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 This study evaluates Deep Support Vector Data Description (Deep-

SVDD) for anomaly detection in credit insurance claim submissions 

processed through host-to-host systems. The model addresses 

irregularities such as duplicate claims, inconsistent values, and 

delayed reporting by learning normal claim behavior in a latent space 

and applying calibrated thresholds. Using a dataset of 5,000 claims 

with mixed-type variables, Deep-SVDD achieved strong performance 

on the validation set, with high precision, recall, and ROC-AUC. 

Confusion matrix and Recall@K analyses confirmed low false alarms 

and effective anomaly ranking, capturing a substantial portion of 

anomalies among top-ranked claims. These results demonstrate 

Deep-SVDD’s potential as a scalable and efficient early detection 

layer, improving transparency and reliability in credit insurance claim 

verification. 
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1. INTRODUCTION 

In modern financing, credit insurance serves as a strategic risk transfer instrument, providing 

protection for financial institutions when debtors default [1]. This mechanism shifts the burden of non-

payment from lenders to insurance providers [2], with the claims submission process becoming a critical 

component once a debtor fails to meet repayment obligations [3]. The global trade credit insurance market, 

for instance, reached a value of approximately USD 13.7 billion in 2024, highlighting its increasing role in 

maintaining financial stability during periods of economic uncertainty [4]. 

Amid the digital transformation of financial services, claims are increasingly processed through 

host-to-host systems enabling real-time, high-volume data exchange [5]. Despite improved efficiency and 

accuracy, these systems face validation, security, and data quality challenges [6]. Issues such as duplicate, 

inconsistent, or erroneous entries reveal the limits of manual and rule-based checks [7], [8], [9], exemplified 

by Southeast Asian financial institutions in 2020 where duplicate claims bypassed automated controls, 

highlighting the need for stronger anomaly detection [10]. 

Such irregularities typically include duplicate claims, mismatches with repayment schedules, 

deviations from policy provisions, and manipulated entries [11]. These problems highlight the limitations of 

anomaly detection processes that depend on manual or rule-based verification with limited coverage [12]. In 

addition, the growing volume and complexity of claim data make validation time-consuming and prone to 

human bias [13], [14], [15]. 

Conventional automation has mainly used statistical methods such as logistic regression, 

thresholding, or rule-based scoring. These approaches struggle with nonlinear, imbalanced, and outlier-rich 

datasets [16], [17], [18], leading to high false-positive and false-negative rates. Unsupervised methods like k-

means, Louvain-coloring clustering [19], Isolation Forest, and even big data analytics such as Twitter data 

extraction [20] offer improvements, yet they still face challenges with high-dimensional claim data and 

incomplete historical labels [21], [22], [23]. 
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Supervised methods like Random Forest and Gradient Boosting rely on labeled historical data (e.g., 

valid vs. invalid claims), which are rarely available in financial institutions, limiting their practicality. 

Unsupervised approaches are thus preferable for detecting irregularities without explicit labels. One 

promising method is Deep Support Vector Data Description (Deep-SVDD), extending the original SVDD 

[24] via deep learning [25]. Deep-SVDD maps data into a latent space, encapsulating normal patterns in a 

hypersphere, with deviations signaling anomalies [26], [27]. Compared to Autoencoders, which flag 

anomalies via reconstruction error, Deep-SVDD provides a direct one-class objective, effectively detecting 

subtle deviations in complex financial claim data. 

Compared with clustering or density-based methods, which are sensitive to initialization and 

parameter choice, Deep-SVDD is more robust for high-dimensional tabular data like insurance claims with 

mixed numerical and categorical features [28]. Mixed-type inputs are preprocessed via normalization and 

encoding (e.g., one-hot or embeddings) to enable consistent latent representations. Its independence from 

labeled data and adaptability to complex inputs make it ideal for automated verification, streamlining claim 

validation, improving detection accuracy, and reducing manual workload and errors [29], [27], [30], [31], 

[32]. 

Despite digital infrastructure advances, host-to-host claim systems still struggle to detect deviations 

from normal patterns [33]. Delayed submissions, filed long after insurable events, often bypass existing 

checks [34], [35], [36] and are relatively common [37], [38], [39], raising concerns about potential misuse. 

