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identity and physical presence in real-time. The system employs two

YOLOv11 models: one for detecting facial regions and another for
distinguishing eye states through “open” and “closed” transitions.
Identity verification is carried out by comparing facial embeddings
using Euclidean distance. A private dataset was collected for facial
images, while blink data was obtained from a public source, both of
which were annotated in YOLO format. After 100 epochs, the face
detection model achieved 0.999 precision, 1.000 recall, 0.995
mAP50, and 0.868 mAP50-90, while the blink detection model
recorded 0.959 precision, 0.962 recall, 0.967 mAP50, and 0.678
mAP50-90. These outcomes confirm that the objectives were
achieved, demonstrating a practical and reliable biometric
authentication solution with integrated liveness verification. The
system also offers scalability for future multi-modal applications.
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1. INTRODUCTION

Securing access to buildings such as offices, schools, and public facilities is essential for protecting
people and assets. Conventional security tools like access cards and physical keys are becoming less reliable
due to their vulnerability to being lost, duplicated, or stolen [1]. As stated by to Motwani et al. [2], these
systems are prone to breaches, increasing the risk of unauthorized entry, which makes them increasingly
unsuitable in environments where consistent reliability and rapid response are required. In high-risk settings
such as educational campuses, office complexes, and public infrastructure, a single failure in access security
can compromise not only physical assets but also personal safety, creating widespread consequences that are
difficult to mitigate after the fact. Consequently, there is a growing shift toward identity-based authentication
technologies that offer greater resilience and improved security in modern access control environments,
reflecting the urgent need for solutions that can minimize human error, prevent credential misuse, and
address the rising frequency of security incidents.

To address these vulnerabilities, biometric technologies have gained prominence as a more secure
and identity-driven approach to access control. Among them, face recognition stands out due to its
contactless nature, ease of integration, and minimal user effort during authentication, ensuring both user
convenience and operational efficiency. Beyond security, its ability to streamline entry processes also makes
it appealing for organizations seeking to balance safety with productivity, particularly in environments that
require frequent and rapid verification. Facial features are now considered one of the most convenient and
widely accepted biometric modalities, making face recognition an attractive solution for modern security
infrastructures [3][4], and reinforcing why its continuous enhancement remains a critical research priority.

Journal homepage: http://ejournal.uin-suska.ac.id/index.php/IJAIDM/index



658 a p-ISSN: 2614-3372 | e-ISSN: 2614-6150

Several prior studies have applied face recognition within security systems, employing a range of
algorithms and architectural designs, with diverse approaches demonstrating both accuracy and practical
feasibility. Classical techniques such as Haar Cascade with LBP descriptors [5] and gradient-based methods
like HOG [6] established important foundations in face detection. Building on these, researchers introduced
convolutional neural networks (CNN) in combination with Radio Frequency Identification (RFID) [7], which
highlighted the benefits of combining deep features with multi-factor authentication. The adoption of deep
learning frameworks such as TensorFlow-based CNNs further demonstrated how neural architectures could
achieve high precision in real-time scenarios [8]. Parallel efforts explored deployments, such as ESP32-CAM
with Multi-task Cascaded Convolutional Networks (MTCNN) [9], which was noted for its balanced
parameters and adaptability in embedded and resource-constrained environments.

While these techniques have significantly advanced face recognition, their performance is often
constrained either by computational cost or limited adaptability. To overcome these challenges, the growing
demand for higher speed and flexibility in real-time applications has encouraged the adoption of You Only
Look Once (YOLO) models. Unlike traditional two-stage detectors, YOLO follows a one-stage design that
performs object localization and classification simultaneously, eliminating the extra region-proposal step and
drastically reducing computation time. At the same time, its integrated feature extraction and multi-scale
prediction strategy help preserve accuracy, allowing YOLO to deliver an effective balance of precision and
efficiency. These characteristics make it especially suitable for real-time security and access control tasks.

