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 This study presents a real-time smart access control system that 

combines facial recognition with blink-based liveness detection to 

strengthen security and reduce spoofing risks. The primary purpose is 

to provide a lightweight and efficient method that verifies both 

identity and physical presence in real-time. The system employs two 

YOLOv11 models: one for detecting facial regions and another for 

distinguishing eye states through “open” and “closed” transitions. 

Identity verification is carried out by comparing facial embeddings 

using Euclidean distance. A private dataset was collected for facial 

images, while blink data was obtained from a public source, both of 

which were annotated in YOLO format. After 100 epochs, the face 

detection model achieved 0.999 precision, 1.000 recall, 0.995 

mAP50, and 0.868 mAP50–90, while the blink detection model 

recorded 0.959 precision, 0.962 recall, 0.967 mAP50, and 0.678 

mAP50–90. These outcomes confirm that the objectives were 

achieved, demonstrating a practical and reliable biometric 

authentication solution with integrated liveness verification. The 

system also offers scalability for future multi-modal applications. 
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1. INTRODUCTION 

Securing access to buildings such as offices, schools, and public facilities is essential for protecting 

people and assets. Conventional security tools like access cards and physical keys are becoming less reliable 

due to their vulnerability to being lost, duplicated, or stolen [1]. As stated by to Motwani et al. [2], these 

systems are prone to breaches, increasing the risk of unauthorized entry, which makes them increasingly 

unsuitable in environments where consistent reliability and rapid response are required. In high-risk settings 

such as educational campuses, office complexes, and public infrastructure, a single failure in access security 

can compromise not only physical assets but also personal safety, creating widespread consequences that are 

difficult to mitigate after the fact. Consequently, there is a growing shift toward identity-based authentication 

technologies that offer greater resilience and improved security in modern access control environments, 

reflecting the urgent need for solutions that can minimize human error, prevent credential misuse, and 

address the rising frequency of security incidents. 

To address these vulnerabilities, biometric technologies have gained prominence as a more secure 

and identity-driven approach to access control. Among them, face recognition stands out due to its 

contactless nature, ease of integration, and minimal user effort during authentication, ensuring both user 

convenience and operational efficiency. Beyond security, its ability to streamline entry processes also makes 

it appealing for organizations seeking to balance safety with productivity, particularly in environments that 

require frequent and rapid verification. Facial features are now considered one of the most convenient and 

widely accepted biometric modalities, making face recognition an attractive solution for modern security 

infrastructures [3][4], and reinforcing why its continuous enhancement remains a critical research priority. 
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 Several prior studies have applied face recognition within security systems, employing a range of 

algorithms and architectural designs, with diverse approaches demonstrating both accuracy and practical 

feasibility. Classical techniques such as Haar Cascade with LBP descriptors [5] and gradient-based methods 

like HOG [6] established important foundations in face detection. Building on these, researchers introduced 

convolutional neural networks (CNN) in combination with Radio Frequency Identification (RFID) [7], which 

highlighted the benefits of combining deep features with multi-factor authentication. The adoption of deep 

learning frameworks such as TensorFlow-based CNNs further demonstrated how neural architectures could 

achieve high precision in real-time scenarios [8]. Parallel efforts explored deployments, such as ESP32-CAM 

with Multi-task Cascaded Convolutional Networks (MTCNN) [9], which was noted for its balanced 

parameters and adaptability in embedded and resource-constrained environments. 

 While these techniques have significantly advanced face recognition, their performance is often 

constrained either by computational cost or limited adaptability. To overcome these challenges, the growing 

demand for higher speed and flexibility in real-time applications has encouraged the adoption of You Only 

Look Once (YOLO) models. Unlike traditional two-stage detectors, YOLO follows a one-stage design that 

performs object localization and classification simultaneously, eliminating the extra region-proposal step and 

drastically reducing computation time. At the same time, its integrated feature extraction and multi-scale 

prediction strategy help preserve accuracy, allowing YOLO to deliver an effective balance of precision and 

efficiency. These characteristics make it especially suitable for real-time security and access control tasks. 

