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Carbon Dioxide (CO:) emissions are a primary driver of global
climate change, with the energy sector being the dominant
contributor. Southeast Asia, experiencing rapid economic growth,
faces significant increases in CO: emissions due to high energy
consumption. This study proposes a hybrid Autoregressive Integrated
Moving Average (ARIMA)-XGBoost approach to predict CO:
emissions in Association of Southeast Asian Nations (ASEAN)
countries from 2023 to 2035, overcoming limitations of traditional
linear models by combining machine learning (XGBoost) and time-
series analysis ARIMA. Results demonstrate high accuracy (R? =
0.98) in identifying key factors, including Gross Domestic Product
(GDP), population, and total greenhouse gas (GHG) emissions. For

instance, Indonesia's emissions are predicted to rise from 841.84
MtCO: (2023) to 2197.36 MtCO: (2035), while Brunei's emissions
decrease from 10.86 MtCO: to 9.57 MtCO.. Residual analysis and k-
fold cross-validation confirm model robustness. These findings
underscore the need for differentiated policies, such as renewable
energy transitions in high-growth emission countries (Indonesia,
Philippines) and regulatory strengthening in stable-trend nations
(Brunei, Laos). The study makes methodological contributions to
data-driven emission forecasting and provides evidence-based policy
recommendations for the Association of Southeast Asian Nations
(ASEAN) on climate change mitigation.
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1. INTRODUCTION

Carbon Dioxide (CO:) emissions are a major contributor to global climate change, with the energy
sector being the largest contributor. Global climate change triggered by greenhouse gas (GHG) emissions,
particularly CO), has become a major challenge that requires serious attention from countries around the
world. CO-, as one of the main GHGs, is generated mainly from the energy, transportation and industrial
sectors [1]. Southeast Asia is a region with rapid economic growth and rapidly increasing energy
consumption. This has the potential to significantly increase CO. emissions, which in turn contributes to
global climate change and other environmental issues [2]. As economic development is directly correlated
with increased industrial activity and energy consumption, prediction of CO. emissions is becoming
increasingly important to support more effective climate change mitigation policies. The urgent need for
accurate CO- emission prediction has intensified as climate change triggered by CO2 emissions has become a
global challenge, with industrialized countries contributing 70% of the world's emissions. However,
developing regions such as Association of Southeast Asian Nations (ASEAN) country are experiencing the
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fastest increase in emissions at 3.2% per year due to massive economic growth [3]. Ironically, the
heterogeneity of the Indochina and Malacca Peninsula's level of industrialization, climate policies, and
reliance on fossil energy such as Indonesia and Malaysia's emissions jumped 40% in two decades, while
Brunei and Laos remained relatively stable, making a one-size-fits-all mitigation approach ineffective [4].

Previous research tends to focus on analyzing emissions at the national level with univariate
methods such as Autoregressive Integrated Moving Average (ARIMA), which only captures linear patterns,
whereas the complexity of emissions in ASEAN involves non-linear interactions between urbanization,
energy subsidies, and industrial investment [5]. Therefore, an accurate and comprehensive approach to
predicting CO. emissions is needed. Recent studies have increasingly adopted hybrid modeling approaches
that combine traditional time-series methods with machine learning techniques to improve prediction
accuracy. Previous studies have employed various modeling approaches with mixed success: Sharma et al.
utilized linear regression for CO. emissions in India (R? = 0.75) but failed to capture non-linear relationships
[4]; Zhou et al. applied Seasonal Autoregressive Integrated Moving Average (SARIMA) models in China
(Root Mean Squared Error (RMSE) = 38.2) without incorporating exogenous variables [6]; another research
implemented Model Autoregressive Integrated Moving Average Exogenous (ARIMAX) for Malaysia
(RMSE = 25.0) but remained constrained by linear assumptions [7]; Chen and Wang employed Long Short-
Term Memory (LSTM)- ARIMA ensemble for East Asia (R? = 0.82-0.89) but lacked comprehensive
validation [8] and developed Support Vector Regression (SVR)- ARIMA hybrid for South Asia (RMSE =
15.2-28.7) with limited long-term accuracy [9]; and proposed Convolutional Neural Networks (CNN) -
LSTM for developing economies (R2 = 0.91) but suffered from overfitting issues [10].

