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 Aviation accidents have plateaued in terms of safety improvements 

since the late 1990s, underscoring the need for advanced analytical 

approaches. This study employs a data-driven framework utilizing 

Artificial Intelligence (AI) on a comprehensive dataset spanning 75 

years of global aviation accidents. This enables the identification of 

long-term safety patterns that are often overlooked in studies limited 

to specific regions or flight phases. The study aims to analyze long-

term trends and predict future aviation accidents using Machine 

Learning (ML) classification models. This study involved web 

scraping the Aviation Safety Network (ASN) database to compile the 

dataset, followed by Exploratory Data Analysis (EDA) to obtain 

insights. Support Vector Machine (SVM), Random Forest (RF), and 

Categorical Naive Bayes were employed for fatality prediction. EDA 

results show that while the number of fatal accidents has declined, 

scheduled passenger service and the en-route flight phase show the 

highest proportion of occurrences. Furthermore, the maneuvering 

flight phase and military service have a maximum likelihood of a 

fatal outcome. The predictive models achieved accuracies of 

approximately 79-80%. The SVM model, with the highest F1-score 

(79.85%), proved to be the most balanced in terms of specificity for 

non-fatal incidents and sensitivity for fatal ones. This result provides 

safety practitioners with a reliable framework for evidence-based 

decision-making.  
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1. INTRODUCTION  

Aviation safety has prioritized its continuous effort to reduce the risk of accidents. Accident rates 

have been consistently declining since the 1960s, and the industry has experienced substantial safety 

enhancements for decades. However, this positive trend has slowed, reaching a plateau in recent decades, 

suggesting that conventional safety enhancement methods may be approaching their limits of effectiveness 

[1]. This stagnation emphasizes the urgent need for any stakeholders to create and explore innovative 

approaches to enhance the effectiveness of existing accident prevention and mitigation strategies [2]. 

Although most incidents are minor, the accumulation of these events can result in severe complications if 

they are not properly detected and managed [3]. Artificial Intelligence (AI) and Machine Learning (ML) have 

emerged as a promising solution which provides the ability to process and analyze massive volumes of 
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historical data to find patterns, trends, and non-linear correlations that traditional statistical analysis methods 

often miss [4]. By employing predictive models, the aviation sector can shift from a reactive to a proactive 

approach to addressing safety hazards [5]. 

Recent research has further expanded the range of algorithms considered. Zhang and Mahadevan [6] 

applied ensemble ML models to predict aviation incident risk and reported improved accuracy, although their 

work relied on limited operational data. Omrani et al. [7] compared neural networks, decision trees, and 

Support Vector Machine (SVM) for accident severity prediction in civil aviation, showing both the potential 

and the limitations of classical ML approaches. A study published by Bilgic et al.  [8] explored several 

algorithms for predicting injuries and fatalities in aviation accidents and confirmed the need for models that 

can reliably separate fatal from non-fatal outcomes. Xia et al. [9] used ADS-B data to detect anomalies in 

commercial aviation and predict accident precursors, highlighting the importance of real-time monitoring. 

Demir et al. [5] presented a systematic review that underscored the growing role of AI in aviation safety but 

noted that most studies still rely on regional or short. However, these studies frequently face limitations due 

to their shorter time frames, inability to cover all flight phases, or lack of access to comprehensive global 

accident datasets. These limitations highlight the need for a more comprehensive analysis of accident risk. 

To address this gap, this study suggests an AI-based approach to analyze 75 years of global aviation 

accident records. The main objective is to create a reliable model for predicting fatalities, which are defined 

as deaths that happen within 30 days of an incident, according to ICAO standards [10]. This study focused on 

the key features, such as the type of aircraft, the type of service, and the phase of flight. Empirical studies 

have demonstrated that the type and age of an aircraft are important factors that affect risk profiles and 

accident patterns [11]. Takeoff and landing are also statistically the most hazardous phases for accidents [12].  

Thus, this study has two main goals. The first objective is to conduct a comprehensive Exploratory 

Data Analysis (EDA) on 75 years of global aviation accident records to identify significant patterns and high-

risk factors that contribute to fatalities. Secondly, we aim to develop and evaluate an AI-based predictive 

model that may employ ML algorithms trained on 75 years of global aviation accident records to classify the 

results of aviation accidents into two categories, which are fatal and non-fatal. A similar approach was also 

applied in a study by Juanara and Lam [13] for the classification of early warning levels in disaster scenarios. 