 Early developments with YOLOv3 showed promising results in custom face recognition tasks, 

achieving a mean Average Precision (mAP) of 63.4 with real-time performance at 45 frames per second, 

which was significantly faster than R-CNN–based approaches [10]. The subsequent generation, YOLOv4, 

further advanced this line of research, demonstrating strong accuracy in broader safety monitoring tasks. For 

instance, YOLOv4 achieved an mAP of 97.64% with an F1 score of 0.96 in face mask and face shield 

detection, while its lightweight variant YOLOv4-Tiny reached 171 FPS with 96.75% mAP, underscoring its 

efficiency in real-time environments [11]. Building on these improvements, YOLOv5 was benchmarked 

against other state-of-the-art deep learning techniques and demonstrated a 94% mAP, while also offering 

practical advantages such as being lightweight, requiring no preprocessing, and supporting real-time multi-

face detection. Although its score was slightly lower than some more complex models, YOLOv5 confirmed 

the efficiency of YOLO-based approaches for security applications [12]. More recently, YOLOv8 marked a 

significant leap in the evolution of YOLO, introducing a refined architecture capable of delivering higher 

accuracy while also supporting advanced tasks such as segmentation and multi-object tracking. In security-

oriented applications, it has been integrated into a two-stage framework combining face and license plate 

detection with a Siamese Neural Network for rider verification, demonstrating its adaptability and reliability 

in complex surveillance scenarios [13].  

Building on this evolution, YOLOv11 introduces architectural refinements such as the C2PSA 

module for improved feature representation and enhanced multiscale fusion, enabling stronger detection 

accuracy while maintaining computational efficiency. Benchmark results on the COCO dataset also 

demonstrate measurable improvements in both precision and recall compared to earlier YOLO versions [14]. 

Accordingly, this study adopts YOLOv11 as the foundation of its access control framework, leveraging its 

balance of accuracy and efficiency to support real-time deployment. 

 Despite its advantages, face recognition systems remain vulnerable to spoofing attacks, where 

unauthorized users attempt to deceive the system using printed photos, video replays, or digital displays. 

Several recent studies have emphasized the need for robust liveness detection to ensure the physical presence 

of the user. For example, Basurah et al. [15] implemented a facial expression–based liveness detection 

system using TensorFlow.js, which blocked photo-based spoofing by identifying real-time facial movements. 

This approach highlights the strength of expression-based cues, though it generally requires broad coverage 

of different user expressions to maintain reliability. Yang Wei et al. [16] proposed combining facial feature 

analysis with liveness verification based on temporal consistency, showing how frame-to-frame changes can 

provide stronger protection against replay attempts. While effective, such methods may depend heavily on 

stable frame rates and consistent video quality, which can be challenging in practical deployments. Another 

approach used texture analysis to differentiate between live skin and printed images [17], leveraging surface 

detail as an anti-spoofing feature. However, its accuracy can be influenced by lighting variations or camera 

resolution, which may limit consistency across different environments. 

Building on these diverse directions, this research introduces a face-based access control solution 

that focuses on blink-driven liveness verification. Unlike expression-, temporal-, or texture-based cues, 

blinking is a natural, low-effort signal that is easy to capture in real time. In practice, blink detection can be 

achieved through the simple observation of transitions between “eye open” and “eye closed” states, making it 

lightweight and reliable without the need for large datasets or complex temporal analysis. The proposed 

system employs a dual-model design with YOLOv11 to detect both facial regions and eye activity, ensuring 
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that identity recognition is paired with evidence of physical presence. By leveraging blinking as the liveness 

factor, the system reduces the risk of spoofing via static photos or screen displays while preserving 

computational efficiency suitable for constrained deployment scenarios. 

 

2. RESEARCH METHOD 

  This study was carried out using a development setup consisting of a laptop with 8GB of RAM and 

a 720p webcam, which served as the primary tools for data acquisition and testing. The system was designed 

to operate in real time, requiring lightweight yet reliable components that can function smoothly under 

limited hardware resources. To ensure clarity and systematic implementation, the research methodology was 

structured into multiple stages, from data collection and annotation to model training, evaluation, and 

deployment. Each stage is essential for building an access control framework that combines face recognition 

with blink-based liveness detection. A flowchart illustrating the entire process of real-time facial 

authentication and verification is presented in Figure 1. 

 

 

Figure 1. Research Framework 

 

2.1.  YOLOv11 

YOLOv11 represents the most recent advancement in the Ultralytics YOLO lineup for real-time 

object detection. It offers notable enhancements in detection precision, inference speed, and computational 

efficiency. As a refinement of previous YOLO models, YOLOv11 features architectural and training pipeline 

optimizations, enabling its adaptability across diverse computer vision applications [18]. Figure 2 shows that 

YOLOv11 is composed of three key components which are the backbone, neck, and head, forming a 

streamlined pipeline from input to final detection output. 