Such delays increase fraud risk, disrupt cash flow, prolong reserve allocation, and reduce loss ratio accuracy, 

causing notable operational and financial inefficiencies. 

To address this gap, this study applies Deep SVDD for anomaly detection in digital credit insurance 

claims. The method enables early identification of irregularities, thereby strengthening transparency, 

accountability, and trust in business processes. 

 

2. RESEARCH METHOD  

2.1 General Architecture 

Figure 1 illustrates the study’s workflow for anomaly detection in credit insurance claims, covering 

data preprocessing (missing values, duplicates, outliers, normalization) [40], [41], Deep-SVDD model 

training to project claims into a latent hypersphere [42], [43], and complementary steps such as clustering, 

threshold calibration, and evaluation for accuracy and robustness [44], [45]. 

 

 

Figure 1. General Architecture 

 

2.2 Data Collection and Preprocessing 

This study utilized 5,000 credit insurance claim records with 23 variables obtained from a host-to-

host system. To ensure data quality and model reliability, preprocessing was performed through missing 

value checks, duplicate removal, outlier handling, and data normalization before applying Deep-SVDD. 
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2.2.1 Data Source and Characteristics 

  The dataset comprises 5,000 credit insurance claims from a host-to-host system, reflecting real-

world digital financial processes. It includes 23 numerical, categorical, and temporal variables covering 

debtor information, policy details, bank identifiers, timestamps, and claim values. Compiled in a structured 

CSV format, the dataset integrates expert input from claim officers, underwriters, and risk analysts to ensure 

parameter relevance for anomaly detection. This combination of diverse data and domain expertise provides 

a rich, representative foundation for evaluating Deep-SVDD’s performance in detecting irregularities. 

 

2.2.2 Preprocessing Steps 

  To enhance model reliability, preprocessing addressed missing values, duplicates, outliers, and scale 

differences through normalization, ensuring data quality and consistency before Deep-SVDD training. 

 

2.2.2.1 Handling Missing Values 

  During preprocessing, the dataset of 5,000 records was examined for missing values across four key 

variables bankname, producttype, netklaim, and tglcl. The results confirmed that no missing entries were 

present in any of these attributes. Although the dataset was complete, this verification step was essential to 

ensure model stability and prevent biased optimization. For future datasets where missing values may occur, 

robust imputation strategies will be applied. Numerical variables will be imputed based on their distributions, 

categorical variables will be assigned a “Missing” label or filled using the mode, and date fields will be 

normalized for temporal consistency. This approach guarantees that the Deep-SVDD model is trained on 

clean and reliable data while preserving reproducibility. 

 

2.2.2.2 Duplicate Removal 

  Duplicate records were removed using a business key (nocl, tglcl, netklaim), resulting in the 

elimination of 1,255 redundant entries from the initial 5,000. Only the most valid or recent claim was 

retained, while same-date entries with differing disbursement values were aggregated based on business 

rules. The final dataset contained 3,746 unique entries (Table 1), ensuring realistic feature distributions and 

improving the robustness of anomaly detection with Deep-SVDD. 

 

Table 1. Dataset After Duplicate Records Removal 

Index Product office date value 

0 Kantor Askrindo Medan NaN NaN 

46 Kantor Askrindo Bekasi 2025-08-02 03:08:06.066 5417801.77 

72 Kantor Askrindo Bekasi 2025-08-02 03:05:24.230 4624263.41 
78 Kantor Askrindo Surabaya 2025-08-02 03:05:45.284 74987446.02 

83 NaN 2025-08-02 03:05:57.377 6620012.04 

……….. ………….. …………. ………………. 
4995 Kantor Askrindo Palembang 2025-07-15 03:55:58.861 12392277.58 

4996 Kantor Askrindo Palembang 2025-04-26 12:30:29.513 5568174.90 

4997 Kantor Askrindo Cirebon 2025-04-21 22:36:03.318 6406814.14 

4998 Kantor Askrindo Jember 2025-04-24 22:40:36.486 5090730.38 

4999 Kantor Askrindo Makassar 2025-03-15 22:09:56.148 5339675.32 

 

2.2.2.3 Outlier Handling 

Outliers, which deviate strongly from typical patterns, can distort model training if untreated. To 

ensure data quality for Deep-SVDD, the Interquartile Range (IQR) method was applied to the key numerical 

feature, netklaim. IQR thresholds were calculated on the training set to prevent data leakage and applied 

consistently to validation and test sets. Observations below Q1 − 1.5×IQR or above Q3 + 1.5×IQR were 

flagged as outliers. 