This study makes two main contributions. First, it provides a validated predictive framework that 

demonstrates a balanced approach to predict fatalities. Second, it presents crucial data-driven insights derived 

from the historical analysis, which indicate specific high-risk scenarios such as very high fatality rates in 

military operations and during the maneuvering phase of flight. The contribution of this study lies in its 

global and long-term scope, which bridges gaps left by prior works limited in geography, timeframe, or 

operational phases. Beyond methodological contributions, the findings offer practical value by equipping 

aviation regulators and operators with a reliable predictive framework to strengthen proactive safety 

management strategies. Simultaneously, these contributions provide a foundation for developing more 

effective and targeted safety strategies.  

This paper is structured as follows: Section 2 outlines the research methodology, Section 3 presents 

the results of the experiments and EDA, then discusses the analysis of the findings, and Section 4 concludes 

the study and suggests directions for future research. 

 

2. RESEARCH METHOD 

This study will discuss the use of EDA as a method to explore the aviation accident dataset from 75 

years of records and create a model to predict future aviation accidents using several types of ML algorithms. 

 

2.1. Data Collection 

The dataset is obtained from the Aviation Safety Network (ASN), a worldwide repository of 

information that provides up-to-date, complete, and reliable authoritative information on airline accidents and 

safety issues [14]. The data used in this paper corresponds to all the 18,652 accidents and incidents reported 

during a 75-year period spanning from January 1951 to December 2024. We distribute all the data into three 

categories: aircraft manufacturers, flight phase, and aircraft type of service. This data is obtained by using a 

web scraping method, which is a technique used to automatically extract data from websites. Web scraping is 

systematically implemented based on the flowchart, as shown in Figure 1.   

The implementation of the web scraping method in this study is slightly similar to [15], which relied 

on the BeautifulSoup library to parse and extract relevant data from the HyperText Markup Language 

(HTML) content of the ASN website. The program begins by defining the range of years from which 

accident data will be collected, which spans from 1951 to 2025. The next stage is sending HyperText 

Transfer Protocol (HTTP) requests to the ASN website. The scraper accesses the ASN database by sending 

HTTP requests to specific year-based Uniform Resource Locators (URL). After sending the request, the 

scraper verifies the HTTP response status code. The next stage is identifying the number of pages for each 
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year. Several years may accommodate multiple pages of accident records. To ensure all available accident 

data is retrieved, the scraper first detects pagination links on the ASN website. These links allow users to 

navigate through additional pages containing accident reports for a given year. The next step is to get the data 

on aviation accidents. The scraper goes through each page iteratively to obtain any details from the available 

accident records table. The scraper uses BeautifulSoup to locate and retrieve information from HTML tables 

representing individual accidents. The retrieved data contains the accident date, aircraft type, location, 

number of fatalities, and a direct link to the detail accident reports. After acquiring the URL to the detailed 

accident page, the scraper extracts further information, such as the flight phase and type of aircraft service. 

The collected data is then compiled into a Comma-Separated Values (CSV) file after it has been successfully 

extracted. Once all available pages for a given year have been processed, the scraper moves to the next year 

and repeats the entire process. The scraper continues this iterative approach until it successfully collects data 

from 1951 to 2025.  

 

 

Figure 1. Flowchart of Web Scraping Method 

 

2.2. Data Pre-processing 
The data processing phase is essential to prepare the dataset for accurate and reliable analysis. This 

phase involves five key steps: flight data selection, data cleaning, feature selection, dataset standardization, 

and handling the imbalanced data. 

 

2.2.1. Flight Data Selection 

In this step, the dataset is filtered to retain only relevant and meaningful features necessary for 

analysis. This process helps eliminate unnecessary data to ensure that only useful attributes are considered for 

further processing. 

 

2.2.2. Feature Extraction 

To enhance the analytical value of the dataset, additional features are derived from existing 

columns. Specifically, the Manufacturer feature is extracted from the Aircraft column to categorize accident 

data based on aircraft manufacturers. Then, the year feature is extracted from the Date column to facilitate 

time-based trend analysis. 

 

2.2.3. Data Cleaning 

Data quality and integrity are ensured by handling missing or inconsistent values. Based on the data 

obtained from web scraping, the Type of Service column contains several records with unknown values. 

Since these records lack crucial information, they are removed from the dataset to maintain data reliability. 