The contribution of CO- emission prediction modeling in ASEAN countries in this study is to use a
hybrid ARIMA-XGBoost model by utilizing historical data on emissions, Gross Domestic Product (GDP)
growth, energy consumption, and industrial policies in ASEAN (1999-2022) to accommodate regional
heterogeneity, addressing the limitations of classical statistical methods such as ARIMA that only capture
linear patterns and have limitations in handling non-linear relationships between variables[11]. To validate
the reliability of the hybrid model, comprehensive evaluation was conducted using k-fold cross-validation for
XGBoost generalization, residual analysis to ensure no significant patterns remain, and ARIMA model
validation through Augmented Dickey-Fuller (ADF) stationarity tests, Autocorrelation Function (ACF)
[Parcial Autocorrelation Function (PACF) parameter selection, and Akaike Information Criterion (AIC)
criterion for optimal model selection. This approach fills a void in ASEAN CO: emissions prediction
literature, which is generally limited to univariate analysis or simpler methods [12], by combining ARIMA's
temporal modeling capabilities with XGBoost's non-linear pattern recognition strengths while incorporating
comprehensive validation procedures for model robustness.With this approach, policymakers can design
more effective measures to reduce CO- emissions through energy, transportation and industrial policies, and
the long-term predictions provide a clearer view of how CO. emissions are affected by various economic and
social factors, enabling ASEAN countries to collaborate in achieving lower global emissions targets.

This research makes three distinct contributions to CO:. emissions forecasting literature.
Methodologically, this study introduces the first hybrid ARIMA-XGBoost model for multi-country CO:
prediction in ASEAN, addressing gaps where previous studies focused on single countries [13] by integrating
multivariable socioeconomic predictors across 24 years (1999-2022) to capture both linear and non-linear
relationships. Empirically, this study provides the first comprehensive 13-year regional forecasting (2023-
2035) for all ten ASEAN countries simultaneously, revealing significant heterogeneity with Indonesia
showing 161% emission increases versus Brunei's 12% decrease, compared to typical 3-5 year single-country
predictions. From a policy perspective, this research uniquely translates forecasting results into differentiated,
country-specific mitigation strategies with evidence-based frameworks for renewable energy transitions and
regulatory strengthening, moving beyond generic recommendations common in previous studies. Key
distinguishing features include comprehensive regional scope, extended forecasting horizon, multivariable
integration, policy-oriented framework, and robust validation across diverse economic contexts, establishing
a replicable framework for regional CO- emissions forecasting in developing countries.

2. RESEARCH METHOD

The research aims to predict CO. emissions in ASEAN countries using a hybrid model that
combines XGBoost and ARIMA. This approach was chosen due to the ability of each model to capture
different aspects of the data, namely non-linear relationships and interactions between variables by XGBoost,
and temporal dependence or time series patterns by ARIMA. This method integrates the analysis of external
factors, which in this study are called GDP, population, total greenhouse gas/GHG, and temperature change
due to CO-, and internal factors in the form of time patterns in time series data. The Figurwe 1 is the design
of this study.
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Figure 1 represents the integration of two modeling approaches, namely ARIMA and (Cascaded
Gradient Boosting (CGBoost) or XGBoost adaptation), combined to predict CO. emissions by maximizing
high accuracy. ARIMA focuses on analyzing purely temporal patterns of time series data (historical trends,
seasonality, and stationarity), while XGBoost processes external economic variables such as GDP growth,
energy consumption, industrial investment, or fiscal policies that influence emissions. Both models are run in
parallel, ARIMA extracts linear signals from time series, while CGBoost identifies non-linear relationships
and complex interactions between economic-environmental variables. This combination allows researchers to
not only utilize ARIMA's advantage in capturing temporal autocorrelation but also to integrate
macroeconomic dynamics that are often overlooked in conventional approaches.

2.1 Research Data

This study uses secondary data on CO. emissions, GDP, population, total GHG, and temperature
change from 1999 to 2022 in ASEAN countries. The dataset used consists of 24 rows of data per country for
each variable, so the total data obtained is 240 rows for 11 countries. Table 1 is a description of the variables
(dataset) used in this study.

Table 1. Dataset Description

Variable Description Data Type

CO: Carbon dioxide emissions are produced by each country. Numeric

GDP Gross Domestic Product,'which describes the size of a Numeric

country's economy.

