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 Dengue Hemorrhagic Fever (DHF) remains a major public health 

concern in Indonesia and worldwide, where delayed diagnosis 

increases the risk of severe complications and mortality. 

Conventional laboratory-based diagnostics are time-consuming and 

often less accessible in resource-limited healthcare settings. This 

study aims to develop an early detection model for DHF using only 

initial clinical symptoms and demographic data extracted from 

electronic medical records at RSUD Brigjend H. Hasan Basry 

Kandangan. A total of 649 patient records (352 DHF cases and 297 

non-dengue) were analyzed using the CRISP-DM framework. Five 

ensemble learning algorithms, Random Forest, Bagging, AdaBoost, 

and Gradient Boosted Tree, were evaluated across 80:20, 70:30, and 

60:40 data splits and validated using 5-fold and 10-fold cross-

validation. Random Forest consistently delivered the best and most 

stable performance, achieving up to 90.00 % accuracy and 0.967 

AUC in the 80:20 split and mean accuracies of 88.91 % (5-fold) and 

88.29 % (10-fold) in cross-validation. Further hyperparameter tuning 

enhanced model stability and prevented overfitting. The findings 

confirm that initial clinical symptoms and demographic attributes can 

reliably identify DHF cases early, enabling faster and more 

affordable screening prior to laboratory confirmation. This machine 

learning based decision-support model has the potential to 

significantly improve early clinical management of dengue fever. 

Keyword: 

CRISP-DM  

Dengue Hemorrhagic Fever 

Early Detection 

Medical Data 

Random Forest 

 

Copyright © 2025 Puzzle Research Data Technology 

 

Corresponding Author:  

Achmad Saleh,  
Master of Computer Science, Faculty of Information Technology 

Budi Luhur University 
Jl. Ciledug Raya, Petukangan Utara, Jakarta Selatan, DKI Jakarta 12260, Indonesia. 

Email: 2311601427@student.budiluhur.ac.id  

DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.38088 

 

1. INTRODUCTION  

Dengue Hemorrhagic Fever (DHF) is one of the fastest-spreading infectious diseases in the world 

and poses a significant global health challenge. Over the past five decades, the incidence of DHF has 

increased by about 30-fold, expanding into new areas, including previously unaffected rural regions. The 

World Health Organization (WHO) estimates that around 50 million dengue infections occur every year, with 

more than 2.5 billion people living in endemic areas, and that 75 % of the global disease burden is 

concentrated in Southeast Asia and the Western Pacific. In addition to causing high morbidity and mortality, 

DHF places a substantial economic burden, with an average treatment cost of United States Dollar (USD) 

514 for outpatient care and USD 1,491 for inpatient care, particularly in communities with limited healthcare 

access and environments favorable to the breeding of Aedes aegypti and Aedes albopictus mosquitoes [1]. 

The WHO identifies Indonesia as one of the countries with the highest dengue burden in Southeast 

Asia, reporting more than 100,000 cases annually and a Case Fatality Rate (CFR) of approximately 1%, 

which is significantly higher than that of Thailand, where the CFR has been reduced to below 0.2%. 

Compared with Latin America and the Caribbean, where the average CFR is about 1.2 %, Indonesia’s 
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mortality rate is similar, but the frequency and magnitude of annual outbreaks tend to be greater, indicating 

more serious control challenges [1]. 

At the national level, DHF has been a serious public health problem since it was first reported in 

1968. Cases continue to rise, with 143,000 cases reported in 2022 and an Incidence Rate (IR) of 52 per 

100,000 population, far exceeding the national target of ≤10. Although the CFR has declined to below 1 % 

since 2008, the actual number of cases is estimated to be up to 50 times higher due to underreporting, rapid 

urbanization, climate change, and still-limited surveillance systems [2]. 

Numerous studies have demonstrated the growing application of machine learning for early 

prediction and diagnosis of dengue. One study combined five classification algorithms to compare the 

performance of decision tree–based and probabilistic methods, highlighting the importance of feature 

selection and data preprocessing, and reported that J48 achieved an accuracy of up to 96.58 % [3]. A Naïve 

Bayes approach utilized hematological data to distinguish DHF from typhoid fever, achieving 93.33 % 

accuracy and 97.62 % recall, and showing strength in handling overlapping symptoms [4].  

