the configuration and type of request. 

The default format typically includes information such as the client’s IP address, timestamp, HTTP method 

(e.g., GET, POST), requested URL, HTTP status code (e.g., 200, 404, 503), user agent (which typically 

indicates the browser name), and other relevant parameters. An example of a log entry is shown in Figure 3. 

Each log line represents a single user request, including the IP address, HTTP method, accessed 

URL, response status code, and data size. This raw data is stored as a log file (access.log) and serves as the 

primary source for analysis. 

 

 

Figure 2. Research Flow 

 

 

Figure 3. Example of Log Entry 

 

2.2.   Data Preprocessing 

Data preprocessing is a crucial stage in this research because the obtained web server log data is still 

in raw form and contains various information such as IP address, timestamp, HTTP method, URL, status code, 

and user agent. Without preprocessing, this data cannot be directly utilized by machine learning algorithms, 

thus, it needs to be processed to ensure it is more structured, clean, and suitable for analysis [9]. 

 

2.3.   Log Data Parsing 

Parsing is performed to extract relevant information from each log line, which will later be used to 

construct a structured dataset. Regex techniques were chosen because of their flexibility in matching complex 

text patterns and their suitability for extracting specific information from logs, such as IP address, timestamp, 

HTTP method, URL, status code, and response size [10]. Additionally, regex is easy to integrate with the 

Python programming language used in this study [11]. Log parsing regex script is shown in Figure 4. 

 

 

Figure 4. Log Parsing Regex Script 

 

The result of the parsing process is raw data that has been successfully extracted and organized into a 

CSV format, enabling further processing by machine learning algorithms. Irrelevant elements have been 

removed, leaving only the necessary information for the next stages. With a cleaner and more organized 

structure, the parsed data is now ready for further processing. The first ten rows of parsing results can be seen 

Table 1. 

 

Table 1. The first ten rows of parsing results. 

No IP Date Method URL Status_code Size 

0 103.78.195.111 29-Aug-24 POST 
/wp-

cron.php?doing_wp_cron=1724930667.81729698..

. 

200 31 

1 52.167.144.222 29-Aug-24 GET /?kxs2967w4yw1 200 26101 
2 52.167.144.138 29-Aug-24 GET /?product%2FP%3F662747=wgatemenz 200 26101 

3 103.78.195.111 29-Aug-24 POST 
/wp-

cron.php?doing_wp_cron=1724930811.96527004..

. 

200 31 

4 52.167.144.222 29-Aug-24 GET /?yqwzcwma 200 26101 

5 85.208.96.206 29-Aug-24 GET 
/page/3/?MecDisplay=default&eventDate=2022-

10-... 
200 22792 
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No IP Date Method URL Status_code Size 

6 103.78.195.111 29-Aug-24 POST 

/wp-

cron.php?doing_wp_cron=1742265457.27636504..
. 

200 31 

7 66.249.66.196 29-Aug-24 GET /kocok/?burung=BONUS123 404 19593 

8 103.78.195.111 29-Aug-24 POST 
/wp-

cron.php?doing_wp_cron=1742265543.67830801..

. 

200 31 

9 52.167.144.145 29-Aug-24 GET /index.php?z/R3868983 301 5 

 

This table consists of 1,650,615 rows and 6 columns, where each column represents important 

information related to user or bot activities accessing a website. From all features in the Nginx access log file, 

only the IP, date, method, URL, status code, and size features are used for analysis, as shown in Table 2 for 

the attribute dataset. The remaining features, namely timestamp and user-agent, are not included because they 

are less relevant to the detection patterns of SQL Injection and XSS attacks. 

 

Table 2. Dataset Attributes 

Attribute Description 

IP Client IP address 

Date Access date 

Method HTTP request method sent to the server 
URL URL path accessed by the client 

Status_code HTTP response code returned by the server 
Size Response size (in bytes) 

 

The regex pattern used was specifically designed to extract six primary attributes. These attributes 

include the client IP address (ip), date and time components (date), HTTP method (method), accessed URL 

path (url), HTTP response status code (status_code), and response size (size). The extraction of the url column 

is particularly critical because it serves as the main textual input expected to contain potential attack payloads. 

