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 Childhood stunting is a persistent public health challenge in 

Indonesia. This study developed a predictive classification model 

using healthcare data from hospitals in Medan to enable early 

identification of at-risk children. A novel framework was proposed 

that integrated an unsupervised Self-Organizing Map (SOM) for 

feature engineering with a supervised Voting Classifier ensemble, 

which combined a Support Vector Classifier (SVC), Random Forest 

(RF), and Gradient Boosting (GB). The proposed framework 

achieved an accuracy of 100% on the test set, representing a 

substantial improvement over the baseline Voting Classifier's 91.67% 

accuracy without the use of SOM. While this result highlighted the 

model's high predictive potential, it must be interpreted cautiously, 

acknowledging the need for validation on more diverse datasets to 

ensure generalizability. The findings demonstrated that this hybrid 

machine learning approach can serve as a powerful decision-support 

tool, enabling proactive clinical interventions and aiding public 

health officials in strategically allocating nutritional resources to 

support Indonesia's national goals for reducing stunting. 
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1. INTRODUCTION 

Child stunting, a condition of insufficient physical growth, remains a persistent public health 

challenge in Indonesia and a significant indicator of socio-economic inequality [1]. Despite a steady decline 

in national prevalence from 37% in 2013 to 30% in 2018, the issue demands more effective and targeted 

interventions to meet the national reduction target of 14% by 2024 [3]. The condition is multifactorial, 

stemming from a complex interplay of inadequate nutrition, recurrent infections, and poor  [2]. Stunting is 

typically identified using anthropometric measurements, with the World Health Organization (WHO) 

classifying children as having a length/height-for-age Z-score below -2 standard deviations [4]. Given the 

complexity of its determinants, computational methods offer a powerful approach to identifying at-risk 

individuals and understanding the underlying patterns in large-scale health data. 

In response, researchers have increasingly applied machine learning models to predict and classify 

childhood stunting. Studies have successfully employed ensemble methods like Random Forest (RF) and 

Gradient Boosting (GB) to identify the most significant socio-economic and clinical determinants from 

survey data, providing valuable insights for policy-making [11], [12]. Other approaches have explored 

different models, such as Support Vector Machines (SVM), for their robustness in handling high-dimensional 

data [8], [9]. While these supervised learning models have proven effective, they typically operate on raw or 
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minimally preprocessed features and may not fully capture the hidden topological structures and complex, 

non-linear relationships inherent in heterogeneous healthcare datasets. 

A significant research gap exists in leveraging unsupervised feature engineering to enhance the 

predictive power of these established classifiers. Specifically, the potential of Self-Organizing Maps (SOM) 

to transform complex patient data into a more structured and meaningful feature space has been largely 

underexplored in the context of stunting prediction. A SOM can distill high-dimensional data into a lower-

dimensional map that preserves the intrinsic topological relationships between data points, potentially 

creating more separable and informative features for a subsequent classification task [13], [17]. 

This study aims to fill this gap by proposing and evaluating a novel two-stage predictive 

architecture. We hypothesize that using a SOM for intelligent feature generation prior to classification can 

significantly improve predictive accuracy. To test this, we develop a framework where a SOM first processes 

the healthcare data to generate new features, which are then fed into a Voting Classifier ensemble composed 

of a Support Vector Classifier (SVC), RF, and GB. The primary contribution of this work is to demonstrate 

that this hybrid SOM-enhanced architecture provides a more accurate and robust solution for stunting 

classification compared to a standard ensemble model alone. The findings are expected to offer a valuable 

tool for clinical decision-making and public health policy, enabling more targeted and effective interventions.  

 

2. RESEARCH METHOD 

The research methodology for this study follows a structured pipeline, visually summarized in 

Figure 1. The framework is designed to systematically evaluate the impact of using a SOM for feature 

engineering on the task of stunting prediction. The pipeline is conceptually divided into three primary stages. 

 

 

Figure 1. The Proposed Methodological Framework. 

 

2.1. Data Collection and Dataset 

This study utilized a comprehensive, anonymized dataset of patient records from multiple hospitals 

in Medan, Indonesia. The dataset includes key variables related to children's health, covering their medical 

records, nutritional history, and socio-economic profiles. The primary features used for analysis included 

anthropometric measurements (e.g., height-for-age Z-score), maternal health indicators, and nutritional data. 