Early developments with YOLOv3 showed promising results in custom face recognition tasks,
achieving a mean Average Precision (mAP) of 63.4 with real-time performance at 45 frames per second,
which was significantly faster than R-CNN-based approaches [10]. The subsequent generation, YOLOv4,
further advanced this line of research, demonstrating strong accuracy in broader safety monitoring tasks. For
instance, YOLOvV4 achieved an mAP of 97.64% with an F1 score of 0.96 in face mask and face shield
detection, while its lightweight variant YOLOvV4-Tiny reached 171 FPS with 96.75% mAP, underscoring its
efficiency in real-time environments [11]. Building on these improvements, YOLOV5 was benchmarked
against other state-of-the-art deep learning techniques and demonstrated a 94% mAP, while also offering
practical advantages such as being lightweight, requiring no preprocessing, and supporting real-time multi-
face detection. Although its score was slightly lower than some more complex models, YOLOV5 confirmed
the efficiency of YOLO-based approaches for security applications [12]. More recently, YOLOv8 marked a
significant leap in the evolution of YOLO, introducing a refined architecture capable of delivering higher
accuracy while also supporting advanced tasks such as segmentation and multi-object tracking. In security-
oriented applications, it has been integrated into a two-stage framework combining face and license plate
detection with a Siamese Neural Network for rider verification, demonstrating its adaptability and reliability
in complex surveillance scenarios [13].

Building on this evolution, YOLOv11 introduces architectural refinements such as the C2PSA
module for improved feature representation and enhanced multiscale fusion, enabling stronger detection
accuracy while maintaining computational efficiency. Benchmark results on the COCO dataset also
demonstrate measurable improvements in both precision and recall compared to earlier YOLO versions [14].
Accordingly, this study adopts YOLOV11 as the foundation of its access control framework, leveraging its
balance of accuracy and efficiency to support real-time deployment.

Despite its advantages, face recognition systems remain vulnerable to spoofing attacks, where
unauthorized users attempt to deceive the system using printed photos, video replays, or digital displays.
Several recent studies have emphasized the need for robust liveness detection to ensure the physical presence
of the user. For example, Basurah et al. [15] implemented a facial expression—based liveness detection
system using TensorFlow.js, which blocked photo-based spoofing by identifying real-time facial movements.
This approach highlights the strength of expression-based cues, though it generally requires broad coverage
of different user expressions to maintain reliability. Yang Wei et al. [16] proposed combining facial feature
analysis with liveness verification based on temporal consistency, showing how frame-to-frame changes can
provide stronger protection against replay attempts. While effective, such methods may depend heavily on
stable frame rates and consistent video quality, which can be challenging in practical deployments. Another
approach used texture analysis to differentiate between live skin and printed images [17], leveraging surface
detail as an anti-spoofing feature. However, its accuracy can be influenced by lighting variations or camera
resolution, which may limit consistency across different environments.

Building on these diverse directions, this research introduces a face-based access control solution
that focuses on blink-driven liveness verification. Unlike expression-, temporal-, or texture-based cues,
blinking is a natural, low-effort signal that is easy to capture in real time. In practice, blink detection can be
achieved through the simple observation of transitions between “eye open” and “eye closed” states, making it
lightweight and reliable without the need for large datasets or complex temporal analysis. The proposed
system employs a dual-model design with YOLOv11 to detect both facial regions and eye activity, ensuring
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that identity recognition is paired with evidence of physical presence. By leveraging blinking as the liveness
factor, the system reduces the risk of spoofing via static photos or screen displays while preserving
computational efficiency suitable for constrained deployment scenarios.

2. RESEARCH METHOD

This study was carried out using a development setup consisting of a laptop with 8GB of RAM and
a 720p webcam, which served as the primary tools for data acquisition and testing. The system was designed
to operate in real time, requiring lightweight yet reliable components that can function smoothly under
limited hardware resources. To ensure clarity and systematic implementation, the research methodology was
structured into multiple stages, from data collection and annotation to model training, evaluation, and
deployment. Each stage is essential for building an access control framework that combines face recognition
with blink-based liveness detection. A flowchart illustrating the entire process of real-time facial
authentication and verification is presented in Figure 1.