 

2.4.   Data Labeling 

After the parsing stage, the dataset is labeled based on detected attack patterns. The labeling technique 

was performed using regex to identify characteristics of malicious behavior. In this research, two types of 

attacks are the primary focus: SQL Injection and XSS. Both are categorized as injection attacks, which remain 

among the most critical threats to web applications. The regex patterns used to detect SQL Injection attacks in 

the log, particularly within the url attribute, involve matching specific indicators such as single quotes followed 

by harmful SQL commands like UNION, SELECT, INSERT, DROP, or logical conditions like OR 1=1, 

database table names such as information_schema, wp, xp, or command separators commonly exploited to 

manipulate queries [12]. For XSS detection, the regex rules target malicious scripts injected on the client side, 

such as the <script> tag, inline event attributes (on...=), JavaScript: scheme usage, and access attempts to the 

document. cookie, DOM manipulation actions (innerHTML, window.location), as well as the execution of 

functions like eval(), base(), and innerHTML [13]. 

The data labeling process provides contextual categorization to each parsed log entry, enabling the 

dataset to include attributes that can be effectively utilized in advanced analysis, such as machine learning 

model training. This labeling aims to identify and classify request types into specific categories based on 

detected patterns, particularly from the url column where attack parameters are typically embedded. The results 

shows the newly formed dataset containing an attack type column as a label for each data row. 

 

Table 3. The first ten rows of data labeling results. 

No Ip Date Method url 
Status_

code 
Size 

Attack_

type 

0 103.78.195.111 29-Aug-24 POST 
/wp-

cron.php?doing_wp_cron=1724930667.8172

9698... 

200 31 normal 

1 52.167.144.222 29-Aug-24 GET /?kxs2967w4yw1 200 26101 normal 

2 52.167.144.138 29-Aug-24 GET /?product%2FP%3F662747=wgatemenz 200 26101 normal  

3 103.78.195.111 29-Aug-24 POST 

/wp-

cron.php?doing_wp_cron=1724930811.9652

7004... 

200 31 normal  

4 52.167.144.222 29-Aug-24 GET /?yqwzcwma 200 26101 normal  

5 85.208.96.206 29-Aug-24 GET 
/page/3/?MecDisplay=default&eventDate=2

022-10-... 
200 22792 normal  

6 103.78.195.111 29-Aug-24 POST 

/wp-

cron.php?doing_wp_cron=1742265457.2763

6504... 

200 31 Normal  
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No Ip Date Method url 
Status_

code 
Size 

Attack_

type 
7 66.249.66.196 29-Aug-24 GET /kocok/?burung=BONUS123 404 19593 normal  

8 103.78.195.111 29-Aug-24 POST 

/wp-

cron.php?doing_wp_cron=1742265543.6783
0801... 

200 31 normal  

9 52.167.144.145 29-Aug-24 GET /index.php?z/R3868983 301 5 normal  

 

2.5.   Data Cleaning 

The data cleaning stage was carried out to improve the quality of the dataset by removing irrelevant 

special characters, checking and ensuring that there are no missing values in essential attributes, and 

eliminating duplicate data that could potentially introduce bias into the model [14]. Data cleaning was 

performed by removing duplicate records, deleting empty values in the URL and attack type columns, and 

removing non-alphabetic characters to maintain consistency during tokenization. The Missing Value Check 

Result is presented in Table 4. 

 

Table 4. Missing Value Check Result 

Attribute Missing value 

IP 0 

Date 0 

Method 0 
URL 0 

Status_code 0 
Size 0 

Attack_size 0 

 

  It has been confirmed that there are no missing values in the dataset, allowing the process to proceed 

to the next stage without further processing. 

 

2.6.  Feature Extraction 

The sampled data must then be converted into a numerical representation suitable for machine learning 

algorithms. Feature engineering involves handling both textual features (url) and numerical features (status 

code, size). 

 

2.6.1. Textual Feature Extraction Using TF-IDF Vectorization 

The URL column is the most informative feature vector. The Term Frequency Inverse Document 

Frequency (TF-IDF) method is selected for text transformation. The principle of TF-IDF is to assign specific 

scores or weights to each word or character in the data [15]. Words that frequently appear within a single URL 

but rarely across the entire dataset are assigned higher weights. In the context of IDS, attack-related terms (e.g., 

union, script, eval) are uncommon in normal traffic, making TF IDF useful for highlighting important tokens 

that indicate attacks. The TfidfVectorizer module from the scikit-learn library is used to transform the url 

column into a high-dimensional feature matrix. The parameters used are as follows: 

1. Max_features = 5000 

Limits the number of features to the top 5000 TF-IDF-weighted terms, preventing excessive 

dimensionality and reducing computation time, especially given the high variability of URLs in the 

log dataset. 

