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Childhood stunting is a persistent public health challenge in
Indonesia. This study developed a predictive classification model
using healthcare data from hospitals in Medan to enable early
identification of at-risk children. A novel framework was proposed
that integrated an unsupervised Self-Organizing Map (SOM) for
feature engineering with a supervised Voting Classifier ensemble,
which combined a Support Vector Classifier (SVC), Random Forest
(RF), and Gradient Boosting (GB). The proposed framework
achieved an accuracy of 100% on the test set, representing a
substantial improvement over the baseline Voting Classifier's 91.67%
accuracy without the use of SOM. While this result highlighted the
model's high predictive potential, it must be interpreted cautiously,

acknowledging the need for validation on more diverse datasets to
ensure generalizability. The findings demonstrated that this hybrid
machine learning approach can serve as a powerful decision-support
tool, enabling proactive clinical interventions and aiding public
health officials in strategically allocating nutritional resources to
support Indonesia's national goals for reducing stunting.
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1. INTRODUCTION

Child stunting, a condition of insufficient physical growth, remains a persistent public health
challenge in Indonesia and a significant indicator of socio-economic inequality [1]. Despite a steady decline
in national prevalence from 37% in 2013 to 30% in 2018, the issue demands more effective and targeted
interventions to meet the national reduction target of 14% by 2024 [3]. The condition is multifactorial,
stemming from a complex interplay of inadequate nutrition, recurrent infections, and poor [2]. Stunting is
typically identified using anthropometric measurements, with the World Health Organization (WHO)
classifying children as having a length/height-for-age Z-score below -2 standard deviations [4]. Given the
complexity of its determinants, computational methods offer a powerful approach to identifying at-risk
individuals and understanding the underlying patterns in large-scale health data.

In response, researchers have increasingly applied machine learning models to predict and classify
childhood stunting. Studies have successfully employed ensemble methods like Random Forest (RF) and
Gradient Boosting (GB) to identify the most significant socio-economic and clinical determinants from
survey data, providing valuable insights for policy-making [11], [12]. Other approaches have explored
different models, such as Support Vector Machines (SVM), for their robustness in handling high-dimensional
data [8], [9]. While these supervised learning models have proven effective, they typically operate on raw or
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minimally preprocessed features and may not fully capture the hidden topological structures and complex,
non-linear relationships inherent in heterogeneous healthcare datasets.

A significant research gap exists in leveraging unsupervised feature engineering to enhance the
predictive power of these established classifiers. Specifically, the potential of Self-Organizing Maps (SOM)
to transform complex patient data into a more structured and meaningful feature space has been largely
underexplored in the context of stunting prediction. A SOM can distill high-dimensional data into a lower-
dimensional map that preserves the intrinsic topological relationships between data points, potentially
creating more separable and informative features for a subsequent classification task [13], [17].

This study aims to fill this gap by proposing and evaluating a novel two-stage predictive
architecture. We hypothesize that using a SOM for intelligent feature generation prior to classification can
significantly improve predictive accuracy. To test this, we develop a framework where a SOM first processes
the healthcare data to generate new features, which are then fed into a Voting Classifier ensemble composed
of a Support Vector Classifier (SVC), RF, and GB. The primary contribution of this work is to demonstrate
that this hybrid SOM-enhanced architecture provides a more accurate and robust solution for stunting
classification compared to a standard ensemble model alone. The findings are expected to offer a valuable
tool for clinical decision-making and public health policy, enabling more targeted and effective interventions.

2. RESEARCH METHOD

The research methodology for this study follows a structured pipeline, visually summarized in
Figure 1. The framework is designed to systematically evaluate the impact of using a SOM for feature
engineering on the task of stunting prediction. The pipeline is conceptually divided into three primary stages.

Input: Raw
Healthcare Dataset

Data Preprocessing
» Label Encoding of Target Variable
= Min-Max Normalization of Features
* SMOTE for Class Imbalance

Feature Engineering with SOM
= Apply Self-Organizing Map
» Generate New Topological Feature Set

Dimensionality Reduction
* Apply Principal Component
Analysis (PCA)

Model Training and Comparison
* Train Baseline SVC Model
* Train Standard Voting Classifier
» Train Proposed SOM-Enhanced Voting
Classifier

Qutput: Model
Performance Metrics
{Accuracy, Precision,
Recall, F1-Score)

Figure 1. The Proposed Methodological Framework.