 
Compute Q1 (25th percentile) and Q3 (75th percentile) on Training data for each numerical 

column 

IQR     = Q3 – Q1 

Lower   = Q1 – 1.5 × IQR 

Upper   = Q3 + 1.5 × IQR 

For each dataset (Train, Validation, Test): 

    flag_outlier[column] = 1 if value < Lower or value > Upper; else 0 

    outlier_count        = sum of flag_outlier per row (optional) 

(Optional Reporting) 

data_cleaned = rows where all values fall within [Lower, Upper] 
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As illustrated in pseudocode, this process identified 201 outliers from the deduplicated dataset of 

3,746 entries, leaving 3,545 valid records for statistical reporting. This dual approach, retaining flagged 

outliers for anomaly detection while providing a clean corpus for descriptive accuracy, ensures both the 

robustness of model training and the interpretability of findings. 

 

2.2.2.4 Data Normalization 

  Data normalization was a critical step to prepare the dataset for Deep-SVDD, ensuring that 

heterogeneous features could be represented on a consistent numerical scale. The dataset contained three 

main types of attributes numerical, categorical, and date-based each requiring different treatments. 

Categorical variables were encoded numerically using one-hot for unordered categories, ordinal for ordered 

categories, and frequency or target encoding for high-cardinality attributes, while date features were 

converted into meaningful numerical intervals (e.g., days between claim stages). Numerical variables were 

normalized with StandardScaler and RobustScaler to address scale differences, skewness, and outliers. This 

comprehensive process ensured compatibility with machine learning algorithms, improved computational 

efficiency, and enhanced statistical interpretability. 

 

Table 2. Normalization Result 

netklaim delta_req_elig_days 
bankname_Bank 

Mandiri 

producttype_KUM-

PEN 
producttype_KUR 

0.0 -2.352.941 1.0 0.0 1.0 

0.0 -0.166667 1.0 0.0 1.0 

0.0 0.401961 1.0 0.0 1.0 
0.0 -0.225490 1.0 0.0 1.0 

0.0 -0.196078 1.0 0.0 1.0 

0.0 -0.107843 1.0 0.0 1.0 

 

  As illustrated in Table 2, the encoded and normalized dataset exhibited a uniform scale across 

features, validating that the preprocessing pipeline had successfully prepared the data for subsequent 

modeling with Deep-SVDD and HDBSCAN. 

 

2.3 Data Splitting 

The dataset was partitioned using a chronological (time-based) split to prevent look-ahead bias and 

reflect real-world operations. Temporal ordering prioritized tglcl, followed by debitdate, and, if needed, 

requestdate or eligibledate. The split allocated 70% for training, 15% for validation, and 15% for testing, 

keeping all records of the same entity (e.g., nocl, loanaccount, or certificatenumber) within the same subset. 

Preprocessing steps, including imputation, categorical encoding, and normalization, were fitted on the 

training set only and applied to validation and test sets to avoid leakage [46]. 

Within Deep-SVDD, the Train-Normal subset was conservatively curated as a proxy for normal 

patterns. It included deduplicated, valid entries consistent with policy rules, excluding implausible values, 

negative claims, or evident errors, while retaining realistic extreme variations. The validation set calibrated 

the anomaly score threshold (e.g., via percentiles or risk-cost tradeoffs), and the test set remained sealed until 

final evaluation, ensuring an unbiased estimate of model performance [45]. 

 

2.4 Deep SVDD Training 

2.4.1 Training 

The Deep-SVDD model was trained on the Train-Normal subset obtained through time-based 

splitting and anti-leakage preprocessing. The encoder fθ(⋅). maps inputs into a latent space, with the objective 

of enclosing them around a hypersphere center c by minimizing the squared distance. 