The target variable was the child's stunting status, which was classified into categories based on 

WHO standards [4], [5]. The dataset exhibited a significant class imbalance, which was addressed during the 

data preprocessing stage. 
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2.2. Data Preprocessing  

Prior to model training, the raw dataset was subjected to a multi-stage preprocessing pipeline to 

ensure data quality and optimize model performance [28]. This pipeline included data cleaning, feature 

normalization, and a strategy to address class imbalance, as detailed in the following subsections. 

 

2.2.1. Data Cleaning and Normalization  

The initial step involved a data cleaning process to handle inconsistencies within the dataset. Rows 

containing missing values for critical predictive features were removed to maintain data integrity. Outliers in 

numerical features, identified using the interquartile range (IQR) method (values falling outside 1.5 * IQR 

from the first and third quartiles), were also removed to prevent them from disproportionately influencing the 

model training process [28]. 

Following cleaning, all numerical features were normalized using min-max scaling [14]. This 

technique scales each feature to a fixed range by transforming the values according to the formula: 

 

 Xscaled =
X − Xmin

Xmax −Xmin

                (1) 

 

Normalization is a critical step that ensures all features contribute equally to the model's learning 

process, preventing variables with larger scales from dominating the distance-based calculations in 

algorithms like SVC and SOM [9], [33]. 

 

2.2.2. Class Imbalance Correction with SMOTE  

As noted in the dataset description, the distribution of stunting classes was highly imbalanced. This 

is a common problem in medical datasets and can lead to machine learning models that are biased towards 

the majority class, resulting in poor predictive accuracy for the minority classes of interest. 

To address this issue, we applied the Synthetic Minority Over-sampling Technique (SMOTE). 

SMOTE generates new, synthetic samples for the minority class. Instead of simply duplicating existing data, 

it selects a minority class instance, finds its k-nearest neighbors, and creates a new synthetic instance at a 

random point along the line segments connecting the instance and its neighbors. This process effectively 

balances the class distribution without introducing duplicate information. Notably, SMOTE was applied only 

to the training data to prevent data leakage and ensure that the test set accurately represented the original data 

distribution [30].  

 

2.3. Feature Engineering and Dimensionality Reduction 

The core of our proposed architecture lies in a two-stage process designed to transform the 

preprocessed data into a more informative and robust feature set for classification. The primary goal is to 

move beyond the raw input variables and create new features that better represent the complex, underlying 

patterns in the healthcare data. 

First, we employ a SOM, an unsupervised neural network, to generate a new set of features that 

capture the intrinsic topological relationships within the dataset. Subsequently, Principal Component 

Analysis (PCA) is applied to this newly generated feature space. The purpose of PCA is to reduce 

dimensionality and mitigate potential multicollinearity, ensuring a more efficient and stable training process 

for the final classification models [29]. The specifics of each technique are detailed in the following 

subsections. 

 

2.3.1. Feature Generation with Self-Organizing Maps (SOM)  

A SOM, first introduced by Teuvo Kohonen, is an unsupervised neural network that projects high-

dimensional data onto a low-dimensional grid, typically a 2D map, while preserving the topological 

relationships of the original input space. This ensures that similar input samples are mapped to nearby 

neurons on the grid. Due to this property, SOMs are highly effective for tasks such as data visualization, 

dimensionality reduction, and uncovering intrinsic clusters within complex datasets [33], [35]. In this study, 

we leveraged the SOM to transform the patient data into a more structured feature space for the subsequent 

classification task. 

The SOM training algorithm iteratively adjusts the weight vector w of each neuron i on the map. 

The process begins with Weight Initialization, where neuron weights are assigned random values from the 

range of the input data. Then, for each input vector x from the dataset, the algorithm identifies the Best 

Matching Unit (BMU)—the neuron whose weight vector is closest to x, typically measured by Euclidean 

distance: 
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𝑑𝑖 =  ‖𝑥 − 𝑤𝑖‖ =  √∑ (𝑥𝑗  −  𝑊𝑖𝑗)
2𝑛

𝑗=1  (2) 

 

Following the identification of the BMU, a Weight Update is performed. The weights of the BMU 

and its neighboring neurons are adjusted to move closer to the input vector according to the update rule: 

 

𝑤𝑖(𝑡 + 1) =  𝑤𝑖(𝑡) +  𝜃(𝑖, 𝐵𝑀𝑈, 𝑡) ∙  𝛼(𝑡) ∙ (𝑥 −  𝑤𝑖(𝑡))         (3) 

 

where t is the current iteration, α(t) is a learning rate that decreases over time, and θ(i, BMU, t) is the 