 

2.2.4. Data Standardization 
After filtering and cleaning the data, standardization techniques are applied to ensure consistency 

across all attributes.  One crucial aspect of this process is normalizing date formats, which ensures uniformity 

in time-based data, making it easier to analyze trends over different periods. Additionally, the number of 

Fatalities column is standardized by categorizing it into two distinct classes: Fatal and Non-Fatal. The fatal 

class includes accidents that resulted in at least one fatality, while the non-fatal class includes incidents that 
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did not result in any fatalities. This classification provides the analysis easier by separating severe and non-

severe aviation accidents, which allows it to be easier to recognize patterns and evaluate trends. 

 

2.2.5. Handling Imbalanced Data 

After completing data cleaning and standardization, class imbalance was addressed using the 

Synthetic Minority Oversampling Technique (SMOTE). This approach was applied before model training to 

ensure that the minority class (fatal accidents) was adequately represented, thereby enhancing the models' 

ability to generalize.   

 

2.3. Exploratory Data Analysis 
EDA is a procedure for analyzing data, a way to make interpretations or interpretations, a plan for 

obtaining data with the aim of facilitating analysis [16]. In this study, we conducted EDA to gain insights into 

the aviation accident dataset in the last 75 years period. In this study, this analysis consists of data 

visualization providing a clear and intuitive way to interpret the data. This stage is carried out to find the 

patterns and trends in aviation accident fatalities by examining key categorical variables. 

 

2.3.1. Proportional and Temporal Analysis of Accident Fatalities 

There were two main steps in the initial analysis of accident outcomes. In order to provide an 

overview of the severity of accidents are in general, we observe the overall distribution of accident severity 

by categorizing all incidents in the 75-year dataset into two main types: Fatal (where there was one or more 

fatalities) and Non-Fatal (where there were no fatalities). Next, we did a temporal trend analysis to examine 

how aviation safety has changed over time. At this stage, we collected the annual data on fatal accidents from 

1950 to 2025. The time-series data was then plotted to demonstrate the long-term trends, determine when 

high volatility data occurs, and evaluate how safety performance has changed over the years. 

 

2.3.2. Analysis of Fatalities by Aircraft Manufacturer 

The analysis of fatalities by aircraft manufacturer comprised two steps. The accident data was 

organized by manufacturer to determine the number of fatal accidents attributed to each.  This enabled the 

identification of manufacturers with the highest number of incidents overall. A proportional analysis was 

conducted to evaluate the overall inherent safety performance.  This analysis then needs the calculation of the 

proportion of non-fatal accidents according to the total number of incidents for each manufacturer. This 

normalization provided a more precise understanding of risk which might take into account the different 

operational scales of various producers. This analysis supports safety audits and risk assessments by 

highlighting manufacturers whose designs warrant further attention. 

 

2.3.3. Analysis of Fatalities by Phase of Flight 
The analysis of fatalities by phase of flight was conducted to pinpoint operational vulnerabilities. 

Initially, accident records were categorized by flight phase and the absolute number of fatal accidents was 

aggregated for each. To understand the intrinsic risk of each phase independent of its duration or frequency, a 

proportional analysis was also performed. The ratio of fatal to non-fatal occurrences was determined for each 

phase. This important stage provided the differentiation between phases characterized by high incident 

frequency and those with the greatest likelihood of a fatal outcome per incident. These insights are crucial for 

flight safety programs, pilot training priorities, and regulatory oversight due to the highlighted areas where 

interventions could yield significant benefits. 

 

2.3.4. Analysis of Fatalities by Type of Service 

The analysis of fatalities categorized by the type of service was designed to emphasize risk profiles 

specific to each purpose. Each record of a fatal accident was initially classified according to its operational 

service, and the data was compiled to figure out the total number of fatal incidents for each category. To 

provide a more insightful risk assessment, a proportional analysis was then conducted by calculating the 

percentage of fatal accidents within each service category. This normalization was critical to identify which 

operational contexts, such as military flights, carry the highest intrinsic risk of a fatal outcome, independent 

of their overall frequency of operations. The objective was to identify the operating contexts that are most 

and least susceptible to fatal accidents and to understand the correlation between the type of service and 

fatality rates could help in addressing the systemic weaknesses within the particular operational categories. 