Another study evaluated Support Vector Machine (SVM), Random Forest, Decision Tree, and K-

Nearest Neighbor using patient symptom data and found that SVM achieved an accuracy of 87.76 %, 

underscoring the importance of algorithm selection for clinical symptom patterns [5]. The development of an 

Optimized Ensemble Classifier (OEC) that integrates CNN, ANN, and SVM introduced deep learning 

integration and feature optimization, and was reported to outperform individual methods [6]. Further research 

applied Backpropagation, Gaussian, and SVM to project long-term case trends and showed that 

Backpropagation yielded the lowest error (Mean Absolute Percentage Error (MAPE) 0.024), confirming its 

potential for long-term epidemic monitoring [7]. 

These findings demonstrate that machine learning can improve the accuracy and efficiency of early 

detection and monitoring of DHF, yet most studies still rely on laboratory data or limited datasets and rarely 

integrate multi-scenario validation or direct clinical implementation. This study provides several important 

novel contributions. First, the early detection model for DHF is developed solely from initial clinical 

symptoms and patient demographic factors, without laboratory test results, making it suitable for healthcare 

settings with limited resources.  

Second, the study employs ensemble machine learning methods (Random Forest, Gradient Boosted 

Tree, AdaBoost, Bagging, and Random Tree) with comprehensive evaluation across multiple data-splitting 

scenarios and 5-fold and 10-fold cross-validation to ensure accuracy and model stability. Third, the research 

is conducted directly on electronic medical records of patients from the Regional Public Hospital (RSUD) 

Brigjend H. Hasan Basry Kandangan, reflecting real clinical conditions in Indonesia, thereby making the 

results more representative for the practical implementation of early dengue detection in healthcare services. 

 

2. RESEARCH METHOD  

This study followed the Cross-Industry Standard Process for Data Mining (CRISP-DM), which 

consists of six stages: business understanding, data understanding, data preparation, modeling, evaluation, 

and deployment. The study's workflow is illustrated in Figure 1. 

 

2.1 Business Understanding 

This stage aimed to identify the research problem and determine the appropriate data analysis 

approach. At RSUD Brigjend H. Hasan Basry Kandangan, 319 DHF cases were recorded in 2024, 

highlighting the urgency of early detection. Diagnosis delays often occur due to the reliance on laboratory 

tests, which require significant time and resources. 

To address this issue, a literature review, direct observation, and interviews with medical staff were 

conducted. These efforts confirmed the potential of ensemble learning, particularly Random Forest, to handle 

overlapping clinical symptoms and provide accurate predictions. Ethical clearance was obtained from the 

Health Research Ethics Committee (KEPK), and permission was obtained from the hospital administration 

prior to data collection. 

 

2.2 Data Understanding 

Data were obtained from hospital medical records, including demographic (age, gender) and clinical 

attributes relevant to DHF detection. Attributes were selected in accordance with Ministry of Health 

guidelines and validated by medical staff to ensure clinical relevance. The focus was on features available at 

the first patient encounter, without laboratory dependency. 

 

2.3 Data Preparation 

Data preprocessing included three main steps: 
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1. Feature Selection – Relevant attributes were chosen based on literature, clinical validation, and 

information gain analysis. Features with low correlation or redundancy were excluded. 

2. Data Transformation – Categorical variables were converted into numerical form. The attribute fever 

was excluded from training because of uniform values across all cases [8];[1], although it remains 

clinically important and is displayed in the prototype interface. 

3. Data Splitting – The dataset was divided into training and testing sets with three ratios: 80:20, 70:30, 

and 60:40. Stratified sampling ensured balanced class distribution. To improve reliability, 5-fold and 

10-fold cross-validation were applied. 

 

 

Figure 1. Research Methodology Framework Based on CRISP-DM 

 

2.4 Modeling 

This study applied five ensemble learning algorithms, Random Forest, Bagging, Gradient Boosted 

Tree, AdaBoost, and Random Tree, to build and evaluate predictive models for early dengue detection. Each 

algorithm is briefly described below, including its theoretical background, key mathematical formulation, and 

supporting references. 

 

2.4.1 Random Forest 

Random Forest is an ensemble learning algorithm for classification and regression. It constructs 

multiple decision trees on bootstrap samples of the training data and aggregates their outputs to improve 

predictive accuracy and reduce the risk of overfitting [9]. At each node, a random subset of features is 

selected, ensuring diversity among trees and yielding more stable combined predictions [10]. 