2. Ngram_range = (1, 2) 

Considers both unigrams (single words) and bigrams (two-word combinations). 

3. Lowercase = True 

Converts all tokens to lowercase to maintain consistency and prevent duplicate features due to case 

differences. 

4. token_pattern = r’[A-Za-z0-9_@./?&=-]+’ 

Customized for URL structure, which includes alphanumeric characters and symbols such as /, =, ?, 

and &. 
 

The output of TF-IDF is a high-dimensional, sparse feature matrix, well-suited for classification 

models such as SVM. 
 

2.6.2. Numerical Feature Transformation Using Standard Scaler 

Two numerical features, status_code and size, must be standardized before being combined with TF-

IDF output. The StandardScaler technique from scikit-learn is applied. StandardScaler normalizes each feature 

so that its mean becomes 0 and its standard deviation becomes 1 [16]. 
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The parameter with_mean = False is used because TF-IDF produces a sparse matrix, making mean-

centering impractical without disrupting sparsity. This ensures efficient memory usage while maintaining an 

equal feature scale. Scaling is crucial because the size attribute may range from tens to millions of bytes, 

significantly larger than other attributes. Without standardization, models, especially distance-based ones like 

SVM, would be dominated by this feature, diminishing the influence of attack-related patterns captured by TF-

IDF. Standard scaling ensures all features contribute proportionally, enabling optimal learning. 

 

2.7.   Data Splitting 

In this study, the data is split using an 80:20 ratio, where 80% is used for model training and 20% for 

performance testing. This ratio is widely applied in text classification and intrusion detection research, as it 

effectively balances learning and validation datasets. The splitting process utilizes the train_test_split function 

from scikit-learn, with the stratify parameter enabled to maintain class balance in both the training and testing 

sets. This approach is crucial for web attack datasets, which are often imbalanced, ensuring that minority attack 

classes are properly represented and reducing model bias toward majority classes. The data splitting can be 

seen Figure 5. 

 

 

Figure 5. Data Split 

 

2.8.   Data Imbalance Analysis 

The class distribution in the dataset indicates a severe class imbalance issue. Out of a total of 1,650,615 

samples, the majority represent normal traffic. Initial class distribution of the dataset can be seen Table 5. 

 

Table 5. Initial Class Distribution of the Dataset 

Attack Type 
Number of 
Samples 

Percentage 

Normal 1,649,331 99.92% 

SQL Injection 852 0.05% 

XSS 125 0.007% 
SQL Injection, XSS 307 0.018% 

Total Attacks 1,284 0.08% 

 

There are also samples classified as dual-label (sql_injection, xss), representing a single request that 

carries attack payloads from both types. This severe imbalance has serious implications: a model trained 

without mitigation will tend to classify all requests as “normal,” resulting in high accuracy but an attack 

detection rate close to zero [17]. 

 

2.9.   Sequential Resampling Strategy 

 The collected dataset exhibited a severe class imbalance, with normal traffic (majority class) 

dominating over 99.9% of the samples, while attack instances (minority class) constituted less than 0.1%. To 

mitigate the bias towards the majority class and improve the model's sensitivity to attacks, a sequential hybrid 

resampling technique was implemented. 

 To ensure that the model is not biased toward the majority class, resampling techniques must be 

integrated into the training method. In the context of IDS, minimizing False Negatives is the highest operational 

priority. This process was executed in two sequential steps: 
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1. Adaptive Synthetic Sampling (ADASYN) 

Used to generate synthetic samples from the minority classes. ADASYN is chosen because it focuses 

on creating new samples around minority class samples that are difficult to classify (those near the 

decision boundary) [18]. 

 

2. Random Undersampling 

Used to reduce the number of samples from the majority class (normal). This step has a dual purpose: 

reducing the dominance of the normal class during training and saving significant computational 

resources on such a large dataset [19]. 

 

By sequentially applying ADASYN followed by Random Undersampling, the dataset achieved a 

balanced distribution. This hybrid approach ensures that the model learns complex attack boundaries 

effectively (via ADASYN) while maintaining computational efficiency and reducing majority class bias (via 

Undersampling). 