 

2.4. ML Algorithms 

This study investigates several widely used ML algorithms to identify hidden patterns in data and 

analyze the impact of input variables on outcomes. Three different algorithms used in this study are SVM, 
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Random Forest (RF), and Categorical Naive Bayes to predict future aviation accidents based on the given 

dataset. The selection of ML algorithms in this study was based on both theoretical considerations and their 

complementary strengths. SVM was chosen for its effectiveness in producing optimal separating hyperplanes 

in high-dimensional feature spaces, making it suitable for complex classification tasks with overlapping 

classes. RF was included for its robustness in capturing nonlinear relationships among features and its ability 

to provide interpretability through feature importance scores. Finally, Categorical Naïve Bayes was employed 

due to its probabilistic simplicity and efficiency in handling categorical predictors, serving as a strong 

baseline for comparison. This diverse combination of algorithms enables a comprehensive evaluation of 

predictive performance from linear margin-based, ensemble non-linear, and probabilistic perspectives. Each 

algorithm employs the distinct approach based on different assumptions and statistical techniques, which 

results to different strengths and weaknesses. Consequently, it is crucial to implement numerous algorithms 

on a specific issue in order to identify the optimal solution. In the end, the models were evaluated using 

accuracy, F1-Score, sensitivity and specificity [17]. 

 

2.4.1. Support Vector Machine 

SVM which was introduced by Vapnik, is a supervised learning method widely employed for many 

cases of classification and regression tasks. This algorithm aims to identify a single hyperplane that can 

maximize the margin for linear separation of the classes. This method demonstrates particular effectiveness 

in scenarios with limited training data, where traditional statistical methods dependent on large datasets may 

fail to ensure an optimal solution. The SVM algorithm can make a more stable model by maximizing the 

distance between classes with the hyperplane and has a good generalization ability for any new data testing. 

The data points that most determine the position of this hyperplane are known as support vectors, which play 

an important role in forming the boundary separating the classes in a high-dimensional feature space [18]. To 

determine the optimal hyperplane that separates data into two or more categories, support vector machine 

identifies the decision boundary that maximizes the margin between classes. The decision function of SVM 

can be represented by equation (1). 

 

𝑓(𝑥) = 𝑤𝑇𝛷(𝑥) + 𝑏     (1) 

 

where 𝑤 is the normal vector to the hyperplane, 𝑏 denotes the bias term while 𝛷(𝑥) represents a nonlinear 

mapping of the input vector 𝑥 into a higher-dimensional feature space [19] . 

 

2.4.2. Random Forest 

The random forest algorithm is a machine learning model that is built from a tree-based block 

arrangement. Tree-based models process the dataset recursively and divide it by certain criteria until a 

stopping condition is met. At the bottom of the decision tree is something called a leaf node. The variation of 

the partition criteria and the stopping conditions set becomes the rules in designing decision trees for 

classification tasks (categorical outcomes, for example, logistic regression) and regression tasks (continuous 

outcomes) [20]. One of the important features of random forests is the ability to determine the variables that 

influence the prediction. This model can accept raw data and also model nonlinear relationships and accept 

regression and classification problems at the same time [21]. As machine learning technology advances, 

random forests continue to be used as a comparison to newer techniques in classification and regression. 

The Classification and Regression Tree (CART) algorithm in Random Forest will produce tree 

nodes that can represent binary decision rules. This division is done on features that maximize information 

gain (IG) recursively on the data. IG is defined in equation (2). 

 

𝐼𝐺 (𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − ∑ (
𝑁𝑗

𝑁𝑝
𝐼(𝐷𝑗))𝑚

𝑗=1      (2) 

 

where 𝐷𝑝 and 𝐷𝑗  are the data sets at the parent and the 𝑗-th child node, 𝑓 is the variable to perform the split of 

the feature space, 𝑗 is the index of the child node ranging from 1 to 𝑚 and 𝑚 indicates the total number of 

child nodes produced from the split. 𝐼 is Gini impurity function whereas 𝑁𝑝 and 𝑁𝑗 are the number of 

samples at the parent and child nodes. The Gini impurity reflects the probability of misclassifying an 

observation. Formally, it can be described in the equation (3).  

 

𝐺𝐼𝑁𝐼 (𝐷) = 1 −  ∑ 𝑝𝑖
2𝑘

𝑖=1        (3) 
 

where 𝐷 is the dataset containing samples of 𝑘 classes and 𝑝𝑖  is the proportion of the samples that belong to 

class 𝑖 for a particular node [22]. 
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2.4.3. Categorical Naïve Bayes 
There are three Naive Bayes classification methods, namely Bernoulli Naive Bayes, Gaussian Naive 

Bayes and Categorical Naive Bayes. Bernoulli Naive Bayes classifies data distributed according to the 

Bernoulli distribution, namely binary values. As for Gaussian Naive Bayes, it is the most commonly used 

classifier method and its decision function is derived from the Gaussian distribution. Meanwhile, in this 

study, the third method is used, namely Categorical Naive Bayes, which is specifically intended for data that 

is categorically not trusted [23]. To avoid the problem of zero frequency, the smoothing parameter (α > 0) is 

used in the decision function in equation (4). 