 

 

Figure 2. YOLOv11 Architecture [19] 

 

The backbone serves as the primary feature extractor and comprises several modules including 

Conv, C3K2, SPPF, and C2PSA. The Conv layer begins the process with basic feature extraction, followed 

by C3K2, a multibranch module designed to balance efficiency and representational power. The SPPF 

(Spatial Pyramid Pooling Fast) module integrates multiscale context through progressive max pooling, while 

C2PSA introduces pixel-level attention across spatial scales to enhance fine-grained localization and suppress 

background noise. 

These refined feature maps are passed to the neck, which performs upsampling and feature 

concatenation to aggregate multiscale features. The neck also incorporates C3K2 again to ensure deep 
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semantic fusion and richer contextual understanding. Finally, the head processes these features through 

parallel branches tailored for objects of different scales. Each branch performs classification and bounding 

box regression independently, producing the final detection outputs: class labels, bounding boxes, and 

confidence scores. Non-Maximum Suppression (NMS) is applied at the end to eliminate redundant detections 

[20]. 

 

2.2.  Face Recognition 

Face recognition is a process in computer vision that aims to identify or verify a person’s identity by 

analyzing unique patterns in their facial features. This technique transforms facial regions into numerical 

representations called embeddings, which can be matched against a stored database. Unlike classification 

tasks that assign labels, face recognition operates within an embedding space where similarity is measured by 

comparing vector distances between faces. The goal is to determine whether the detected face matches a 

stored identity with sufficient similarity. 

The face_recognition function in the Dlib library follows a structured sequence of steps: it begins 

with face detection using CNN or HOG, followed by the localization of 68 facial landmarks such as the eyes, 

nose, and mouth. The detected face is then aligned using affine transformation to ensure consistent 

orientation. Next, facial features are extracted through a ResNet-based convolutional neural network [21] and 

encoded into a 128-dimensional embedding vector. Finally, face comparison is performed using Euclidean 

distance, where smaller values indicate higher similarity. These distance values typically range between 0 

and 1, and a default threshold is applied to determine whether two embeddings represent the same identity 

[22][23]. 

 

2.3.  Data Collection 

Each dataset used in this study underwent task-specific preprocessing. For the face detection model, 

facial images were manually captured in varying conditions, including different lighting angles and 

backgrounds. The annotation process was carried out using the LabelImg tool [24], with a single class labeled 

as faces, following the YOLO format. The labeling interface and bounding box annotation can be seen in 

Figure 3.  

 

 

Figure 3. Face Bounding Box Annotation with LabelImg 

 

The blink detection dataset was sourced from Roboflow and came pre-labeled in YOLO format. 

Annotations and folder structure were already compatible with the training pipeline, so the dataset was used 

without modification. It includes two object classes, "blink" and "attentive", which represent closed and open 

eyes respectively, as shown in Figure 4. 

 

 

Figure 4. Blink  Rate Dataset Roboflow 
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For face recognition, individual images were captured using a webcam in natural, unconstrained 

settings. Each image was then cropped to the face region using the detection model, and directly processed 

with the face_recognition library to generate a 128-dimensional embedding vector. These embeddings were 

stored as identity references [25], enabling real-time face matching without further training. The dataset 

structure is illustrated in Figure 5. 

 

 
Figure 5. Cropped Face Images Used for Recognition 

 

2.4.  Model Evaluation 

This study evaluates the model’s performance using four key indicators: precision, recall, mAP₅₀, 

and mAP₅₀-₉₅, each of which provides a distinct perspective on detection accuracy and reliability. As 

described in Equation (1), precision is calculated by comparing the number of correctly predicted positive 

samples to the total number of predicted positives. This metric helps determine how well the model avoids 

false positives by identifying only relevant objects.. 

Meanwhile, recall, as presented in Equation (2), measures the number of actual positive instances 

that were successfully detected. A high recall indicates that the model missed fewer target objects. Mean 

Average Precision at IoU 0.5 (mAP₅₀), described in Equation (3), is the mean of the average precision (AP) 

values computed at an Intersection over Union (IoU) threshold of 0.5 for each class. It summarizes the trade-

off between precision and recall at a moderate overlap threshold. Meanwhile, mAP₅₀-₉₅, defined in Equation 

(4), evaluates the model across a wider range of IoU thresholds, from 0.5 to 0.95 in increments of 0.05. This 

metric provides a more rigorous and comprehensive assessment by accounting for varying degrees of 

localization accuracy, particularly in challenging scenarios. 