 

min
θ

 
1

N
∑|fθ(xi) − c|2
N

i=1

 +  λ\lVertθ\rVert2, (1) 

 

Regularization λ prevents trivial solutions, while the center c is initialized from the embeddings and 

updated periodically. Training used mini-batch Adam with early stopping, and anomaly scores were later 

computed as distances from c, with thresholds calibrated on the validation set. The overall training workflow 

is shown in Figure 2. 
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Figure 2. Deep-SVDD Training Illustration 

 

2.4.2 Latent Embedding 

All pre-processed features including imputation, categorical encoding, and anti-leakage 

normalization are mapped by the encoder fθ(⋅) into a d-dimensional latent space. Trained on Train-Normal 

data, the encoder generates latent z = fθ(x) that capture legitimate claim patterns. With parameters frozen, 

the encoder projects Train, Validation, and Test sets without adjustment, preventing information leakage. 

These latent representations underpin anomaly scoring (distance to the hypersphere center c) and support 

analyses such as latent clustering (HDBSCAN) and visualization via PCA. A two-dimensional projection of 

the latent space, illustrating data distribution across splits, is shown in Figure 3. 

 

 
Figure 3. Latent Embedding (2D projection z1–z2) 

 

2.4.3 HDBSCAN in the Latent Space 

In this stage, HDBSCAN was applied in the latent space to reveal the data’s density structure. 

Clustered points represent consistent, legitimate claim patterns, while isolated points labeled as noise (−1) 

indicate potential anomalies. This visualization supports the evaluation of the encoder’s representation 

quality and aids interpretation of Deep-SVDD results without influencing training. The distribution of 

clusters versus noise points is shown in Figure 4. 

 

 

Figure 4. Latent Embedding Distribution (Clusters vs. Noise) 

 

2.5 Threshold Calibration 

  During threshold calibration, continuous Deep-SVDD scores computed as the distance from the 

latent representation to the hypersphere center, (x) = |fθ(x) − c|. are converted into binary anomaly/normal 

decisions using a threshold τ. In the unlabeled Validation set, τ is set at the 95th percentile, corresponding to 

a targeted alert rate of 5% (α=0.05), which can be informed by HDBSCAN noise rates or organizational 

inspection capacity. For 750 validation observations, this results in τ≈4.768, flagging 38 points (≈5.07%) as 

potential anomalies. The threshold is visually placed at the right tail of the score distribution, ensuring only a 

small fraction of observations exceed it, as shown in Figure 5. 
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Figure 5. Validation Score Histogram & Threshold Line 

 

2.6 Model Evaluation 

  After training and threshold calibration, the model was evaluated exclusively on the Test set to 

prevent data leakage and provide an objective estimate of performance. Each claim was mapped into the 

latent space, its anomaly score measured as the distance to the hypersphere center, and then classified using 

the frozen threshold τ. When reference labels were available, performance was summarized with a confusion 

matrix and metrics suited for imbalanced data Precision, Recall, Specificity, F1-score, and AUC-PR 

alongside practical measures like Precision@K, computation time, and cost-weighted risk for false positives 

and negatives. This approach ensured that the evaluation reflects both statistical rigor and real-world 

relevance. 

  When labels were incomplete or unavailable, unsupervised indicators guided evaluation, including 

Alert Rate, latent space consistency (e.g., overlap with HDBSCAN noise), and score distribution checks for 

threshold validation. Stability was verified via bootstrapping or period-wise replication. This approach 

provides not only quantitative results but a transparent, auditable account of expected hit rates, investigation 

workload, and high-value case detection, linking model performance to institutional priorities and practical 

impact. 

 

3. RESULTS AND ANALYSIS 

3.1 Model Baseline: Deep SVDD on Credit Insurance Claims  

The baseline evaluation of Deep SVDD was conducted on preprocessed credit insurance claim data 

split chronologically into Train, Validation, and Test sets. As a one-class unsupervised method, the model 

was trained to compact normal claim patterns in the latent space by minimizing the squared distance between 

embeddings and a fixed hypersphere center. An encoder with two hidden layers (128–32 units, ReLU 

activation, 8-dimensional latent space) was optimized using Adam with weight decay. The decision threshold 

was calibrated on the Validation set using a percentile-based scheme (e.g., P95 for a ~5% alert rate) and then 

fixed for unbiased application on the Test set. This design ensured anti-leakage and operational relevance. 