Data Collection Labelling L Evaluation )
(Private and = (Labellmg and Pre- —m {ygfg ::i{;ng;i%) = (Precision, Recall, |—m {H"?:If FE;";II?:#;'EE)
Roboflow) labeled YOLO) mAF, Euclidean)
Figure 1. Research Framework
2.1. YOLOv11

YOLOV11 represents the most recent advancement in the Ultralytics YOLO lineup for real-time
object detection. It offers notable enhancements in detection precision, inference speed, and computational
efficiency. As a refinement of previous YOLO models, YOLOv11 features architectural and training pipeline
optimizations, enabling its adaptability across diverse computer vision applications [18]. Figure 2 shows that
YOLOv11 is composed of three key components which are the backbone, neck, and head, forming a
streamlined pipeline from input to final detection output.
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Figure 2. YOLOv11 Architecture [19]

The backbone serves as the primary feature extractor and comprises several modules including
Conv, C3K2, SPPF, and C2PSA. The Conv layer begins the process with basic feature extraction, followed
by C3K2, a multibranch module designed to balance efficiency and representational power. The SPPF
(Spatial Pyramid Pooling Fast) module integrates multiscale context through progressive max pooling, while
C2PSA introduces pixel-level attention across spatial scales to enhance fine-grained localization and suppress
background noise.

These refined feature maps are passed to the neck, which performs upsampling and feature
concatenation to aggregate multiscale features. The neck also incorporates C3K2 again to ensure deep
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semantic fusion and richer contextual understanding. Finally, the head processes these features through
parallel branches tailored for objects of different scales. Each branch performs classification and bounding
box regression independently, producing the final detection outputs: class labels, bounding boxes, and
confidence scores. Non-Maximum Suppression (NMS) is applied at the end to eliminate redundant detections
[20].

2.2. Face Recognition

Face recognition is a process in computer vision that aims to identify or verify a person’s identity by
analyzing unique patterns in their facial features. This technique transforms facial regions into numerical
representations called embeddings, which can be matched against a stored database. Unlike classification
tasks that assign labels, face recognition operates within an embedding space where similarity is measured by
comparing vector distances between faces. The goal is to determine whether the detected face matches a
stored identity with sufficient similarity.

The face_recognition function in the Dlib library follows a structured sequence of steps: it begins
with face detection using CNN or HOG, followed by the localization of 68 facial landmarks such as the eyes,
nose, and mouth. The detected face is then aligned using affine transformation to ensure consistent
orientation. Next, facial features are extracted through a ResNet-based convolutional neural network [21] and
encoded into a 128-dimensional embedding vector. Finally, face comparison is performed using Euclidean
distance, where smaller values indicate higher similarity. These distance values typically range between 0
and 1, and a default threshold is applied to determine whether two embeddings represent the same identity
[22][23].

2.3. Data Collection

Each dataset used in this study underwent task-specific preprocessing. For the face detection model,
facial images were manually captured in varying conditions, including different lighting angles and
backgrounds. The annotation process was carried out using the Labellmg tool [24], with a single class labeled
as faces, following the YOLO format. The labeling interface and bounding box annotation can be seen in
Figure 3.
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Figure 3. Face Bounding Box Annotation with Labellmg
The blink detection dataset was sourced from Roboflow and came pre-labeled in YOLO format.
Annotations and folder structure were already compatible with the training pipeline, so the dataset was used

without modification. It includes two object classes, "blink" and "attentive", which represent closed and open
eyes respectively, as shown in Figure 4.
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Figure 4. Blink Rate Dataset Roboflow
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For face recognition, individual images were captured using a webcam in natural, unconstrained
settings. Each image was then cropped to the face region using the detection model, and directly processed
with the face_recognition library to generate a 128-dimensional embedding vector. These embeddings were
stored as identity references [25], enabling real-time face matching without further training. The dataset
structure is illustrated in Figure 5.

aldi suci namira

Figure 5. Cropped Face Images Used for Recognition

2.4. Model Evaluation

This study evaluates the model’s performance using four key indicators: precision, recall, mAPso,
and mAPso-9s, cach of which provides a distinct perspective on detection accuracy and reliability. As
described in Equation (1), precision is calculated by comparing the number of correctly predicted positive
samples to the total number of predicted positives. This metric helps determine how well the model avoids
false positives by identifying only relevant objects..

Meanwhile, recall, as presented in Equation (2), measures the number of actual positive instances
that were successfully detected. A high recall indicates that the model missed fewer target objects. Mean
Average Precision at IoU 0.5 (mAPso), described in Equation (3), is the mean of the average precision (AP)
values computed at an Intersection over Union (loU) threshold of 0.5 for each class. It summarizes the trade-
off between precision and recall at a moderate overlap threshold. Meanwhile, mAPso-9s, defined in Equation
(4), evaluates the model across a wider range of loU thresholds, from 0.5 to 0.95 in increments of 0.05. This
metric provides a more rigorous and comprehensive assessment by accounting for varying degrees of
localization accuracy, particularly in challenging scenarios.