 

𝑃(𝑣𝑖 = 𝑡|𝑦 = 𝑐, 𝛼) =
𝑁𝑡𝑐+𝛼

𝑁𝑐+𝛼𝑛𝑖
            (4) 

 

Where 𝑣𝑖 is the 𝑖th feature, 𝑡 is a specific category of feature 𝑣𝑖, 𝑁𝑡𝑐  is the number of times the category 𝑡 

appears in the sample from class 𝑐, 𝑁𝑐 is the total number of samples in class 𝑐, and 𝑛𝑖 is the number of 

categories that exist in the 𝑖th feature.  

 

2.5. Model Evaluation 

The performance model can be assessed through insight into the correctness of several 

categorization model components through the usage of a confusion matrix. The confusion matrix for the two-

path clustering is shown in Table 1. True positive (TP) denotes that the system accurately identified a 

positive prediction, which is a fatal class, while True Negative (TN) means that the system successfully 

identified a negative prediction, which is a non-fatal class. False Positive (FP) describes how the system 

incorrectly classifies a negative prediction as positive, while False Negative (FN) describes how the system 

incorrectly labels a positive prediction as negative. Accuracy refers to how closely the value predicted by the 

system matches the actual value, recall assesses the ability of the model to identify all positive cases in the 

dataset, precision provides with information about level of certainty within the model’s prediction of the 

information being positive, f1-score is a metric that compares the average level of recall and precision by 

setting the highest value to 1 and the lowest to 0 [24]. 

 

Table 1. Confusion Matrix 

Actual Value 
Predicted Value 

Fatal Non-fatal 
Fatal TP FP 

Non-Fatal FP TN 

 

3. RESULTS AND ANALYSIS 

This section will delve into a detailed description of the results obtained from the EDA and the 

classification using three ML models. In addition, we will present the evaluation results obtained from 

comparing the actual data labelling with the predictions made by the model. Furthermore, we also describe 

the characteristics of the data by carrying out EDA. All the model training and data analysis of experiments 

were carried out using Google Colab. 

 

3.1. Exploratory Data Analysis 

The analysis begins by examining the overall distribution and temporal trends of accidents. Then, 

this is followed by a detailed breakdown of accident fatalities based on three key categorical variables: 

aircraft manufacturer, type of service, and phase of flight, to identify specific high-risk scenarios. 

 

3.1.1. Proportional Analysis of Accident Fatalities 

The distribution of accident fatalities throughout 75 years of aviation history is shown in Figure 2. 

Accidents are classified into two categories: fatal and non-fatal incidents. The total fatalities amount to 6,237, 

whereas non-fatal occurrences total 10,996 of all flight accidents. This visualization illustrates the notable 

distinction between fatal and non-fatal occurrences, which underscores the severity and prevalence of each 

category. The data demonstrates that non-fatal occurrences are approximately twice as frequent as the fatal 

ones.  The significant number of fatal accidents highlights the importance of improving the safety protocols 

and technologies to further decrease mortality rates. 

 

3.1.2. Temporal Trends of Fatal Accidents (1950-2025) 
The historical trend of fatal aviation accidents from 1950 through the early 2025 is illustrated in 

Figure 3. This decline in number has occurred despite periods of any significant volatility, particularly in the 

early decades of the jet age [1]. From the 1950s to the late 1970s, the number of fatal accidents increased 
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each year, with the most happening in 1972 with 158 recorded incidents. The rapid growth of commercial 

aviation and the introduction of new technologies during that time are likely what caused this instability. 

Thereafter, the trend gradually declined and became more consistent in the 21st century, with annual cases 

generally <100 after 2000. This decline has been attributed to advances in aircraft technology, such as flight 

management systems (FMS) and fly-by-wire [25]. The data representing the year of 2025 only cover the first 

two months (through February), and therefore cannot be used to estimate annual totals. 
 