This algorithm can handle large, high-dimensional datasets, is robust to outliers and missing values, 

and provides feature-importance estimates by measuring the decrease in accuracy when feature values are 

permuted [11]. Such importance measures help identify key variables and support model interpretation [12]. 

The overall procedure of Random Forest can be described in three main stages, each contributing to 

the robustness and predictive power of the final model: 

1. Bootstrap sampling from a dataset of size 𝑁, draw 𝑁 samples with replacement to create a bootstrap 

sample for each tree. 

2. Tree construction For each bootstrap sample, grow an unpruned decision tree. At each node, choose 

a random subset of features and determine the best split using criteria such as the Gini index or 

information gain [13]. 

3. Ensemble aggregation: Combine predictions from all trees. For classification, use majority voting; 

for regression, use the mean prediction. 
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The regression prediction for an input 𝑥 is expressed as 

 

𝑓(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1       (1) 

 

Where 𝐵 is the number of trees and 𝑓𝑏(𝑥) is the prediction of the  b-th tree.  

For classification, the final output is the most frequently predicted class:  

 

ŷ = 𝑚𝑜𝑑𝑒{𝑓𝑏(𝑥)}
𝐵

𝑏 = 1
        (2) 

 

Because of its high accuracy, resistance to noise, and ability to explain variable importance, 

Random Forest is highly suitable for early detection of dengue fever in healthcare applications. 

 

2.4.2 Bagging 

Bagging (bootstrap aggregating) is an ensemble learning method designed to improve the stability 

and accuracy of predictive models by reducing variance. It trains multiple base learners on bootstrap samples 

random subsets of the training data drawn with replacement and then aggregates their predictions using 

majority voting for classification or averaging for regression  [14]. 

The final prediction for an input 𝑥 is expressed as 

 

𝑓𝑏𝑎𝑔̂(𝑥) =
1

𝐵
∑ 𝑓(𝑏)̂ (𝑥)𝐵

𝑏=1          (3) 

 

Where 𝐵 is the number of models and 𝑓(𝑏)̂ (𝑥) is the prediction of the 𝑏-th model. 

For classification, the combined output is 

 

𝑦𝑏𝑎𝑔̂ = mode(𝑦(1)̂ , 𝑦(2)̂ , … , 𝑦(𝐵)̂ )             (4) 

 

Bagging operates through three principal stages: 

1. Bootstrap sampling from a dataset of size 𝑁, draw 𝑁 samples with replacement to form a bootstrap 

dataset for each base learner. This ensures diversity among training sets and lowers the correlation 

between models. 

2. Model training: Build an independent base learner (e.g., decision tree) on each bootstrap sample 

without pruning. 

3. Ensemble aggregation: Combine the outputs of all models by majority vote (classification) or mean 

(regression) to produce the final prediction. 

 

From a statistical perspective, when 𝐵 independent learners are aggregated, the prediction variance 

decreases according to 

 

Var𝑏𝑎𝑔 =
1

𝐵
Var(𝑓)                   (5) 

 

yielding more stable and noise-resistant predictions [15]. 

Further developments such as evolutionary bagging, temporal bagging, and weighted bagging, 

enhance diversity or assign adaptive weights to base learners, thereby improving accuracy and generalization 

in dynamic or imbalanced data settings [16]. 

With its simple implementation, flexibility in base models, and proven ability to mitigate overfitting, 

Bagging remains a widely adopted and dependable ensemble technique in modern machine learning. 

 

2.4.3 Gradient Boosting 

Gradient Boosting is an ensemble learning algorithm that builds predictive models in a stage-wise 

fashion by iteratively minimizing a specified loss function. Each new weak learner corrects the residual 

errors of the previous model by following the negative gradient of the loss function with respect to the 

current predictions [17]. 

The initial model 𝐹0(𝑥) is a constant that minimizes the overall loss. For a squared-error loss, 

 

𝐹0(𝑥) = arg min
γ

∑ (𝑦𝑖 − γ)2𝑛
𝑖=1                  (6) 
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At each iteration 𝑚, the residual (negative gradient) is computed as 

 

𝑟𝑖
(𝑚)

= − [
∂𝐿(𝑦𝑖,𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
                  (7) 

 

and a weak learner ℎ𝑚(𝑥) is fitted to these residuals. The model is updated by 

 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ν ⋅ ℎ𝑚(𝑥)                 (8) 

  

where the learning rate ν (typically ≤0.1) serves as a regularization parameter to prevent overfitting. 