Precision = TPT:’FP @
Recall = TpT+PFN )

mAP;, = %Zil APsq; ®)
mAPs,_g5 = %Zilil%Z]K:lAPi,j (4)

To support these metrics, the following definitions apply [20] : True Positive (TP): the number of
positive objects correctly identified by the system; False Positive (FP): the number of objects mistakenly
predicted as positive; False Negative (FN): the number of actual positives that the model failed to detect. N:
the total number of object categories evaluated; AP;: the average precision score for class i, derived from the
area under the precision-recall curve; K: the total number of IoU thresholds used in mAPso—os, usually set
from 0.5 to 0.95 in 0.05 increments; APj;: the average precision for class i at IoU threshold j, representing
accuracy under specific overlap constraints.

2.5. System Planning

This system is deployed as a real-time web interface. As illustrated in Figure 6, the process begins
with the activation of the webcam to capture continuous video input. Each frame is analyzed using a
YOLOv11-based face detection model to identify and crop the face region of interest. Once detected, the
cropped face is simultaneously forwarded to two modules, face recognition and blink detection, ensuring that
both identity and liveness are processed in parallel for faster verification.

The recognition module generates a 128-dimensional vector using the face_recognition library and
compares it against stored embeddings in the local database. Meanwhile, the blink detection model evaluates
the eye region to determine liveness. If both recognition and liveness are verified, the system logs the event
with a timestamp and captured image, then grants access. The entire workflow runs in real time and is
accessible through a web interface, offering both transparency for administrators and practicality for end
users in everyday access control scenarios.
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Figure 6. System Flowchart of Face and Blink-Based Access Verification

3. RESULTS AND ANALYSIS

This section presents the experimental results and analysis of the proposed system. Evaluation is
based on detection accuracy, robustness across lighting conditions, and system responsiveness during real-
time deployment.

3.1. Result and Analysis

To evaluate the performance of the implemented models, both the face detection and blink detection
systems were trained and tested using the YOLOv1ln architecture for 100 epochs. The training was
conducted on an NVIDIA Tesla T4 GPU to ensure efficient computation.

The face detection algorithm was trained using a custom dataset consisting of 450 annotated facial
images. To improve generalization, augmentation methods like horizontal mirroring and brightness
adjustment were applied, followed by dividing the dataset into training and validation subsets. The resulting
model delivered outstanding results, achieving a precision of 0.999, recall of 1.000, mAPso of 0.995, and
mAPso—0 of 0.868. These metrics indicate a highly accurate and robust ability to detect facial regions from
webcam input, with only a slight drop at higher loU thresholds, showing that the model remains consistent
even when stricter bounding box overlap is required.

For the blink detection model, training was performed on an open-source Roboflow dataset
annotated with two classes: attentive and blink. After 100 epochs of training, the model achieved a precision
0f 0.959, recall of 0.962, mAPso of 0.967, and mAPso—s0 of 0.678. While the overall detection remains strong,
the relatively lower mAPso—s0 highlights the increased challenge of accurately detecting small eye regions at
higher loU thresholds. This effect is consistent with known limitations of object detectors when applied to
small-scale features, where slight misalignments or lighting changes can impact bounding box accuracy. The
evaluation results for both models are shown in Table 1.

Table 1. YOLOv11 Evaluation Results

Model Epoch Precision Recall mAPs, MAPs0.90
Face Detection 100 0.999 1 0.995 0.868
Blink Detection 100 0.959 0.962 0.967 0.678

To evaluate the consistency of facial recognition under different lighting conditions, Euclidean
distance values between the detected face embeddings and registered identity vectors were analyzed. The
system assigns a similarity score based on this distance, where lower values indicate a stronger match.
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Figure 7 shows the detection results captured under three different lighting conditions: bright,
moderate, and low. In each scenario, the Euclidean distance between the detected face and the stored
embedding remained within the acceptable threshold, with values of 0.28 for bright light, 0.34 for moderate
light, and 0.44 for low light. Despite the variation in illumination, all values stayed well below the standard
threshold of 0.6, indicating successful recognition.