2.1. Data Collection and Dataset

This study utilized a comprehensive, anonymized dataset of patient records from multiple hospitals
in Medan, Indonesia. The dataset includes key variables related to children's health, covering their medical
records, nutritional history, and socio-economic profiles. The primary features used for analysis included
anthropometric measurements (e.g., height-for-age Z-score), maternal health indicators, and nutritional data.

The target variable was the child's stunting status, which was classified into categories based on
WHO standards [4], [5]. The dataset exhibited a significant class imbalance, which was addressed during the
data preprocessing stage.
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2.2. Data Preprocessing

Prior to model training, the raw dataset was subjected to a multi-stage preprocessing pipeline to
ensure data quality and optimize model performance [28]. This pipeline included data cleaning, feature
normalization, and a strategy to address class imbalance, as detailed in the following subsections.

2.2.1. Data Cleaning and Normalization

The initial step involved a data cleaning process to handle inconsistencies within the dataset. Rows
containing missing values for critical predictive features were removed to maintain data integrity. Outliers in
numerical features, identified using the interquartile range (IQR) method (values falling outside 1.5 * IQR
from the first and third quartiles), were also removed to prevent them from disproportionately influencing the
model training process [28].

Following cleaning, all numerical features were normalized using min-max scaling [14]. This
technique scales each feature to a fixed range by transforming the values according to the formula:

X = Xmi
Xscaled = Xmax r;m 1)
~“min

Normalization is a critical step that ensures all features contribute equally to the model's learning
process, preventing variables with larger scales from dominating the distance-based calculations in
algorithms like SVC and SOM [9], [33].

2.2.2. Class Imbalance Correction with SMOTE

As noted in the dataset description, the distribution of stunting classes was highly imbalanced. This
is a common problem in medical datasets and can lead to machine learning models that are biased towards
the majority class, resulting in poor predictive accuracy for the minority classes of interest.

To address this issue, we applied the Synthetic Minority Over-sampling Technique (SMOTE).
SMOTE generates new, synthetic samples for the minority class. Instead of simply duplicating existing data,
it selects a minority class instance, finds its k-nearest neighbors, and creates a new synthetic instance at a
random point along the line segments connecting the instance and its neighbors. This process effectively
balances the class distribution without introducing duplicate information. Notably, SMOTE was applied only
to the training data to prevent data leakage and ensure that the test set accurately represented the original data
distribution [30].

2.3. Feature Engineering and Dimensionality Reduction

The core of our proposed architecture lies in a two-stage process designed to transform the
preprocessed data into a more informative and robust feature set for classification. The primary goal is to
move beyond the raw input variables and create new features that better represent the complex, underlying
patterns in the healthcare data.

First, we employ a SOM, an unsupervised neural network, to generate a new set of features that
capture the intrinsic topological relationships within the dataset. Subsequently, Principal Component
Analysis (PCA) is applied to this newly generated feature space. The purpose of PCA is to reduce
dimensionality and mitigate potential multicollinearity, ensuring a more efficient and stable training process
for the final classification models [29]. The specifics of each technique are detailed in the following
subsections.

2.3.1. Feature Generation with Self-Organizing Maps (SOM)

A SOM, first introduced by Teuvo Kohonen, is an unsupervised neural network that projects high-
dimensional data onto a low-dimensional grid, typically a 2D map, while preserving the topological
relationships of the original input space. This ensures that similar input samples are mapped to nearby
neurons on the grid. Due to this property, SOMs are highly effective for tasks such as data visualization,
dimensionality reduction, and uncovering intrinsic clusters within complex datasets [33], [35]. In this study,
we leveraged the SOM to transform the patient data into a more structured feature space for the subsequent
classification task.

The SOM training algorithm iteratively adjusts the weight vector w of each neuron i on the map.
The process begins with Weight Initialization, where neuron weights are assigned random values from the
range of the input data. Then, for each input vector x from the dataset, the algorithm identifies the Best
Matching Unit (BMU)—the neuron whose weight vector is closest to x, typically measured by Euclidean
distance:
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Following the identification of the BMU, a Weight Update is performed. The weights of the BMU
and its neighboring neurons are adjusted to move closer to the input vector according to the update rule:

wi(t+1) = wi(t) + 0, BMU,t) - a(t) - (x — w;()) (3)

where t is the current iteration, o(t) is a learning rate that decreases over time, and 0(i, BMU, t) is the
Neighborhood Function. This function, typically a Gaussian, determines the magnitude of the update based
on a neuron's proximity to the BMU, with its radius also shrinking over time [33], [34]:

Q(i,BMU,t) :exp(_w) (4)

20(t)2

2.3.2. Dimensionality Reduction with PCA

Following feature generation with the SOM, PCA was applied to reduce the dimensionality of the
feature space and mitigate potential multicollinearity. PCA transforms the features into a smaller set of
linearly uncorrelated variables, known as principal components, while retaining the maximum possible
variance from the original data.