Resampling is integrated into the pipeline (using ImbPipeline from imblearn) and is strictly applied 

only to the 80% training data. This procedure prevents data leakage, ensuring that the 20% test data remains 

untouched and provides an unbiased performance evaluation. 

 

 

Figure 6. Before and After Resampling 

 

2.10.  Machine Learning Model Training 

 The training process compares the performance of two primary algorithms, SVM and Random Forest, 

selected due to their complementary characteristics and proven effectiveness in text classification and cyber-

attack detection. The parameters used for training both algorithms will be discussed in the table 6. 

 

Table 6. Machine Learning Model Parameters 

Model Parameter Description 

Support Vector Machine 
Kernel = ‘linear’C 

= 1.0 
Suitable for high-dimensional data 

Random Forest 
n_estimators = 

200max_depth = 15 
Prevents overfitting and handles 

nonlinear data 

 

To ensure that the obtained results are not limited to a specific dataset, a Stratified K-Fold Cross-

Validation technique [20] with k = 3 was applied. 

 

2.11.  Model Evaluation 

After training, the generated models are evaluated using a separate testing dataset. In this stage, the 

confusion matrix is employed, which provides several metrics such as precision, recall, and accuracy in 

classifying SQL Injection, XSS attacks, or both. Additionally, the ROC Curve will be presented along with 

comparative performance metric graphs for each of the machine learning algorithms utilized. 

 

3.  RESULTS AND ANALYSIS 

The objective of this experiment is to detect SQL Injection and XSS attacks using the Random Forest 

and SVM algorithms. The initial analysis results indicate that the class distribution is highly imbalanced, where 

normal traffic dominates more than 99% of the data. Therefore, data balancing was performed using a 

combination of ADASYN and Random Undersampling techniques. All modeling processes were carried out 

using the scikit-learn library in a Google Colab environment, with an 80% and 20% split for training and 
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testing, respectively. The optimal parameters were obtained through hyperparameter tuning and cross-

validation. 

 

3.1.   Model Training Results 

The model training process utilized the K-fold cross-validation method with k = 3 on a subset of 

100,000 resampled samples. Subsequently, the model was retrained on the entire synthetic dataset to obtain the 

final performance results on the test data, which consists of 20% of the total 330,123 samples. 

 

Table 7. Cross-Validation Results 

Model CV Accuracy CV F1 
Test 

Accuracy 
Test F1 Precision Recall 

Random Forest 0.9973 ± 0.0002 0.9974 ± 0.0003 0.9992 0.9994 0.9996 0.9992 

SVM 0.8978 ± 0.0004 0.9008 ± 0.0002 0.9645 0.9813 0.9992 0.9645 

 

Random Forest demonstrates the highest performance across all evaluation metrics, both during cross-

validation and final testing. The testing accuracy reaches 99.92%, with an F1-score of 99.94%, indicating that 

the model effectively classifies both attacks and normal traffic. The difference in accuracy values between 

cross-validation and testing results is also very small (around 0.2%), which suggests that the model is stable 

and does not experience overfitting. Meanwhile, the SVM with a Linear kernel shows fairly good results with 

a testing accuracy of 96.45%. The precision and recall values are also considered high for the majority class, 

but the F1-score is relatively lower compared to Random Forest. This can be interpreted as meaning that 

although SVM is capable of correctly detecting most data patterns, the model tends to be less adaptive to feature 

variations in the minority class, especially due to the highly imbalanced nature of the data. 

 

3.2.   Classification Analysis 

3.2.1. Random Forest 

The model demonstrates very strong performance in detecting the normal class, with a precision of 

1.0000, a recall of 0.9992, and an F1-score of 0.9996, indicating an almost perfect ability to accurately classify 

normal traffic. For the SQL_injection class, the model also performs quite well, with a precision of 0.7257, a 

recall of 0.9647, and an F1-score of 0.8283, indicating that the model can correctly identify most SQL Injection 

attacks with relatively low error rates. However, the performance decreases significantly in the classes 

sql_injection, xss and xss. The SQL injection and XSS classes have a low precision of 0.2533, although the 

recall is high (0.9194), indicating that there are many false positive predictions for these classes. Meanwhile, 

the XSS class achieves a precision of 0.3860 and a recall of 0.8000, with an F1-score of 0.5366, suggesting 

that the model still struggles to accurately recognize XSS attack patterns. 