The slight increase in distance under low-light conditions reflects reduced feature clarity but
remains within acceptable bounds for verification. These findings confirm that the system is reliable and
accurate even in suboptimal lighting conditions, demonstrating its robustness for real-world indoor
environments where lighting consistency cannot always be ensured.

(b)

ODE: DETECT

Namira Nur Rifani (0.44)

(©)

Figure 7. (a) Bright Light (b) Moderate Light (c) Low Light

In addition to the quantitative metrics, confusion matrices were generated for both models to
provide further insight into classification performance. For the face detection model, the confusion matrix
demonstrates perfect classification, with all 49 facial instances correctly detected and no background samples
misclassified (Figure 8). This confirms the near-perfect performance already reflected in the precision and
recall metrics, highlighting the robustness of the face detection pipeline in practical scenarios.
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Figure 8. Confusion Matrix for Face Detection

For the blink detection model, the confusion matrix shows that the system correctly identified 16
attentive states and 25 blink states, with only 1 case of misclassification in each category (Figure 9). This
indicates that the model is able to consistently differentiate between open and closed eye states with very few
false positives or false negatives, further supporting its reliability for liveness verification.

Real-Time Access Control System with YOLOv11... (Rifani et al.)
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Figure 9. Confusion Matrix for Blink Detection

These confusion matrix results reinforce the numerical evaluation, demonstrating that both models
not only achieve high accuracy in aggregate metrics but also maintain strong per-class consistency, which is
critical for the dual verification process in real-time access control.

3.2. Deployment

To demonstrate the system’s real-time functionality, a scenario was conducted where a registered
user was detected and a valid blink was identified. As illustrated in Figure 10(a), the system successfully
recognized the user’s face, confirmed liveness through blink detection, and granted access. The interface
displayed the user’s name, marked both eyes as “blink,” and recorded a snapshot along with a timestamp.
This confirms that the system can accurately perform dual verification in real-time conditions.

Figure 10(b) shows the detection history interface, which logs each access attempt with relevant
details including the user’s name, time of detection, facial snapshot, and access result. This feature supports
traceability and helps administrators review activity, monitor usage patterns, and perform post-event audits.
The logging mechanism reinforces the system’s reliability and provides a transparent overview of user
interactions.

11 Face Recognition System
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(b)
Figure 10. (a) Access Granted (b) Log History

3.3. Discussion

The proposed YOLOv11-based dual-model system demonstrated strong performance in both face
and blink detection. The nearly perfect face detection results (precision 0.999, recall 1.000, mAPso 0.995)
confirm that YOLOv11 is highly effective for larger, well-defined features such as the human face.
Meanwhile, the lower mAPso—o in blink detection (0.678) highlights the inherent difficulty of detecting
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small-scale eye regions, where subtle variations in lighting, occlusion, or movement can impact bounding
box accuracy. These outcomes emphasize the trade-off between feature size and detection precision in real-
time systems.

Compared with prior YOLO-based studies, which reported mAP scores of 63.4 for YOLOv3 in custom
face tasks and around 94-97% for YOLOv4 and YOLOVS5 in safety monitoring scenarios, this research
demonstrates that YOLOv11l maintains high accuracy while enabling real-time performance [10-13].
Importantly, the integration of blink-driven liveness verification addresses spoofing vulnerabilities noted in
previous work [15-17], showing that simple “eye open/eye closed” cues can provide reliable protection
without heavy computational cost. This combination positions the system as both practical and secure for
modern access control applications.

4. CONCLUSION

This research developed a real-time access control system that combines YOLOv11-based face
detection with blink-driven liveness verification. The novelty of the study lies in adopting a simple yet
effective “eye open/eye closed” mechanism to ensure physical presence, thereby addressing spoofing
vulnerabilities while maintaining computational efficiency. Experimental results confirmed high accuracy
and robustness across varying lighting conditions, supported by a web-based interface for transparency and
traceability. These findings demonstrate that the system is practical for smart indoor environments where
both speed and security are critical. For future work, expanding the dataset, evaluating performance in
outdoor or mobile contexts, and integrating multi-modal biometrics are recommended to further enhance
reliability and scalability.
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