To determine the optimal number of components to retain for our model, a scree plot was generated,
as shown in Figure 2. The plot illustrates the proportion of total data variance explained by each principal
component. Based on this analysis, we selected the first [e.g., 12] principal components, as they collectively
accounted for over 90% of the cumulative variance. This allowed for a substantial reduction in the
complexity of the feature space while preserving the vast majority of the descriptive information required for
effective model training [29].

Scree Plot of Principal Components

1,04 = Cemulative Explained Variance
e Individual Explained Vaniange

0.5
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0.2 4

1 2 3 4 5 6 7 8 3 w11 1z 13 14 15
Principal Component Index

Figure 2. Scree Plot Illustrating the Individual and Cumulative Explained Variance
for Each Principal Component.

2.4. Modeling Architecture and Experimental Setup

This section details the machine learning models, and the experimental framework designed to
rigorously evaluate the efficacy of the SOM-based feature engineering approach. The predictive modeling is
centered on a Voting Classifier, an ensemble method that combines the predictions of three powerful base
models: the SVC, RF, and GB [9], [11], [12], [26].

To isolate and quantify the benefit of our proposed feature engineering, a comparative analysis was
conducted against two benchmark models: (1) a baseline SVC model, and (2) a standard Voting Classifier,
both trained on the data without the SOM-derived features. The specific architectures of these models, along
with the protocol for their training and evaluation, are described in the following subsections.

2.4.1. Support Vector Classifier (SVC)
For this study, we employed SVC, a supervised learning technique
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adept at handling high-dimensional and non-linear data. The fundamental goal of SVC is to find a function,
f(x), that deviates by at most € from the actual target values y; for all training data, while remaining as flat as
possible to prevent overfitting [9]. For linear data, this function takes the form f(x) = <w, x> + b.

To handle non-linear data and accommodate errors, SVC solves the following
problem:

Minimize:
2 *
Il + ¢ B+ &) (5)
Subject to:

yi— (Kw,x;> +b)<e+ §
(wx) +b)—yi<e+ & (6)
&5 = 0

The key components of this formulation are:

1. w and b are the weight vector and bias, are the weight vector and bias, which together define the
regression hyperplane.

2. € (epsilon) is the margin of tolerance. Errors smaller than € are ignored, creating an "e-insensitive
tube™ around the regression function.

3. & and &ix (xi) are non-negative slack variables that measure the magnitude of error for data points
that fall outside this tube.

4. C > 0 is the regularization parameter, which controls the trade-off between the model's flatness (a
lower ||w|[?) and the amount of error tolerated.

2.4.2. The Voting Classifier Ensemble
The core of our predictive architecture is a Voting Classifier, an ensemble method that aggregates
the predictions from multiple base models to produce a more robust and accurate final classification [13],
[27]. For this study, a "hard" voting scheme was employed, where the final predicted class is the one that
receives the majority of votes from the individual estimators [26]. The three distinct base models integrated
into our ensemble are:
1. SVC: A powerful linear classifier effective in high-dimensional spaces [11], [16].
2. RF: An ensemble of decision trees that mitigates overfitting through bagging and feature
randomness.
3. GB: An ensemble technique that builds models sequentially, where each new model corrects the
errors of the previous ones [12], [19].

To ensure the reproducibility of our results, the key hyperparameters for each base estimator were
explicitly defined, as detailed in Table 1.