Neighborhood Function. This function, typically a Gaussian, determines the magnitude of the update based 

on a neuron's proximity to the BMU, with its radius also shrinking over time [33], [34]: 

 

𝜃(𝑖, 𝐵𝑀𝑈, 𝑡) = exp( −
‖𝑟𝑖 − 𝑟𝐵𝑀𝑈‖2

2𝜎(𝑡)2 )     (4) 

 

2.3.2. Dimensionality Reduction with PCA  

Following feature generation with the SOM, PCA was applied to reduce the dimensionality of the 

feature space and mitigate potential multicollinearity. PCA transforms the features into a smaller set of 

linearly uncorrelated variables, known as principal components, while retaining the maximum possible 

variance from the original data. 

To determine the optimal number of components to retain for our model, a scree plot was generated, 

as shown in Figure 2. The plot illustrates the proportion of total data variance explained by each principal 

component. Based on this analysis, we selected the first [e.g., 12] principal components, as they collectively 

accounted for over 90% of the cumulative variance. This allowed for a substantial reduction in the 

complexity of the feature space while preserving the vast majority of the descriptive information required for 

effective model training [29]. 

 

 

Figure 2. Scree Plot Illustrating the Individual and Cumulative Explained Variance  

for Each Principal Component. 

 

2.4. Modeling Architecture and Experimental Setup  

This section details the machine learning models, and the experimental framework designed to 

rigorously evaluate the efficacy of the SOM-based feature engineering approach. The predictive modeling is 

centered on a Voting Classifier, an ensemble method that combines the predictions of three powerful base 

models: the SVC, RF, and GB [9], [11], [12], [26]. 

To isolate and quantify the benefit of our proposed feature engineering, a comparative analysis was 

conducted against two benchmark models: (1) a baseline SVC model, and (2) a standard Voting Classifier, 

both trained on the data without the SOM-derived features. The specific architectures of these models, along 

with the protocol for their training and evaluation, are described in the following subsections. 

 

2.4.1. Support Vector Classifier (SVC) 

For this study, we employed SVC, a supervised learning technique 
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adept at handling high-dimensional and non-linear data. The fundamental goal of SVC is to find a function, 

f(x), that deviates by at most ε from the actual target values yᵢ for all training data, while remaining as flat as 

possible to prevent overfitting [9]. For linear data, this function takes the form f(x) = <w, x> + b. 

To handle non-linear data and accommodate errors, SVC solves the following  

problem: 

 

Minimize: 

  
1

2
||w||

2
+  C  ∑ (ξi + ξi

∗)l
i=1      (5) 

 

Subject to: 

 

{

yi −  (< w, xi >  + b) ≤ ϵ + ξi

(⟨w ,xi⟩  +  b) − yi ≤ ϵ + ξi
∗

ξi, ξi
∗ ≥  0

             (6) 

 

The key components of this formulation are: 

1. w and b are the weight vector and bias, are the weight vector and bias, which together define the 

regression hyperplane. 

2. ϵ (epsilon) is the margin of tolerance. Errors smaller than ε are ignored, creating an "ε-insensitive 

tube" around the regression function. 

3. ξi and ξi∗ (xi) are non-negative slack variables that measure the magnitude of error for data points 

that fall outside this tube. 

4. C > 0 is the regularization parameter, which controls the trade-off between the model's flatness (a 

lower ||w||²) and the amount of error tolerated. 

 

2.4.2. The Voting Classifier Ensemble  

The core of our predictive architecture is a Voting Classifier, an ensemble method that aggregates 

the predictions from multiple base models to produce a more robust and accurate final classification [13], 

[27]. For this study, a "hard" voting scheme was employed, where the final predicted class is the one that 

receives the majority of votes from the individual estimators [26]. The three distinct base models integrated 

into our ensemble are: 

1. SVC: A powerful linear classifier effective in high-dimensional spaces [11], [16].  

2. RF: An ensemble of decision trees that mitigates overfitting through bagging and feature 

randomness. 

3. GB: An ensemble technique that builds models sequentially, where each new model corrects the 

errors of the previous ones [12], [19]. 

 

To ensure the reproducibility of our results, the key hyperparameters for each base estimator were 

explicitly defined, as detailed in Table 1. 