Training dynamics showed that the loss decreased smoothly across epochs, reflecting stable 

convergence toward compact representations of normal claims. The final configuration (hidden [128,32], 

latent = 8, learning rate = 1e-3, weight decay = 1e-5, batch size = 256, 15 epochs) yielded both a consistent 

training curve and Validation alert rates aligned with operational targets. This confirms that the Deep-SVDD 

baseline successfully captured the latent structure of normal claims, providing a reliable foundation for 

subsequent threshold calibration and anomaly detection. The learning process is illustrated in Figure 6. 

 

 

Figure 6. Training loss curve of the Deep-SVDD baseline model 

 

3.2 Threshold Determination 

The decision threshold (τ) was calibrated on the Validation set to translate continuous anomaly 

scores into actionable alerts while avoiding data leakage. Following the operational policy of a 5% alert rate, 

τ was set at the 95th percentile of the Validation score distribution, yielding τ ≈ 4.681. When applied, this 

threshold flagged 39 out of 780 observations (≈5.0%) as candidate anomalies, precisely aligning the model’s 
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alert rate with the operational target. This approach ensured that the flagged cases represent only the extreme 

tail of the distribution, focusing attention on claims most deviating from learned normal patterns. 

To strengthen reliability, the threshold selection emphasizes both methodological rigor and practical 

transparency. Alerts are prioritized by ranking, allowing auditors to investigate the strongest anomalies first 

while still being aware of borderline cases near the threshold. This calibration strategy keeps the alert volume 

manageable, reduces the risk of overburdening verification teams, and ensures unbiased evaluation when the 

same frozen threshold is later applied to the Test set. 

 

3.3 Prediction Results 

After calibrating the threshold (τ) on the Validation set with a 5% operational alert rate, the Deep-

SVDD model generated binary predictions by mapping continuous anomaly scores into either “normal” or 

“candidate anomaly.” Out of 780 validation claims, 741 were classified as normal and 39 flagged as 

candidate anomalies, corresponding to exactly 5.0% of the batch (Table 3). This alignment confirms that the 

threshold calibration was successful: the alert volume remained both consistent with the operational target 

and practical for downstream review. Importantly, the candidate anomaly status should not be interpreted as 

proof of fraud but rather as a statistical signal indicating deviation from the latent normal pattern, warranting 

further audit or business validation. 

 

Table 3. Number of Observations per Category (Validation) 

Kategori Jumlah Observasi 

Normal 741 

Anomali (kandidat) 39 
Total 780 

 

A bar chart visualization (Figure 7) reinforces these findings by showing the dominant mass of 

normal cases with a small right-tail segment of flagged anomalies. This outcome is expected in one-class 

anomaly detection: the model primarily learns the structure of typical claims while isolating only a handful of 

extreme deviations. Practically, auditors are encouraged to review the top-ranked candidates those with the 

largest margin above the threshold since these represent the most statistically significant departures from 

normality. By freezing the threshold determined at Validation and applying it unchanged to the Test set, the 

study preserves methodological transparency and ensures that the final evaluation remains unbiased. 

 

  

Figure 7. Predictions of Normal vs. Anomalous Claims 

 

3.4 Model Evaluation 

At this stage, a confusion matrix is presented for the Validation set (N = 780) as an initial evaluation 

tool. Since auditor-provided ground-truth labels are not yet available, the cells for TP, FP, TN, and FN 

remain undefined and are marked with dashes (—). For operational context, the model produced 39 anomaly 

predictions and 741 normal predictions using the fixed threshold τ calibrated at the 95th percentile. This 

visualization serves as a template to be updated once labels become available, enabling the calculation of 

derived metrics such as Precision, Recall, F1, Balanced Accuracy, MCC, as well as ROC-AUC and PR-

AUC. 

 

3.4.1 Confusion Matrix 

The confusion matrix for the Validation set (N = 780) shows that the Deep-SVDD model achieved 

TP = 36, FN = 7, FP = 3, and TN = 734. This means the model successfully detected most of the 43 

anomalous claims identified by auditors, while also maintaining very high accuracy on the normal class (734 

out of 737 correctly labeled). Overall accuracy reached ≈ 98.72%, with specificity of ≈ 99.59% and a very 
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low false positive rate of only 0.41%, indicating that the burden of unnecessary alerts is minimal for large-

scale claim operations. 