Population The total population of the country. Numeric

Total GHG Total greenhouse gas emissions produced by the country. Numeric

Temperature Change Changes in temperature caused by increased Numeric
Due to CO- concentrations of CO: in the atmosphere.

2.2 Single vs Hybrid Model Approach
In selecting a hybrid model, a comprehensive approach was taken as shown in Table 2.

Table 2. Hybrid Study Approach

Aspect Previous Study Our Research
- Linear Regression (Sharma et al.,[4]) for Combination of XGBoost + ARIMA:
Model Used India's CO: prediction. - XGBoost captures _non-!inear re;lationships
- ARIMA/SARIMA (Zhou et al.,[6]) untuk (GDP, population, interactions).
emisi China. - ARIMA models temporal trends.
. - R20.986 (XGBoost), RMSE 17.86
Accuracy - R?0.70-0.85 (linear model). - Higher due to hybrid model and feature

- RMSE 30-50 (pure ARIMA).

. Focus on single variables (e.g., GDP atau
Input Variables energi) (Liu et al., [10]).
Temporal
Validation

Most studies do not validate long-term
predictions (>10 years).

engineering interaction.
Multivariate interactions:
gdp_population, ghg_temp_interaction, and
non-linear transformations (log,
polynomial).
The 2035 predictions, with cross-validation
and residual tests, show consistency.

In context, some previous studies have provided a strong foundation but have limitations that
provide opportunities for this research. Zhang, in their study entitled "Predicting CO: emissions using
machine learning: A hybrid CNN-LSTM approach™ successfully showed that the hybrid model approach can
improve prediction accuracy by up to 15% compared to a single model. However, the study focused more on
deep learning, while this study uses the XGBoost algorithm which offers better interpretability [14].
Furthermore, Abdullah et al. in their study " ARIMA with exogenous variables for CO. forecasting in

IJAIDM Vol. 8, No. 3, November 2025: 478 — 491



IJAIDM p-1SSN: 2614-3372 | e-ISSN: 2614-6150 a 481

Malaysia" found that the Model ARIMAXmaodel incorporating the GDP variable achieved an RMSE value of
25. In contrast to that approach, this study replaces Model ARIMAX with XGBoost to capture the non-linear
relationship between variables, which managed to reduce the RMSE by 30% [7]. In other study "Interaction
effects in CO. emission models: A case study of Southeast Asia" found that the interaction between GDP and
population had a significant effect, but testing was only done using linear regression [13]. This study goes a
step further by validating this interaction using XGBoost along with feature importance tests to produce a
more comprehensive understanding of the factors that influence carbon emissions.

Table 3. Comparison of Prediction Models

Strengths of the Research

. ) s
Study Model Region R2/ RMSE Limitations Conducted
Sharma et al. Linear Regression India R20.75 Does not capture XGBoost + non-linear
[4] non-linearity. interactions.
Zhou et al. [6] SARIMA China RMSE 38.2 No exogenous Combined economic-
variables climate variables.
Abdullah et al. ARIMAX Malaysia RMSE 25.0 Limited linearity. XGBoost for non-
[71 linearity.

High computational Hybrid validation approach

\C/:J]:nn a[%(i LSTE'\:S;QSLMA East Asia R2=0.82-0.89 cost; extensive data Wm; Crﬁii'l;ﬁ?tlonal
4 requirements PP y
Limited lona-term Enhanced feature
Kumar et al. SVR- ARIMA South Asia RMSE = 15.2- accuracy: kgernel engineering with
[9] Hybrid 28.7 Y, X comprehensive model
sensitivity -
validation
. : Overfitting issues; Comprehensive validation
Liuand Zhang CNN- LSTM Developl_ng R?=0.91 limited framework with improved
[10] Economies . . L
interpretability generalizability
XGBoost + ) Limited temporal Hybrid validation +
Our Research ARIMA ASEAN R*0.986 data (24 years). long-term prediction.

Looking at the model comparison in Table 3, the combination of XGBoost and ARIMA can extract
complex patterns from exogenous variables and maintain temporal accuracy. The novelty of this study is that
the interaction of GDP_population and GHG_temp_interaction variables has not been tested in previous
ASEAN studies, but proved to be significant (coefficient of correlation >0.85). In implication, this
multivariate and temporal-based prediction provides a stronger basis for policy than previous studies that
relied solely on historical trends[13].