After 𝑀 iterations, the final prediction is 

 

𝑦̂(𝑥) = 𝐹𝑀(𝑥) = ∑ ν𝑀
𝑚=1 ⋅ ℎ𝑚(𝑥)                    (9) 

 

Gradient Boosting is essentially a functional gradient descent method, applicable to various 

differentiable loss functions, such as log-loss for classification or Huber loss for robust regression. Key 

variants include Stochastic Gradient Boosting, which uses random subsets of data at each iteration to reduce 

variance and improve generalization [18], and Regularized Gradient Boosting, which constrains tree 

complexity or applies L2 penalties to balance fit and model complexity [19].  

With its stage-wise optimization, additive model structure, and flexibility for different loss 

functions, Gradient Boosting remains one of the most powerful and widely used ensemble methods in 

modern machine learning. 

 

2.4.4 AdaBoost 

Adaptive Boosting (AdaBoost) is an ensemble learning method that combines multiple weak 

learners typically decision stumps into a single strong classifier. The algorithm trains weak learners 

sequentially, where each successive model focuses on correcting the errors of the previous one [14].   

Initially, all training samples are assigned equal weights 𝑤𝑖
(1)

=
1

𝑁
. At iteration 𝑡, a weak learner 

ℎ𝑡(𝑥) is trained to minimize the weighted error. 

 

ε𝑡 = ∑ 𝑤𝑖
(𝑡)𝑁

𝑖=1 ⋅ 𝐼(ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖)                (10) 

 

Where 𝐼 is the indicator function and 𝑦𝑖  is the true label of the sample 𝑖. if 

ε𝑡 < 0.5, a learner's weight is calculated as 

 

α𝑡 =
1

2
ln (

1−ε𝑡

ε𝑡
)                  (11) 

 

Sample weights are then updated to emphasize misclassified instances: 

 

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

⋅ exp(−α𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))                   (12) 

 

and normalized so that ∑ 𝑤𝑖
(𝑡+1)

𝑖 = 1. This procedure ensures that difficult cases receive higher influence in 

subsequent iterations [20].  

After 𝑇 rounds, the final strong classifier is given by 

 

𝐻(𝑥) = sign(∑ α𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 )              (13) 

 

The theoretical strength of AdaBoost lies in margin theory, which explains its ability to not only 

minimize training error but also enlarge the classification margin, thereby improving generalization and 

reducing overfitting even after many iterations [21].  

Extensions such as AdaBoost.PCE and AdaBoost-CNN integrate boosting with regression or deep-

learning models, while variants like Dynamic Clustering and Undersampling Boost (DYCUSBoost) and 

Particle Swarm Optimization - Adaptive Boosting (PSO-AdaBoost) address class imbalance and noisy data 

[22],[23]. With its adaptive weighting, mathematically grounded update rules, and flexibility to combine 

various base learners, AdaBoost remains one of the most influential and effective ensemble algorithms in 

modern machine learning. 
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2.5 Evaluation Confusion Matrix 

In machine learning and data mining, model evaluation is crucial to assess how accurately a 

classifier predicts unseen data. A widely used tool is the confusion matrix, which compares predicted labels 

with actual labels to visualize classification performance [24]. 

A confusion matrix consists of four key components: 

1. True Positive (TP)   : correctly predicted positive samples. 

2. True Negative (TN ): correctly predicted negative samples. 

3. False Positive (FP)   : negative samples incorrectly predicted as positive (type I error). 

4. False Negative (FN) : positive samples incorrectly predicted as negative (type II error). 

It can be represented as 

 

[
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

]            (14) 

 

From this matrix, several quantitative metrics are derived: 

1. Accuracy the proportion of correct predictions: 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (15) 

 

While intuitive, accuracy can be misleading when class imbalance exists [25].  

 

2. Precision – the fraction of predicted positives that are true positives: 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (16) 

 

Precision is important when false positives are costly. 

 

3. Recall (Sensitivity) – the fraction of actual positives correctly identified: 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (17) 

 

High recall is crucial when minimizing false negatives is essential. 

 

4. F1 Score the harmonic mean of precision and recall: 

 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
            (18) 

 

F1 is well-suited to imbalanced datasets. 

 

5. Matthews Correlation Coefficient (MCC) is a balanced measure, even with class imbalance: 

MCC ranges from −1 (inverse prediction) to +1 (perfect prediction). 