 

Figure 2. Distribution of Aviation Accidents By Fatality Type (1950-2025) 
 

 

Figure 3. Annual Number of Fatal Aviation Accidents (1950-2025) 

 

3.1.3. Analysis of Fatalities by Aircraft Manufacturer 
Further analysis of the 75-year aviation accident dataset examines the distribution of aviation 

occurrences among aircraft manufacturers which is a crucial factor for advanced risk assessment and 

predictive modelling. Figure 4a illustrates the total number of recorded aviation occurrences by 

manufacturers, including fatal and non-fatal accidents. It can be seen that Boeing has the highest number of 

aviation accidents in the latest 75 years period. In Figure 4b, legacy manufacturers account for the largest 

number of fatal accidents reflect the historical context related to the limitations of past technology and safety 

systems [26] and extensive operational exposure, rather than current safety standards. Figure 4c demonstrated 

all manufacturers with the number of non-fatal occurrences. The graph implies that the number of non-fatal 

occurrences is proportional with the number of total activities, making Boeing and Douglas becomes the first 

and the second highest in number of non-fatal occurrences.  

To obtain a more normalized measure of safety performance, Figure 5 presents the percentage of 

non-fatal occurrences relative to total accident history from each manufacturer. This proportional view yields 

a crucial insight where a large group of manufacturers exhibit a 100% non-fatal accident rate which indicates 

zero fatal incidents in the dataset used in this study. However, this analysis should be interpreted with 

statistical caution due to the denominator effect. This means that a perfect rate for a manufacturer with very 

few total incidents (like Aerospace and Antonon, only had one flight during the period) is less statistically 

significant than a near-perfect rate for a major manufacturer with thousands of incidents. This difference is 

very important for getting a more comprehensive view of safety performance at different levels of operation. 

 

  
(a) (b) 
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(c) 

 

Figure 4. Top Five Manufacturers Ranked by Different Category 

 (a) By The Total Number of Flight Accidents, (b) By The Total Number of Fatal Accidents, 

 (c) By The Total Number of Non-Fatal Occurrences 
 

 

 

Figure 5. Percentage of Non-Fatal Occurrences by Manufacturers 

 

3.1.4. Analysis of Fatalities by Type of Service 

The analysis was expanded to include breaking down accident data by the operational of flights 

based on the Type of Service, which is a key factor that provides a lot of information about the risks involved 

in each mission. Figure 6a presents the baseline distribution of the total number of aviation occurrences, 

segmented by the type of service. Scheduled passenger aviation also recorded the highest number of fatal 

(1,722) and non-fatal (4,404) accidents (Figures 6b and 6c), in line with its large operational exposure, as this 

service accounts for the majority of global flight operations [27]. Military aviation had the second highest 

number of fatalities (1,596), but it had fewer non-fatal incidents (1,132), indicating differences in risk and 

severity compared to civil aviation. Proportional analysis (Figure 6d) confirms this difference: military 

aviation had the lowest non-fatal incident rate, at only 30.15%, meaning nearly 70% of accidents were fatal. 

These high risks are related to the nature of military operations such as involving combat scenarios, high-risk 

training, extreme performance maneuvers, and flights in unpredictable environments or against conditions 

that inherently involve greater risks and more work than routine civil transportation [28]. In contrast, 

Passenger - Scheduled flights have a non-fatal incident rate of 71.89%, demonstrating that while incidents 

occur, the overwhelming majority do not result in fatalities, reflecting the robust safety systems and protocols 

governing commercial aviation.  

 

  
(a) (b) 
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(c) (d) 

 

Figure 6. Top Five Type of Service Ranked By Different Categories  

(a) By The Total Number of Flight Accidents, (b) By The Total Number of Fatal Accidents,  

(c) By the Total Number of Non-Fatal Occurrences, (d) By Percentage of Non-Fatal Occurrences 

 

3.1.5. Analysis of Fatalities by Phase of Flights 

The investigation next segments accident data according to the phase of flight, a critical variable that 

pinpoints when an aircraft is most vulnerable. This study demonstrates a considerable difference between the 

phases with the highest number of fatal accidents and those with the highest proportional risk of fatality. 