2.3 Hybrid XGBoost and ARIMA Model

The XGBoost model in the study is used to capture non-linear relationships between variables and
complex interactions that are difficult to represent by traditional linear models. XGBoost, which is a decision
tree-based ensemble model that allows modeling of complex interacting variables, such as the relationship
between GDP and population, and between total GHG and temperature change due to CO.. Another
capability is to identify feature importance, which can help in understanding which variables have the most
influence on CO- emissions. Figure 2 shows the decission tree.

The XGBoost model evaluation results show an R? value of 0.98, which indicates high accuracy in
explaining the variance of the data, as well as Mean Absolute Error (MAE) metrics of 10.46 and RMSE of
17.86, which indicate that this model is able to provide accurate predictions. In validating the XGBoost
model, (a) k-fold cross-validation with k=5 [11] was performed to test the consistency of the model on
different subsets of data using the following basic formula :

Mean Metric = %2;‘;1 Mi (1)

Descriptions about the metric are K-fold as 5, and Mi is the evaluation metric value, in this research,
which means RMSE and MAE. The evaluation results at each fold showed R2 + 0.01, indicating that the
model did not suffer from overfitting. In addition, residual analysis was performed to ensure that the model
residuals were normally distributed. Figure 3 is the ARIMA model.

In this study, the ARIMA modeler focuses on the internal time patterns in the data, which makes it
complementary to XGBoost, which focuses on external factors (such as GDP and population). By using
ARIMA, it is expected to strengthen the validity of future CO- emission predictions.
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2.4 ARIMA Modeling and validation process

The process carried out before using ARIMA is to ensure that the data is stationary using the ADF
test where in the decision if the data is not stationary, differencing or logarithmic transformation is applied.
Parameter selection for ARIMA models is done by optimizing the order (p, d, q) using ACF and Partial
Autocorrelation Function (PACF) to identify the value of p and g, and using AIC to select the best model that
provides a balance between accuracy and complexity.

After selecting the best model and balancing, an ARIMA residual test is conducted to ensure that the
residuals generated by the model do not contain significant patterns. The residuals are tested with the Ljung-
Box test to ensure that there is no significant autocorrelation (p-value > 0.05) and with the residual ACF plot
to ensure that the residuals are white noise. After the ARIMA model is selected, a train-test split is performed
with a proportion of 80:20, where 80% of the data is used for model training and the remaining 20% is used
to test the model's ability to predict unseen data. This proportion was chosen given the relatively small
dataset, so this split allows the model to learn quite well without losing much data for validation.

2.5 XGBoost Hyperparameter Tuning

For XGBoost hyperparameter tuning, several parameters were optimized using Optuna, an
optimization tool based on Bayesian Optimization techniques. The optimized parameters include
n_estimators (900) for a sufficiently large number of trees,learning_rate (0.1) to prevent
overfitting,max_depth (8) to capture interactions between features without making the model too complex,
and regularization (reg_alpha=0.2, reg_lambda=0.5) to control model complexity and reduce overfitting. In
addition, subsampling (0.9) and colsample_bytree (0.8) are used to improve the model's generalization ability
by reducing the samples and features used in each tree.

evaluation with: parameter .. _ Model xgboots finish
cross validation optimas ? G
T - Optuna: Bayesian
DATASET ~——» Parameter Range —» oplimization
T No

Figure 4. XGBoost Model

From the modeling contained in Figure 4, the process begins with the input dataset used to train the
model. The first stage involves determining the range of XGBoost hyperparameters (such as learning_rate,
max_depth, n_estimators, or subsample) to be optimized. Each optimization iteration is followed by an
evaluation using cross-validation (typically k-fold) to validate the model's performance on unseen data, thus
preventing overfitting.

2.6 Model Implications and Evaluation

After generating the final XGBoost model and ARIMA predictions, the trained model was used to
predict CO- emissions for the next 10 years in the Indochina peninsula and the Malacca peninsula, namely
Indonesia, Singapore, Malaysia, Thailand, Vietnam, Philippines, Laos, Myanmar, Cambodia, Brunei, and
Papua New Guinea. The CO: prediction results for each country were calculated and analyzed to provide an
overview of expected future CO- emission trends. The trend data for 1999 to 2022 is shown in Figure 5.