 

MCC =
𝑇𝑃⋅𝑇𝑁−𝐹𝑃⋅𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                   (19) 

 

By applying these metrics, the performance of ensemble algorithms such as Random Forest, 

Bagging, Gradient Boosting, and AdaBoost can be objectively and comprehensively evaluated, ensuring the 

chosen model meets the practical requirements of specific applications. 

 

2.6 Deployment 

The best-performing model was deployed into a prototype web application using Python and 

Streamlit. The application enables healthcare practitioners to upload patient data, visualize model 

performance (confusion matrix, Receiver Operating Characteristic (ROC) curve, feature importance), and 

generate early detection predictions. This ensures that the study contributes not only theoretically but also 

practically in supporting medical decision-making. 

 

 



IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150  

 

Early Detection of Dengue Hemorrhagic Fever Using… (Saleh et al) 

575 

3. RESULTS AND ANALYSIS  

3.1 Dataset Characteristics 

The dataset used in this study consists of 649 patient records collected from RSUD Brigjend H. 

Hasan Basry Kandangan. Among them, 352 patients (54.2%) were diagnosed with dengue fever (DBD) and 

297 patients (45.8%) were classified as non-dengue. This relatively balanced distribution is important as it 

reduces potential bias during model training and evaluation. The class proportion is illustrated in Figure 2. 

In addition to demographic attributes (gender and age), the dataset includes several early clinical 

features recorded during the patient’s first medical examination. These attributes were validated by medical 

staff to ensure clinical relevance and consistency with national health guidelines. The complete list of 

attributes is presented in Table 1. 
 

 

Figure 2. Distribution of Dengue and Non-Dengue Cases 

 

Table 1. Selected Attributes 

Category Attribute Description 

Demographic Gender Male / Female 

Demographic Age Patient’s age 
Clinical Body Temprature Temperature (°C) 

Clinical Fever Yes / No 

Clinical Headache Yes / No 
Clinical Muscle Pain Yes / No 

Clinical Joint Pain Yes / No 
Clinical Anorexia Yes / No 

Clinical Nausea/Vomiting Yes / No 

Clinical Abdominal Pain Yes / No 
Clinical Skin Rash Yes / No 

Clinical Mucosal Bleeding Yes / No 

Clinical Lethargy Yes / No 
Label Dengue Status Dengue / Non-dengue 

 

This dataset provides a comprehensive representation of demographic and early clinical information, 

making it highly relevant for developing an early detection model for dengue fever using clinical data that 

can be accessed more quickly compared to laboratory results. 

 

3.2 Data Understanding 

The data understanding phase aims to obtain a comprehensive overview of the dataset, including its 

structure, attributes, and the relationships between variables. This step is crucial to ensure that the dataset is 

representative, clinically relevant, and suitable for building an effective classification model. 

The dataset consists of 12 predictor attributes and 1 target attribute (dengue status). The predictors 

include demographic features (gender, age) and clinical symptoms such as headache, muscle pain, joint pain, 

anorexia, nausea/vomiting, abdominal pain, skin rash, mucosal bleeding, and lethargy. All attributes were 

validated in collaboration with medical staff to ensure alignment with clinical practices. 

To examine the relationships among variables, a correlation heatmap was generated, as presented in 

Figure 3. The visualization shows that most features exhibit low correlation with one another, indicating that 

they contribute complementary information for the model. This diversity in attributes is beneficial for 

machine learning, as it reduces redundancy and enhances classification performance. 
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The heatmap highlights that Mucosal Bleeding has a relatively strong correlation with the dengue 

status (0.68), suggesting that this attribute plays an important role in dengue classification. Additionally, 

Lethargy shows a moderate correlation with both dengue status (0.36) and mucosal bleeding (0.36), implying 

that patients with lethargy are more likely to experience mucosal bleeding and potentially dengue infection. 

These findings confirm that the dataset contains a diverse set of attributes with varying levels of 

correlation, which provides a strong foundation for feature selection and the subsequent modeling phase. 

 

3.3 Data Preparation 

Before building the model, the dataset was preprocessed to ensure data quality and retain only 

informative attributes. One important finding was that the Fever attribute had a uniform value (“Yes”) across 

all records. In machine learning, attributes without variation provide no information gain and cannot 

contribute to distinguishing between classes. Therefore, this attribute was excluded from the training process 

to prevent redundancy and reduce the risk of overfitting. 