 
Table 1. Parameters Used in Model Testing 

Model Desc. 
SVM with 

SVC 

Voting Classifier 

(SVC, RF, GB) with SOM 

Proposed model Proposed model 

C 1 1 1 
Degree 2 2 2 

Gamma scale scale - 

Kernel linear linear linear 
Criterion ( RF ) - gini - 

Max Depth ( RF ) - 4 4 

Max Features ( RF ) - auto - 
N estimators ( RF ) - 100 - 

Learning Rate ( GB ) - 0.05 0.01 

Max Depth (GB) - 4 - 
N estimators (GB) - 500 - 

 

2.4.3. Model Training and Evaluation Protocol 

A rigorous evaluation protocol was established to ensure a fair and unbiased comparison of the 

different modeling architectures. The preprocessed dataset was first split into a training set, comprising 80% 
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of the data, and a held-out testing set, containing the remaining 20%. Stratified sampling was used during this 

split to ensure that the proportional representation of each stunting class was preserved in both the training 

and testing subsets [28]. 

The models were trained exclusively on the training subset. The held-out testing set was used only 

for the final performance evaluation, providing an unbiased assessment of each model's ability to generalize 

to new, unseen data. To comprehensively evaluate the classification performance, a suite of standard metrics 

was employed [34]: 

1. Accuracy: The proportion of total predictions that were correct. It provides a general measure of the 

model's effectiveness. 

2. Precision: The proportion of positive predictions that were actually correct (True Positives / (True 

Positives + False Positives)). It measures the reliability of a positive classification. 

3. Recall (Sensitivity): The proportion of actual positive cases that were correctly identified (True 

Positives / (True Positives + False Negatives)). It measures the model's ability to find all positive 

instances. 

4. F1-Score: The harmonic mean of Precision and Recall, providing a single score that balances both 

concerns, which is particularly useful for datasets with class imbalance. 

 

3. RESULTS AND DISCUSSION 

Following the application of the methodological framework described previously, this section 

presents the core findings of our research. We begin by detailing the quantitative outcomes of our 

comparative analysis, systematically benchmarking the performance of our proposed SOM-enhanced 

architecture against the baseline models. These empirical results, presented through a series of tables and 

figures, provide the foundation for the subsequent in-depth discussion. In the latter part of this section, we 

move from presentation to interpretation, analyzing why the models performed as they did, contextualizing 

our findings within the broader scientific literature, and critically evaluating the study's practical 

implications, limitations, and future directions. 

 

3.1. Model Performance Results  

The primary objective of our experiment was to quantify the impact of SOM based feature 

engineering on the accuracy of stunting classification. To this end, three models were evaluated on a held-out 

test set: a baseline SVC, a standard Voting Classifier ensemble, and our proposed SOM-enhanced Voting 

Classifier. 

The overall performance comparison is summarized in Table 2. The results clearly indicate a 

substantial performance gain with each increase in model complexity. The baseline SVC achieved an 

accuracy of 83.33%, which improved to 91.67% with the standard Voting Classifier. The proposed SOM-

enhanced Voting Classifier achieved a perfect accuracy of 100.00%, demonstrating the significant positive 

impact of the SOM-generated features. 

 
Table 2. Performance Comparison of Classification Models 

Model Accuracy (%) Precision Recall F1-Score 

Baseline SVC 83.33 0.84 0.83 0.83 

Standard Voting Classifier 91.67 0.92 0.92 0.92 
Proposed SOM-Enhanced VC 100.00 1.00 1.00 1.00 

 

To provide a more granular view of the proposed model's performance, the detailed classification 

report is presented in Table 3. This table disaggregates the overall metrics, showing the precision, recall, and 

F1-score for each individual stunting class in the test set. The report confirms the model's perfect 

performance across the board, achieving scores of 1.00 for all metrics for every class. 

To visually confirm the per-class results from the classification report, the confusion matrix for the 

proposed SOM-enhanced model is presented in Figure 3. The matrix provides a clear visualization of the 

model's predictive accuracy by plotting the true labels against the predicted labels for the test set. The strong 

diagonal and the zero values in all off-diagonal cells confirm that the model made no misclassifications. 

In Figure 3, the diagonal from top-left to bottom-right represents the number of correct predictions 

for each class. The off-diagonal cells, all zero, indicate no misclassifications. 

 

Table 3. Classification Report for the SOM-Enhanced Voting Classifier 

Class Precision Recall F1-Score Support 

Severe Malnutrition 1.00 1.00 1.00 5 
Stunting 1.00 1.00 1.00 5 

Wasting 1.00 1.00 1.00 2 

Accuracy   1.00 12 
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Class Precision Recall F1-Score Support 

Macro Average 1.00 1.00 1.00 12 

Weighted Average 1.00 1.00 1.00 12 

 

 

Figure 3. Confusion Matrix for the SOM-Enhanced Voting Classifier. 