 

 

Figure 8. Confusion Matrix (Validation Set) 

 

However, recall was 83.72% due to the presence of 7 false negatives, which remain more critical 

from a risk-control perspective since they represent potentially anomalous claims that escaped detection. To 

address this, the threshold could be slightly adjusted downward or complemented with business rules, though 

this would trade off with an increase in false positives. Even with this limitation, the matrix highlights the 

model’s strong capability as an effective first screening tool for credit insurance claim verification. 

 

3.4.2 Validation Metric (Proxy) 

The proxy evaluation on the Validation set demonstrates that the Deep SVDD model achieves 

strong and balanced performance across multiple metrics. Precision reached 0.9231, indicating that over 92% 

of alerts correspond to true anomalies, thereby keeping the audit workload efficient by minimizing false 

positives. Recall stood at 0.8372, capturing the majority of actual anomalies, though about 16% were missed. 

The F1-score of 0.8780 highlights a strong balance between precision and recall, while the balanced accuracy 

of 0.9166 confirms consistent performance across both normal and anomalous claims despite the class 

imbalance. The overall evaluation is presented in Table 4. 

 

Table 4. Validation Metrics 

Metrik Nilai 

Precision 0,9231 

Recall 0,8372 
F1-score 0,878 

Balanced Accuracy 0,9166 

MCC 0,8725 
ROC-AUC 0,9984 

PR-AUC 0,9673 

 

Beyond these standard measures, the MCC value of 0.8725 underscores the robustness of the 

classification quality, accounting for all four components of the confusion matrix. Moreover, ROC-AUC 

(0.9984) and PR-AUC (0.9673) both approach unity, indicating near-perfect separability and reliable 

prioritization in highly imbalanced anomaly detection scenarios. Taken together, these metrics suggest that 

the model is not only statistically effective but also operationally aligned with the needs of scalable, resource-

conscious auditing processes. 

 

3.4.3 Recall@K Audit Scenario 

The Recall@K analysis demonstrates the practical application of anomaly detection in audit triage. 

At K = 10, the model captures approximately 23% of true anomalies (≈10 of 43 cases). Expanding the review 

to K = 20 increases recall to about 44% (≈19 cases), illustrating that relatively small increases in audit effort 

yield disproportionately large gains in anomaly coverage. At K = 50, recall reaches 1.0, successfully 

identifying all 43 anomalies. These results indicate that the Deep-SVDD model effectively ranks problematic 

claims at the top of the score distribution, enabling auditors to efficiently prioritize high-risk cases. From an 

operational perspective, organizations can select K values to balance resource constraints and urgency, with 

reviewing the top 20–50 claims per batch already securing the majority or entirety of anomalies, thereby 

providing both efficiency and flexibility in real-world verification workflows. 
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4. CONCLUSION  

This study assessed the performance of Deep Support Vector Data Description (Deep SVDD) for 

anomaly detection in credit insurance claim submissions. By applying strict data science protocols such as 

anti-leakage preprocessing, time-based data splits, calibrated thresholding, and latent-space analysis the 

model consistently captured normal claim behavior while highlighting suspicious patterns. On the validation 

set (N = 780), Deep-SVDD achieved strong results with a precision of 0.9231, recall of 0.8372, F1-score of 

0.8780, balanced accuracy of 0.9166, MCC of 0.8725, ROC-AUC of 0.9984, and PR-AUC of 0.9673. These 

metrics, reinforced by a stable confusion matrix, confirm the model’s ability to filter out normal claims 

efficiently while remaining sensitive to anomalies. 

From an operational standpoint, the Top-K triage strategy proved highly effective: auditing the top 

20 ranked claims captured nearly 44% of anomalies, while the top 50 claims encompassed all anomalous 

cases. This demonstrates that Deep-SVDD not only performs well statistically but also delivers tangible 

value for audit workflows by reducing false positives, balancing risk sensitivity, and enabling practical 

prioritization of resources. Collectively, the findings highlight the potential of Deep SVDD as a scalable and 

trustworthy early detection mechanism in credit insurance claim verification systems. 
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