Nevertheless, fever remains a clinically significant symptom in the early diagnosis of dengue fever 

[1]. For this reason, it was preserved in the documentation and prototype interface for medical interpretation, 

even though it was not used during model training [8]. 

After preprocessing, the final dataset consisted of 12 predictor attributes and 1 target attribute. This 

refined dataset was then prepared for the modeling and evaluation phases described in the following sections. 

 

 

Figure 3. Correlation Heatmap of Clinical Attributes and Dengue Status 

 

3.4 Modeling and Experimental Setup 

This study implemented five machine learning algorithms: Random Forest, Random Tree, Bagging, 

Gradient Boosted Tree, and AdaBoost. These methods were selected because they are widely applied in 

medical classification problems, particularly for handling heterogeneous datasets with overlapping clinical 

features. Random Forest and Bagging are ensemble tree-based approaches known for robustness, while 

AdaBoost and Gradient Boosted Tree iteratively refine weak learners. Random Tree served as a baseline 

comparator. 

The dataset was split into training and testing subsets using stratified random sampling with ratios of 

80:20, 70:30, and 60:40, preserving class balance between dengue and non-dengue cases. To further evaluate 

robustness, k-fold cross-validation (k = 5 and k = 10) was applied. 

The evaluation metrics included Accuracy, Precision, Recall (Sensitivity), Specificity, F1-score, and 

Area Under the Curve (AUC) ROC to ensure comprehensive performance assessment. The results of the 

experiments are summarized in Table 2. Random Forest consistently outperformed other algorithms across 

all split ratios. In the 80:20 split, it achieved the highest performance with 90.00% accuracy and 0.967 AUC. 

Bagging and AdaBoost also performed competitively, while Gradient Boosted Tree showed lower stability 

across different splits. 
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Table 2. Performance of Models Across Different Data Splits 

Split Ratio 
Random Forest 

(Acc/AUC) 

Bagging 

(Acc/AUC) 

AdaBoost 

(Acc/AUC) 

Gradient Boosted Tree 

(Acc/AUC) 

80:20 90.00% / 0.967 85.38% / 0.904 85.38% / 0.893 86.92% / 0.902 
70:30 88.21% / 0.940 87.18% / 0.931 87.69% / 0.918 85.13% / 0.881 

60:40 89.62% / 0.928 88.85% / 0.917 85.38% / 0.858 83.85% / 0.833 

 

Since five ensemble algorithms were tested, a comprehensive performance comparison was first 

conducted. Table 3 summarizes the average accuracy and AUC obtained from 5-fold and 10-fold cross-

validation for Random Forest, Gradient Boosted Tree, AdaBoost, Random Tree, and Bagging. 

Among these methods, Random Forest consistently achieved the highest and most balanced scores, 

indicating strong predictive power and stability. Gradient Boosted Tree and AdaBoost showed competitive 

accuracy but slightly lower AUC values, while Random Tree and Bagging performed less consistently across 

folds. 

Because of this superior and stable performance, subsequent detailed analysis focused on Random 

Forest. Specifically, Random Forest reached an average accuracy of 88.91 % with an AUC of 0.939 in 5-fold 

validation and 88.29 % with an AUC of 0.947 in 10-fold validation, confirming its robustness and 

generalizability. 

 

Table 3. Performance of Models Cross-Validation 

Algorithm Cross-Validation Accuracy AUC 

Random Forest 5-fold 88.91% 0.939 

 10-fold 88.29% 0.947 

Bagging 5-fold 89.21% 0.913 
 10-fold 87.98% 0.917 

AdaBoost 5-fold 86.44% 0.904 

 10-fold 87.36% 0.899 
Gradient Boosted Tree 5-fold 86.90% 0.935 

 10-fold 86.75% 0.938 

 

Because Random Forest consistently provided the highest and most stable accuracy and AUC across 

all split ratios and cross-validation settings (Tables 2 and 3), it was selected for further optimization. 

Hyperparameter tuning was then performed to refine the model while preventing overfitting. The best 

configuration listed in Table 4 uses n_estimators = 100, max_depth = 5, and the gini criterion, achieving a 

mean cross-validation accuracy of 88.91 %. 

 

Table 4. Best Random Forest Parameters 

Parameter Value 

n_estimators 100 
max_depth 5 

criterion gini 

Mean CV Acc. 88.91% 

 

The final evaluation of the Random Forest model was conducted using 10-fold stratified cross-

validation. The model achieved an average cross-validation accuracy of 0.8891, while the final accuracy on 

the full training set reached 0.9122. 