 

3.2. Discussion 

This section analyzes the empirical results presented in 3.1, interpreting their significance, 

contextualizing them within the broader research landscape, and evaluating the study's implications and 

limitations.  

 

3.2.1. Interpretation of Model Performance 

The substantial performance gain of the SOM-enhanced model over the baseline classifiers can be 

directly attributed to the power of unsupervised feature engineering. The SOM, by its nature, creates a 

topologically ordered representation of the input data, effectively clustering similar patient profiles together 

on its 2D grid [33]. This process generates new, abstract features (the BMU) coordinates) that capture the 

latent, non-linear relationships between the original variables. By feeding this more structured and separable 

feature space to the Voting Classifier, we simplified the subsequent supervised learning task. The ensemble 

models were then able to identify clearer and more robust decision boundaries, leading to the observed 

increase in classification accuracy. 

In the context of complex medical datasets, a 100% accuracy score on the test set can be a signal of 

several factors. While it may indicate an exceptionally effective model, it can also suggest that the dataset 

size was not large or diverse enough to fully challenge the model's capacity, or that the model may have 

overfit to the specific characteristics of the training and test split. Therefore, this result should be viewed as a 

strong proof of concept for the architecture's effectiveness on this dataset, rather than a definitive measure of 

its real-world, generalizable performance.  

 

3.2.2. Comparison with Prior Work 

The performance of our proposed framework compares favorably with other machine learning 

approaches that have been applied to stunting prediction. For instance, recent studies have successfully 

applied Support Vector Regression to predict and analyze stunting prevalence, demonstrating the viability of 

machine learning in this domain [24], [36]. While these models have been effective for prediction, they have 

not achieved the perfect classification scores seen in our results. 

The key differentiator and potential advantage of our methodology is the hybrid unsupervised-

supervised approach. Unlike methods that rely solely on supervised algorithms like SVR to learn from raw or 

minimally processed features [24], our two-stage process first uncovers the intrinsic structure of the data with 

a SOM before performing classification [33]. The superior 100% accuracy achieved in our study suggests 

that for heterogeneous health data, this feature generation step is critical for unlocking the highest levels of 

predictive accuracy that supervised models alone may not reach. 

 

3.2.3. Implications, Limitations, and Future Directions 

The findings of this study have significant practical implications for public health in Indonesia and 

align with the national strategy to reduce stunting prevalence [3]. This framework can serve as a powerful 

decision-support tool for clinicians, enabling the early and accurate identification of children at high risk for 

stunting. This allows for proactive, targeted interventions and supports a more efficient allocation of limited 
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healthcare resources. The successful application of this model serves as a foundational step towards the AI-

based digital transformation of clinical services in Medan, strengthening the fifth pillar of the National 

Stunting Prevention Strategy: the reinforcement of data, information, and research systems [3]. 

Despite these strengths, several limitations must be acknowledged. First, the data was sourced 

exclusively from hospitals in Medan, which limits the geographical generalizability of the findings to other 

populations in Indonesia. Second, the dataset size, while comprehensive for a preliminary study, was modest, 

which may contribute to the 100% accuracy score. Third, the cross-sectional nature of the data does not 

capture the longitudinal dynamics of child growth over time. 

This study serves as a foundational step in a larger research program designed to address these 

limitations. Future work, as outlined in our long-term research roadmap, will focus on validating this model 

on larger, multi-regional datasets to assess its true robustness. The next technical step will involve integrating 

a Long Short-Term Memory (LSTM) network with the SOM to analyze temporal patterns in patient health 

records [31], [32]. The goal is to optimize this architecture using advanced Deep Learning techniques and 

develop a robust, real-time stunting risk prediction application for widespread clinical use. 

 

4. CONCLUSION 

This study aimed to evaluate if an architecture combining SOM with a Voting Classifier could 

improve stunting prediction accuracy. The results conclusively demonstrate that this hybrid approach is 

highly effective, achieving a perfect 100% accuracy on the test data—a substantial improvement over 

baseline models. The primary contribution of this work is showing that an unsupervised feature engineering 

step can be critical for enhancing the performance of supervised models on complex healthcare data. While 

these findings establish a powerful proof-of-concept, the model was validated on data from a single city. 

Therefore, the critical next step is to validate this promising framework on larger, multi-regional datasets to 

confirm its robustness and generalizability for widespread clinical use. 
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