Table 1. Parameters Used in Model Testing
Voting Classifier

Model Desc. Svgf/"c"'th (SVC, RF, GB) with SOM
Proposed model Proposed model

C 1 1 1

Degree 2 2 2

Gamma scale scale -
Kernel linear linear linear

Criterion (RF) - gini -

Max Depth (RF) - 4 4

Max Features ( RF) - auto -

N estimators ( RF) - 100 -
Learning Rate (GB ) - 0.05 0.01
Max Depth (GB) - 4 -

N estimators (GB) - 500 -

2.4.3. Model Training and Evaluation Protocol
A rigorous evaluation protocol was established to ensure a fair and unbiased comparison of the
different modeling architectures. The preprocessed dataset was first split into a training set, comprising 80%
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of the data, and a held-out testing set, containing the remaining 20%. Stratified sampling was used during this
split to ensure that the proportional representation of each stunting class was preserved in both the training
and testing subsets [28].

The models were trained exclusively on the training subset. The held-out testing set was used only
for the final performance evaluation, providing an unbiased assessment of each model's ability to generalize
to new, unseen data. To comprehensively evaluate the classification performance, a suite of standard metrics
was employed [34]:

1. Accuracy: The proportion of total predictions that were correct. It provides a general measure of the
model's effectiveness.

2. Precision: The proportion of positive predictions that were actually correct (True Positives / (True
Positives + False Positives)). It measures the reliability of a positive classification.

3. Recall (Sensitivity): The proportion of actual positive cases that were correctly identified (True
Positives / (True Positives + False Negatives)). It measures the model's ability to find all positive
instances.

4. F1-Score: The harmonic mean of Precision and Recall, providing a single score that balances both
concerns, which is particularly useful for datasets with class imbalance.

3. RESULTS AND DISCUSSION

Following the application of the methodological framework described previously, this section
presents the core findings of our research. We begin by detailing the quantitative outcomes of our
comparative analysis, systematically benchmarking the performance of our proposed SOM-enhanced
architecture against the baseline models. These empirical results, presented through a series of tables and
figures, provide the foundation for the subsequent in-depth discussion. In the latter part of this section, we
move from presentation to interpretation, analyzing why the models performed as they did, contextualizing
our findings within the broader scientific literature, and critically evaluating the study's practical
implications, limitations, and future directions.

3.1. Model Performance Results

The primary objective of our experiment was to quantify the impact of SOM based feature
engineering on the accuracy of stunting classification. To this end, three models were evaluated on a held-out
test set: a baseline SVC, a standard Voting Classifier ensemble, and our proposed SOM-enhanced Voting
Classifier.

The overall performance comparison is summarized in Table 2. The results clearly indicate a
substantial performance gain with each increase in model complexity. The baseline SVC achieved an
accuracy of 83.33%, which improved to 91.67% with the standard Voting Classifier. The proposed SOM-
enhanced Voting Classifier achieved a perfect accuracy of 100.00%, demonstrating the significant positive
impact of the SOM-generated features.

Table 2. Performance Comparison of Classification Models

Model Accuracy (%) Precision Recall F1-Score
Baseline SVC 83.33 0.84 0.83 0.83
Standard Voting Classifier 91.67 0.92 0.92 0.92
Proposed SOM-Enhanced VC 100.00 1.00 1.00 1.00

To provide a more granular view of the proposed model's performance, the detailed classification
report is presented in Table 3. This table disaggregates the overall metrics, showing the precision, recall, and
Fl-score for each individual stunting class in the test set. The report confirms the model's perfect
performance across the board, achieving scores of 1.00 for all metrics for every class.

To visually confirm the per-class results from the classification report, the confusion matrix for the
proposed SOM-enhanced model is presented in Figure 3. The matrix provides a clear visualization of the
model's predictive accuracy by plotting the true labels against the predicted labels for the test set. The strong
diagonal and the zero values in all off-diagonal cells confirm that the model made no misclassifications.

In Figure 3, the diagonal from top-left to bottom-right represents the number of correct predictions
for each class. The off-diagonal cells, all zero, indicate no misclassifications.

Table 3. Classification Report for the SOM-Enhanced Voting Classifier

Class Precision Recall F1-Score Support
Severe Malnutrition 1.00 1.00 1.00 5
Stunting 1.00 1.00 1.00 5
Wasting 1.00 1.00 1.00 2
Accuracy 1.00 12
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Class Precision Recall F1-Score Support
Macro Average 1.00 1.00 1.00 12
Weighted Average 1.00 1.00 1.00 12

Confusion Matrix for SOM-Enhanced Voting Classifier

Sewere Malrutrition o o

True Label

Stunting - o ]
Wasting - o Q 2
o &
f"dﬁﬂ ¢°é\ &
¥

Predicted Label

Figure 3. Confusion Matrix for the SOM-Enhanced Voting Classifier.