The classification report indicated balanced performance across both classes. For the non-dengue 

class, the model achieved a precision of 0.86, a recall of 0.96, and an F1-score of 0.91. For the dengue class, 

the precision was 0.97, the recall was 0.87, and the F1-score was 0.91. Overall accuracy across 649 patient 

records was 0.91, with macro- and weighted-average F1-scores also at 0.91. These results confirm that the 

Random Forest model provides a reliable and well-balanced classification, successfully identifying both 

dengue and non-dengue cases with high precision and recall. 

 

3.5 Discussion 

The superior performance of Random Forest in this study can be attributed to several technical 

advantages. Dengue clinical data typically show nonlinear relationships and overlapping symptoms with 

other febrile illnesses. By building multiple diverse decision trees through bootstrap sampling and random 

feature selection at each node, Random Forest effectively captures complex patterns while reducing 

overfitting. The algorithm can handle high-dimensional data without extensive feature selection, remains 

robust to missing values and outliers, and provides feature-importance analysis that highlights key predictors 

such as mucosal bleeding and lethargy. Together, these capabilities explain its stable and superior 
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performance across all data-split and cross-validation schemes, even when relying solely on early clinical and 

demographic indicators. 

This work reinforces and extends previous research on machine learning–based dengue prediction. 

Decision tree methods such as J48 have achieved 96.58% accuracy using laboratory data [3], while Naïve 

Bayes distinguished dengue from typhoid fever with 93.33% accuracy and 97.62% recall using hematology 

inputs [4]. In contrast, our model relies only on initial clinical symptoms and demographic data, which are 

more accessible in primary care settings. On symptom-based datasets, SVM has been reported to reach 

87.76% accuracy [5], whereas our Random Forest model surpassed this benchmark, demonstrating stronger 

robustness. Deep-learning hybrids such as the OEC, which combines Convolutional Neural Network (CNN), 

Artificial Neural Network (ANN), and SVM, have also shown high accuracy [6], but require significantly 

greater computational resources. By comparison, the optimized Random Forest in this study offers similar 

reliability with far lower computational cost, making it more suitable for real-time clinical deployment. At 

the population level, machine learning has also been applied to long-term forecasting, for example using 

backpropagation networks that achieved an MAPE of 0.024 for predicting dengue trends in Bali [7]. Our 

work complements such macro-level approaches by providing patient-level early detection, enabling 

immediate clinical action. 

These findings carry important clinical and public health implications. By leveraging only early 

clinical and demographic information, the proposed model can function as a rapid, low-cost decision-support 

tool, particularly in primary health facilities with limited laboratory resources. Feature-importance analysis 

further improves clinical interpretability, helping healthcare workers prioritize high-risk patients. Other 

notable strengths include rigorous validation across multiple data-split and k-fold cross-validation schemes 

and the development of a web-based prototype that facilitates seamless integration into clinical workflows. 

Nevertheless, limitations remain. The dataset was drawn from a single hospital, so broader multi-center 

validation is needed to confirm generalizability. In addition, real-time integration with electronic health 

records and testing in diverse geographic settings are recommended for future work to enhance scalability 

and long-term reliability. 

 

4. CONCLUSION  

This study demonstrated that Random Forest is a powerful and reliable model for early detection of 

dengue fever using only initial clinical symptoms and demographic data. Among five ensemble learning 

algorithms tested, Random Forest, Bagging, AdaBoost, and Gradient Boosted Tree, Random Forest 

consistently achieved the highest and most stable accuracy and AUC across multiple train-test splits and 

cross-validation schemes. Careful hyperparameter optimization further improved its robustness, resulting in 

balanced precision, recall, and F1-scores for both dengue and non-dengue classes. 

The model’s ability to manage complex, nonlinear relationships, handle noisy or missing values, and 

identify the most influential features explains its superior performance. Clinically, these findings show that 

early, accurate dengue detection is possible without laboratory tests, supporting faster decision-making and 

treatment. The web-based prototype developed in this study offers practical integration into healthcare 

workflows. 

While the dataset’s single-hospital origin limits generalizability, the methodological rigor and strong 

results suggest broad potential for scaling and adaptation. Future research should expand validation to multi-

center and real-time settings and explore integration with electronic health records to enhance clinical impact 

and long-term reliability. 
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