 

Table 8. Random Forest Classification Report 

  Precision Recall F1-score Support 

Class Normal 10.000 0.9992 0.9996 329866 

Class sql_injection 0.7257 0.9647 0.8283 170 

Class sql_injection, xss 0.2533 0.9194 0.3972 62 

Class xss 0.3860 0.8800 0.5266 25 
          

Accuracy     0.9992 330123 

Macro avg 0.5912 0.9408 0.6904 330123 
Weighted avg 0.9996 0.9992 0.9994 330123 

 

Overall, the model achieves an accuracy of 99.92%, but the macro average F1-score is only 0.6904, 

indicating a performance imbalance across classes. The high weighted average (0.9994) indicates that this high 

accuracy is primarily driven by the significantly larger number of normal class data. Therefore, although the 

model appears highly accurate in general, its performance on minority classes, particularly XSS attacks and 

the combined SQL Injection and XSS class, still needs improvement through data imbalance handling or model 

parameter optimization. 

 

3.2.2.  Support Vector Machine 

The SVM classification report indicates that the model’s performance remains suboptimal, 

particularly in recognizing minority attack classes. The normal class has a perfect precision score of 1.0000 

and a recall of 0.9646, resulting in a high F1 score of 0.9819. This means that the model performs very well in 

identifying normal traffic and rarely makes errors for this class. However, performance drops drastically for 

the attack classes. For the SQL injection class, the precision score is 0.0784, with a recall of 0.8706 and an F1-

score of 0.1438. This indicates that although the model is relatively successful in identifying SQL Injection 
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attacks, the rate of false positive predictions is extremely high. The SQL injection and XSS classes show even 

lower performance, with a precision of only 0.0060, a recall of 0.8387, and an F1-score of 0.0120, indicating 

that the model frequently misclassifies this combined attack type. Similarly, for the XSS class, precision is 

0.0148, recall is 0.8400, and the resulting F1-score is 0.0290, indicating a severe imbalance between precision 

and recall. Overall, although the model achieves a total accuracy of 96.45%, this metric is not entirely reliable 

because it is heavily dominated by the significantly larger normal class. The low macro average F1-score 

(0.2917) and macro precision (0.2748) show that the model fails to provide balanced performance across 

classes. Thus, this SVM model has a strong bias toward the majority class (normal). 

 

Table 9. SVM Classification Report 
 Precision recall F1-score Support 

Class Normal 10.000 0.9646 0.9819 329866 

Class sql_injection 0.0784 0.8706 0.1438 170 

Class sql_injection, xss 0.0060 0.8387 0.0120 62 
Class xss 0.0148 0.8400 0.0290 25      
Accuracy   0.9645 330123 

Macro avg 0.2748 0.8785 0.2917 330123 

Weighted avg 0.9992 0.9645 0.9813 330123 

 

3.3.   Confusion Matrix Analysis 

In the Random Forest model, the performance is remarkably high with an accuracy of 99.9%. The 

normal class is classified extremely well, where 329,607 samples (99.9%) are correctly detected as normal 

traffic, with only a very small portion misclassified into other classes. The sql_injection class also shows 

excellent results with 96.5% correct predictions, while the sql_injection, xss and xss classes each achieve 

correct classification rates of 91.9% and 88.0%, respectively. Misclassifications in this model are relatively 

very low, demonstrating the superior capability of Random Forest in distinguishing each type of attack 

accurately. Meanwhile, the SVM model results in a lower accuracy of 96.4%. The normal class is still detected 

well (96.5% correct), but there is an increase in misclassification into other classes such as sql_injection and 

sql_injection, xss. The sql_injection class has a correct prediction rate of 87.1%, while the sql_injection, xss 

and xss classes achieve only 83.9% and 84.0%, respectively. This indicates that SVM still struggles to 

differentiate attacks that share similar characteristics, especially between sql_injection and sql_injection, xss. 