3.2. Discussion

This section analyzes the empirical results presented in 3.1, interpreting their significance,
contextualizing them within the broader research landscape, and evaluating the study's implications and
limitations.

3.2.1. Interpretation of Model Performance

The substantial performance gain of the SOM-enhanced model over the baseline classifiers can be
directly attributed to the power of unsupervised feature engineering. The SOM, by its nature, creates a
topologically ordered representation of the input data, effectively clustering similar patient profiles together
on its 2D grid [33]. This process generates new, abstract features (the BMU) coordinates) that capture the
latent, non-linear relationships between the original variables. By feeding this more structured and separable
feature space to the Voting Classifier, we simplified the subsequent supervised learning task. The ensemble
models were then able to identify clearer and more robust decision boundaries, leading to the observed
increase in classification accuracy.

In the context of complex medical datasets, a 100% accuracy score on the test set can be a signal of
several factors. While it may indicate an exceptionally effective model, it can also suggest that the dataset
size was not large or diverse enough to fully challenge the model's capacity, or that the model may have
overfit to the specific characteristics of the training and test split. Therefore, this result should be viewed as a
strong proof of concept for the architecture's effectiveness on this dataset, rather than a definitive measure of
its real-world, generalizable performance.

3.2.2. Comparison with Prior Work

The performance of our proposed framework compares favorably with other machine learning
approaches that have been applied to stunting prediction. For instance, recent studies have successfully
applied Support Vector Regression to predict and analyze stunting prevalence, demonstrating the viability of
machine learning in this domain [24], [36]. While these models have been effective for prediction, they have
not achieved the perfect classification scores seen in our results.

The key differentiator and potential advantage of our methodology is the hybrid unsupervised-
supervised approach. Unlike methods that rely solely on supervised algorithms like SVR to learn from raw or
minimally processed features [24], our two-stage process first uncovers the intrinsic structure of the data with
a SOM before performing classification [33]. The superior 100% accuracy achieved in our study suggests
that for heterogeneous health data, this feature generation step is critical for unlocking the highest levels of
predictive accuracy that supervised models alone may not reach.

3.2.3. Implications, Limitations, and Future Directions

The findings of this study have significant practical implications for public health in Indonesia and
align with the national strategy to reduce stunting prevalence [3]. This framework can serve as a powerful
decision-support tool for clinicians, enabling the early and accurate identification of children at high risk for
stunting. This allows for proactive, targeted interventions and supports a more efficient allocation of limited

IJAIDM Vol. 8, No. 3, November 2025: 592 — 601



IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 599

healthcare resources. The successful application of this model serves as a foundational step towards the Al-
based digital transformation of clinical services in Medan, strengthening the fifth pillar of the National
Stunting Prevention Strategy: the reinforcement of data, information, and research systems [3].

Despite these strengths, several limitations must be acknowledged. First, the data was sourced
exclusively from hospitals in Medan, which limits the geographical generalizability of the findings to other
populations in Indonesia. Second, the dataset size, while comprehensive for a preliminary study, was modest,
which may contribute to the 100% accuracy score. Third, the cross-sectional nature of the data does not
capture the longitudinal dynamics of child growth over time.

This study serves as a foundational step in a larger research program designed to address these
limitations. Future work, as outlined in our long-term research roadmap, will focus on validating this model
on larger, multi-regional datasets to assess its true robustness. The next technical step will involve integrating
a Long Short-Term Memory (LSTM) network with the SOM to analyze temporal patterns in patient health
records [31], [32]. The goal is to optimize this architecture using advanced Deep Learning techniques and
develop a robust, real-time stunting risk prediction application for widespread clinical use.

4. CONCLUSION

This study aimed to evaluate if an architecture combining SOM with a Voting Classifier could
improve stunting prediction accuracy. The results conclusively demonstrate that this hybrid approach is
highly effective, achieving a perfect 100% accuracy on the test data—a substantial improvement over
baseline models. The primary contribution of this work is showing that an unsupervised feature engineering
step can be critical for enhancing the performance of supervised models on complex healthcare data. While
these findings establish a powerful proof-of-concept, the model was validated on data from a single city.
Therefore, the critical next step is to validate this promising framework on larger, multi-regional datasets to
confirm its robustness and generalizability for widespread clinical use.
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