 

     Precision =  
TP

TP+FP
     (1) 

 

     Recall =  
TP

TP+FN
                (2) 

 

     mAP50  =  
1

N
∑ AP50,i

N
i=1         (3) 

 

     mAP50−95 =  
1

N
∑

1

K
∑ APi,j

K
j=1

N
i=1              (4) 

 

To support these metrics, the following definitions apply [20] : True Positive (TP): the number of 

positive objects correctly identified by the system; False Positive (FP): the number of objects mistakenly 

predicted as positive; False Negative (FN): the number of actual positives that the model failed to detect. N: 

the total number of object categories evaluated; APᵢ: the average precision score for class i, derived from the 

area under the precision-recall curve; K: the total number of IoU thresholds used in mAP₅₀–₉₅, usually set 

from 0.5 to 0.95 in 0.05 increments; APᵢⱼ: the average precision for class i at IoU threshold j, representing 

accuracy under specific overlap constraints. 

 

2.5.  System Planning 

This system is deployed as a real-time web interface. As illustrated in Figure 6, the process begins 

with the activation of the webcam to capture continuous video input. Each frame is analyzed using a 

YOLOv11-based face detection model to identify and crop the face region of interest. Once detected, the 

cropped face is simultaneously forwarded to two modules, face recognition and blink detection, ensuring that 

both identity and liveness are processed in parallel for faster verification. 

The recognition module generates a 128-dimensional vector using the face_recognition library and 

compares it against stored embeddings in the local database. Meanwhile, the blink detection model evaluates 

the eye region to determine liveness. If both recognition and liveness are verified, the system logs the event 

with a timestamp and captured image, then grants access. The entire workflow runs in real time and is 

accessible through a web interface, offering both transparency for administrators and practicality for end 

users in everyday access control scenarios. 
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Figure 6. System Flowchart of Face and Blink-Based Access Verification 

 

3. RESULTS AND ANALYSIS 

This section presents the experimental results and analysis of the proposed system. Evaluation is 

based on detection accuracy, robustness across lighting conditions, and system responsiveness during real-

time deployment. 

 

3.1.  Result and Analysis  

To evaluate the performance of the implemented models, both the face detection and blink detection 

systems were trained and tested using the YOLOv11n architecture for 100 epochs. The training was 

conducted on an NVIDIA Tesla T4 GPU to ensure efficient computation. 

The face detection algorithm was trained using a custom dataset consisting of 450 annotated facial 

images. To improve generalization, augmentation methods like horizontal mirroring and brightness 

adjustment were applied, followed by dividing the dataset into training and validation subsets. The resulting 

model delivered outstanding results, achieving a precision of 0.999, recall of 1.000, mAP₅₀ of 0.995, and 

mAP₅₀–₉₀ of 0.868. These metrics indicate a highly accurate and robust ability to detect facial regions from 

webcam input, with only a slight drop at higher IoU thresholds, showing that the model remains consistent 

even when stricter bounding box overlap is required. 

For the blink detection model, training was performed on an open-source Roboflow dataset 

annotated with two classes: attentive and blink. After 100 epochs of training, the model achieved a precision 

of 0.959, recall of 0.962, mAP₅₀ of 0.967, and mAP₅₀–₉₀ of 0.678. While the overall detection remains strong, 

the relatively lower mAP₅₀–₉₀ highlights the increased challenge of accurately detecting small eye regions at 

higher IoU thresholds. This effect is consistent with known limitations of object detectors when applied to 

small-scale features, where slight misalignments or lighting changes can impact bounding box accuracy. The 

evaluation results for both models are shown in Table 1. 

 

Table 1. YOLOv11 Evaluation Results 

Model Epoch Precision Recall mAP50 mAP50-90 

Face Detection 100 0.999 1 0.995 0.868 

Blink Detection 100 0.959 0.962 0.967 0.678 

 

To evaluate the consistency of facial recognition under different lighting conditions, Euclidean 

distance values between the detected face embeddings and registered identity vectors were analyzed. The 

system assigns a similarity score based on this distance, where lower values indicate a stronger match. 
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Figure 7 shows the detection results captured under three different lighting conditions: bright, 

moderate, and low. In each scenario, the Euclidean distance between the detected face and the stored 

embedding remained within the acceptable threshold, with values of 0.28 for bright light, 0.34 for moderate 

light, and 0.44 for low light. Despite the variation in illumination, all values stayed well below the standard 

threshold of 0.6, indicating successful recognition. 