 

 
 

Figure 7. Confusion Matrix of Random Forest and SVM 

 

3.4.   ROC Curve Analysis 

A performance comparison between the Random Forest model (left) and the SVM model (right) in 

distinguishing each attack class. In the Random Forest model, the curves for the normal, sql injection, 

sql_injection, xss, and xss classes lie very close to the top-left axis, indicating a high True Positive Rate (TPR) 

and an extremely low False Positive Rate (FPR). The AUC (Area Under the Curve) values for each class are 

also nearly perfect, namely 0.999 for normal, 0.999 for sql_injection, 0.999 for sql injection, xss, and 1.000 for 

xss. These findings indicate that the Random Forest model can distinguish normal traffic from various attacks 

with very high accuracy. In the SVM model, the results are slightly lower compared to Random Forest, 

although they still show reasonably good performance. The AUC value for the normal class is 0.996, 0.985 for 
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sql_injection, 0.970 for sql injection, xss, and 0.981 for xss. The ROC curves for SVM tend to be slightly 

farther from the top-left axis, indicating that this model has a higher detection error rate compared to Random 

Forest. Overall, both models demonstrate strong classification capabilities, but Random Forest proves to be 

superior in separating attack classes with higher accuracy and more consistent performance across all classes. 

 

 

Figure 8. ROC Curve of Random Forest and SVM 

 

3.5.   Discussion 

Based on all test results, Random Forest has been proven to provide the best performance in detecting 

web attacks from HTTP log data. Its ability to handle large datasets and non-linear features makes it superior 

compared to SVM. In addition, the ensemble learning mechanism in Random Forest helps reduce prediction 

variations caused by differences in training data and increases the stability of predictions. On the other hand, 

SVM with a Linear kernel performs well on binary data, but is less optimal for multi-class imbalanced data, 

especially when minority classes have very similar patterns. The low precision value indicates that there are 

still a relatively high number of false positives, which in the context of cybersecurity can lead to increased 

manual analysis workload. 

 

 

Figure 9. Performance Metric Comparison of Random Forest and SVM 

 

The Random Forest model consistently achieves higher metric values compared to SVM across all 

evaluation aspects based on the graph. Overall, the integration of the ADASYN method with Random Forest 

has proven effective in addressing class imbalance and improving the detection of low frequency attacks. With 

an almost perfect AUC and an accuracy of 99.9%, this model is suitable to be used as the foundation for a 

machine learning based Intrusion Detection System (IDS) for web servers. Although the results show high 

performance on the Nginx log dataset, further evaluation is needed on different web servers, considering that 

the differences in log structure and attack patterns on other servers such as Apache or IIS may reduce model 

accuracy. Testing using external log datasets is recommended to assess the generalization ability and stability 

of the model, ensuring that threat detection remains effective across various server environments and is not 

limited to local data. 
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4.    CONCLUSION 

The primary issue in this study is data imbalance, where the number of normal data is significantly 

larger than that of the attack data. To address this issue, a combination of the ADASYN method and Random 

Undersampling was used, which proved effective in balancing the class distribution. The Random Forest 

algorithm demonstrated the best performance compared to SVM, achieving an accuracy of 99.92%, an F1-

score of 99.94%, and an AUC of 0.9994. These results indicate the model’s strong ability to distinguish 

between normal traffic and attacks during both training and testing stages. 

The SVM algorithm also provided fairly good performance; however, it tends to struggle in 

identifying minority classes, especially in multi-class classification cases with uneven data distribution. The 

low precision value for attack classes indicates that this model still produces a considerable number of false 

positives, which may impact the efficiency of the detection system when implemented in real environments. 

The use of various evaluation metrics, such as precision, recall, F1-score, and the ROC Curve, provides a more 

comprehensive performance assessment than relying solely on accuracy. This approach ensures that the model 

achieves high accuracy while maintaining optimal capability in detecting attack patterns with minimal errors. 

Thus, this study successfully demonstrates that the combination of appropriate resampling strategies and 

ensemble learning approaches, such as Random Forest, can significantly enhance the performance of web 

attack detection systems. These findings suggest that machine learning–based methods are a viable solution 

for automated attack detection using HTTP logs. 

Practically, the resulting Random Forest model has the potential to be implemented as part of an 

adaptive Intrusion Detection System (IDS) on web servers, as mentioned in the abstract. This system can 

monitor logs in real-time, detect SQL Injection and XSS patterns, and provide early warnings to enhance the 

security of web applications. For future research, it is recommended to conduct real-time testing in production 

environments, evaluate the model on log datasets from other web servers (such as Apache or IIS) to assess 

generalization capability, and explore Deep Learning algorithms (such as CNN-LSTM or Transformer-based 

models) that have the potential to capture more complex and varied attack patterns. 
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