Figure 7a provides a baseline overview of all recorded aviation occurrences, segmented by the phase of flight 

over the 75-year period. This combined dataset, including both fatal and non-fatal events, shows that the en 

route phase has the highest frequency of occurrences. As illustrated in Figure 7b, the En route phase accounts 

for the highest absolute number of fatal accidents, followed by the Approach phase. The high number for the 

En route phase is largely a function of duration-based exposure [1]. This phase constitutes the vast majority 

of a flight's time, naturally leading to a higher cumulative count of events over 75 years. This conclusion is 

further supported by Figure 7c, which shows the distribution of non-fatal occurrences. The landing and en 

route phases had the greatest counts, which demonstrate that phases with long durations or high frequency 

naturally accumulate more events of all categories. However, a proportional analysis provides a more 

insightful perspective of the intrinsic risks from each phase. Figure 7d depicts a proportional analysis that 

normalizes for exposure and displays the true, underlying risk of a fatal accident occurring throughout each 

period. The findings demonstrate that the maneuvering phase is the most dangerous, with a non-fatal 

percentage of only 25.80%, which implies a roughly 75% probability of a fatal accident. This is followed by 

the Approach (30.56% non-fatal) and Initial climb (35.04% non-fatal) phases. Conversely, ground operations 

such as Pushback/towing and Taxi are demonstrably the safest. This analysis quantifies the well-known 

critical phases of flight where the most safety-related improvements are concerned such as taxi, climb, 

approach, and landing [1] where the aircraft is in a high-energy state at low altitude with minimal margin for 

error. The En route phase, with a 47.09% non-fatal rate, is proportionally safer per-incident than the approach 

or climb phases, highlighting the importance of this normalized view.  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7. Top Five Phases of Flight Ranked By Different Categories 

 (a) By The Total Number of Flight Accidents, (b) By The Total Number of Fatal Accidents,  

(c) By the Total Number of Non-Fatal Occurrences, (d) By Percentage of Non-Fatal Occurrences 
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3.2. Fatalities Prediction using Various ML 

The final stage of this study involved the implementation and evaluation of three different ML 

models: SVM, RF, and Categorical Naive Bayes. The performances of each model were evaluated using 

several metrics which are commonly used in the classification task with key results in detail presented in 

Table 2 and further detailed by the confusion matrices in Figure 8. All three models exhibited robust 

predictive ability with accuracy and F1-scores between 78% and 80%. 

 

 

Figure 8. Confusion Matrix of Prediction Performance  

(a) Support Vector Machine, (b) Random Forest, (c) Categorical Naïve Bayes 

 

Table 2. Performance of Each ML Model 

ML Model 
Evaluation Metrics 

Accuracy F1-score Sensitivity Specificity 

Support Vector Machine (SVM) 79.55% 79.85% 78.69% 81.06% 

Random Forest (RF) 79.25% 79.51% 79.78% 78.33% 

Categorical Naive Bayes 78.76% 79.13% 76.46% 82.83% 

 

A deeper analysis reveals a critical trade-off between sensitivity (the ability to correctly identify 

fatal accidents) and specificity (the ability to correctly identify non-fatal occurrences). This trade-off is 

important to understand how useful each model will be in real-world applications. Table 2 indicates that RF 

model achieved the highest sensitivity at 79.78%, whereas the Categorical Naive Bayes model demonstrated 

the highest specificity at 82.83%. SVM demonstrated the most balanced performance by achieving the 

highest overall accuracy of 79.55% and the best F1-score of 79.85% compared to other models. 

The evaluation indicates a significant trade-off between sensitivity (the ability to accurately identify 

fatal occurrences) and specificity (the ability to accurately identify non-fatal occurrences). This feature is 

very necessary for predicting fatalities. It is more important to look at the details of prediction errors 

compared to only focusing on the overall accuracy. In the prediction of aviation fatalities, the most 

significant error is a false negative, which occurs when a fatal accident is inaccurately categorized as non-

fatal accident. The sensitivity metric quantitatively assesses the ability of the model to avoid this kind of 

inaccurate prediction. The performance of the RF model demonstrated the highest sensitivity at 79.78% 

which indicates the effectiveness in capturing complex and non-linear relationships among diverse risk 

factors, such as the aircraft type, phase of flight, and type of service. From a safety management perspective, 

such a model could be particularly valuable for regulators or accident investigation authorities who must 

prioritize minimizing overlooked fatal risks, even if it results in more frequent alerts. In contrast, the false 

positive one occurs when a non-fatal accident is inaccurately categorized as fatal. This error, although less 

severe, might impact to resource allocation and data analysis. The categorical Naive Bayes model 

demonstrated the highest specificity at 82.83% thereby being the most effective in reducing false alarms. In 

operational terms, this could reduce unnecessary resource diversion and help safety teams focus on truly 

critical cases. The assumption of feature independence may enable the model to effectively identify 

significant indicators of non-fatal outcomes, such as incidents occurring during the Taxi phase, which 

improves its confidence in negative predictions. However, this simplicity likely results in an inadequate 

understanding of the complicated relationship of factors contributing to fatalities, which leads to reduced 

sensitivity. 