The slight increase in distance under low-light conditions reflects reduced feature clarity but 

remains within acceptable bounds for verification. These findings confirm that the system is reliable and 

accurate even in suboptimal lighting conditions, demonstrating its robustness for real-world indoor 

environments where lighting consistency cannot always be ensured. 

 

 
         (a)               (b) 
 

 
(c) 

Figure 7. (a) Bright Light (b) Moderate Light (c) Low Light 

 

 In addition to the quantitative metrics, confusion matrices were generated for both models to 

provide further insight into classification performance. For the face detection model, the confusion matrix 

demonstrates perfect classification, with all 49 facial instances correctly detected and no background samples 

misclassified (Figure 8). This confirms the near-perfect performance already reflected in the precision and 

recall metrics, highlighting the robustness of the face detection pipeline in practical scenarios. 

 

 

Figure 8. Confusion Matrix for Face Detection 

 

For the blink detection model, the confusion matrix shows that the system correctly identified 16 

attentive states and 25 blink states, with only 1 case of misclassification in each category (Figure 9). This 

indicates that the model is able to consistently differentiate between open and closed eye states with very few 

false positives or false negatives, further supporting its reliability for liveness verification. 
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Figure 9. Confusion Matrix for Blink Detection 

 

These confusion matrix results reinforce the numerical evaluation, demonstrating that both models 

not only achieve high accuracy in aggregate metrics but also maintain strong per-class consistency, which is 

critical for the dual verification process in real-time access control. 

 

3.2.  Deployment 

To demonstrate the system’s real-time functionality, a scenario was conducted where a registered 

user was detected and a valid blink was identified. As illustrated in Figure 10(a), the system successfully 

recognized the user’s face, confirmed liveness through blink detection, and granted access. The interface 

displayed the user’s name, marked both eyes as “blink,” and recorded a snapshot along with a timestamp. 

This confirms that the system can accurately perform dual verification in real-time conditions. 

Figure 10(b) shows the detection history interface, which logs each access attempt with relevant 

details including the user’s name, time of detection, facial snapshot, and access result. This feature supports 

traceability and helps administrators review activity, monitor usage patterns, and perform post-event audits. 

The logging mechanism reinforces the system’s reliability and provides a transparent overview of user 

interactions. 

 

 
(a) 

 

 
(b) 

Figure 10. (a) Access Granted (b) Log History 

 

3.3.   Discussion 

 The proposed YOLOv11-based dual-model system demonstrated strong performance in both face 

and blink detection. The nearly perfect face detection results (precision 0.999, recall 1.000, mAP₅₀ 0.995) 

confirm that YOLOv11 is highly effective for larger, well-defined features such as the human face. 

Meanwhile, the lower mAP₅₀–₉₀ in blink detection (0.678) highlights the inherent difficulty of detecting 
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small-scale eye regions, where subtle variations in lighting, occlusion, or movement can impact bounding 

box accuracy. These outcomes emphasize the trade-off between feature size and detection precision in real-

time systems. 

Compared with prior YOLO-based studies, which reported mAP scores of 63.4 for YOLOv3 in custom 

face tasks and around 94–97% for YOLOv4 and YOLOv5 in safety monitoring scenarios, this research 

demonstrates that YOLOv11 maintains high accuracy while enabling real-time performance [10–13]. 

Importantly, the integration of blink-driven liveness verification addresses spoofing vulnerabilities noted in 

previous work [15–17], showing that simple “eye open/eye closed” cues can provide reliable protection 

without heavy computational cost. This combination positions the system as both practical and secure for 

modern access control applications. 

 

4. CONCLUSION 

This research developed a real-time access control system that combines YOLOv11-based face 

detection with blink-driven liveness verification. The novelty of the study lies in adopting a simple yet 

effective “eye open/eye closed” mechanism to ensure physical presence, thereby addressing spoofing 

vulnerabilities while maintaining computational efficiency. Experimental results confirmed high accuracy 

and robustness across varying lighting conditions, supported by a web-based interface for transparency and 

traceability. These findings demonstrate that the system is practical for smart indoor environments where 

both speed and security are critical. For future work, expanding the dataset, evaluating performance in 

outdoor or mobile contexts, and integrating multi-modal biometrics are recommended to further enhance 

reliability and scalability. 
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