Given this analysis, the selection of an optimal model depends on the strategic priority. A model 

prioritizing only sensitivity (like RF) would successfully flag more potential tragedies but would also 

generate more false alarms. This approach could be suitable for high-level safety oversight programs where 

the cost of missing a potentially fatal case is far greater than dealing with surplus alerts. A model that 

emphasizes the specificity metrics, such as Categorical Naive Bayes, demonstrates a strong ability to predict 

for non-fatal accidents. This type of model might be most appropriate for daily operational monitoring in 

(a) (b) (c)
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airlines, where reducing false alarms ensures smoother workflows and more efficient allocation of safety 

resources. However, this type of algorithm might frequently miss a significant number of fatal incidents. A 

balance between these two objectives is important to ensure the development of a practical and reliable 

system. The SVM model is therefore selected as the optimal model for this study. The highest F1-score 

(79.85%) proves mathematically that it achieves the best balance between sensitivity and precision. The 

SVM model is great at finding the best decision boundary to separate the two classes which effectively 

navigates the trade-off between missing a fatal accident and creating a false alarm. This balanced, robust 

performance makes the SVM model the most suitable and reliable for this critical predictive task, providing a 

practical tool for proactive risk assessment that can complement existing safety management approaches of 

the aviation industry. In real-world applications, an SVM-based system could be integrated into Flight Data 

Monitoring (FDM) or safety management frameworks, allowing both regulators and operators to make data-

driven interventions that strengthen proactive risk mitigation. 

 

4. CONCLUSION 

This study successfully developed and evaluated an AI-driven framework to predict aircraft accident 

fatalities using a 75-year historical dataset. The analysis result obtained from EDA suggested that while the 

total number of fatal accidents has declined over time, the risk ratio remains high in some operational 

conditions. Scheduled passenger service and the en route flight phase are the categories with the highest 

frequency of aviation accidents, whereas military service and the maneuvering flight phase exhibit the 

highest likelihood of a fatal outcome in the event of an incident, which emphasizes the necessity of 

contextual analysis beyond the raw incident counts. In the predictive modelling stage, three ML algorithms 

were assessed. RF achieved the highest sensitivity (79.78%), making it the most effective at correctly 

identifying fatal accidents. Conversely, Categorical Naive Bayes yielded the highest specificity (82.83%), 

proving most adept at identifying non-fatal incidents. However, the SVM emerged as the most superior 

model overall, securing the highest F1-Score (79.85%) and accuracy (79.55%). This confirms its optimal 

balance between detecting fatal outcomes and avoiding false alarms, making it the most reliable and well-

rounded model for practical risk assessment.  

This study has significant implications for the aviation industry. The results from EDA can help 

regulators and operators to figure out which risk mitigation strategies are the most crucial in which areas. 

This includes the enhancement of safety procedures for non-commercial operations and the development of 

more intensive pilot training for high-risk flight phases, such as approach and initial climb. The predictive 

model that has been developed is a proactive instrument for assessing risk that can improve the current 

reactive safety management approaches. From a theoretical perspective, this research also advances the 

literature on AI applications for global aviation safety by demonstrating how long-term, worldwide accident 

data can be systematically modeled using ML. Unlike prior studies constrained by regional or short-term 

datasets, this work shows that AI can uncover broader, structural patterns of risk across service types and 

flight phases, thereby strengthening the academic foundation for data-driven safety management. 

However, this study has limitations. Its reliance on historical data may not fully capture the impact 

of the latest safety technologies. The binary classification of the type of fatalities (Fatal and Non-Fatal) 

represents a simplification of the range of accident severity, which actually can be categorized into more than 

these two types. Future research should integrate more comprehensive datasets that include more variables, 

such as weather conditions, human factors, and information about aircraft maintenance, in order to improve 

the model performance. In addition, exploring deep learning, which is known as the more advanced 

algorithms, could potentially provide better prediction models that have been implemented in other disaster 

risk fields of study such as Juanara and Lam [29]. Furthermore, future studies should also investigate the 

integration of predictive models into real-time monitoring systems, such as FDM and Safety Management 

Systems (SMS), to provide early warnings and enable proactive interventions. Such integration would bridge 

the gap between theoretical modeling and practical implementation, supporting a more robust and proactive 

approach to aviation safety management. 
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