3. RESULTS AND ANALYSIS
3.1 Evaluation of XGBoost Model
3.1.1 Model Accuracy and Validation
Model accuracy starts from the output of Table 4.

Table 4. XGBoost Model Validation

R? RMSE MAE
Nilai 0.986 17.86 10.46

The model evaluation results in this study show an R2 value of 0.986, indicating that the model is
able to explain about 98.6% of the variance in CO. emissions data. This confirms the model's high accuracy
in predicting CO- emissions, which are largely influenced by economic and environmental factors. In
addition, the MAE and RMSE metrics were calculated. The MAE value of 10.46 indicates that the model, on
average, predicted an error of 10.46 CO- emission units. While the RMSE of 17.86 indicates the presence of
larger prediction errors, especially in extreme predictions, which tend to be more sensitive to larger errors.

Carbon Emission Trends (1999-2022): Forecasting Association of... (Dhika and Lestari)
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Trends in CO2 Emissions per Country (1999-2022)

—o— Indonesia
700 4 —®— Singapore

—o— Malaysia

—o— Brunei

—&— Papua New Guinea
—e— Thailand

—o— Vietnam

—o— Philippines

500 1 —e— Laos
—e— Myanmar
—o— Cambodia

600

400 -

Emisi CO2 (Mt)

200 1

100 -

T T T T T
2000 2005 2010 2015 2020

Figure 5. Carbon Emission Trends in ASEAN 1999-2022

3.1.2 Feature Importance

Feature importance analysis was conducted to identify which variables have the greatest influence
on CO: emission predictions. In the XGBoost model, the variables with the greatest contribution to prediction
are as projected in Figure 6.

Feature Importance Analyst

» ‘

—

- Population - Temperature_change_from_co2 - Total_ GHG - gdp_popuulation

Figure 6. Feature Importance Analyst Output

In the output, the variables that have the greatest influence on the prediction of Co2emissions are
identified. In the modeling, the variable with the largest contribution seen in Figure 6 is the population size
which plays an important role in influencing CO2 emissions, followed by the contribution that temperature
change due to carbon emissions is a significant factor affecting emissions which of course is continuous with
Total GHG, the total greenhouse gas. The interaction shows that economic growth in countries with large
populations accelerates the increase in CO- emissions in a non-linear way.

3.1.3 Comparison with Ensemble Model

Figure 7 compares the performance of the standalone XGBoost model with the stacking ensemble
approach that combines XGBoost as the base learner and meta-learner to improve prediction accuracy.

A comparison was made between the stacking model that combines XGBoost, Random Forest, and
LightGBM with XGBoost standalone. The stacking model yielded R? = 0.972, slightly lower compared to
XGBoost, which achieved R2 = 0.9862. Although theory suggests that model stacking can improve
performance by combining the strengths of heterogeneous models [15], in practice, the combination of
homogeneous models (such as XGBoost, Random Forest, and LightGBM) results in predictive redundancy
[16]. In addition, stacking increases complexity without a significant increase in accuracy [17]. If these
differences are consistent in cross-validation, XGBoost remains more efficient. XGBoost performs better
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because it has built-in regularization and stronger handling of missing values compared to other models [18],
as well as higher stability on datasets with noise or dominant features.

Performance Comparison of XGBoost Model with Stacking

25{ == XGBoost
= Stacking

MAE
Metrik Evaluasi

Figure 7. Ensemble Model (Stacking)

3.2 ARIMA Model Evaluation
3.2.1 Stationarity Check

Stationarity checks on CO- emissions data using the ADF test. The stationarity test results show that
the data is not stationary, with a p-value of 0.992. Therefore, the first differencing transformation is carried
out to make the data stationary. The data transformation process through gradual differentiation
(differencing) is carried out to fulfill the stationarity assumption which is the main prerequisite for the
ARIMA model. The p-value close to 1 indicates the presence of a deterministic trend and/or unit root in the
time series data . The first differentiation was then applied to remove the linear trend component, but the
subsequent ADF test results of the second differentiation performed resulted in values reaching stationarity
(p-value = 4.04x10-7 << 0.05), which is mathematically equivalent to removing both linear and quadratic
trend components [19]. The choice of the order of differentiation (d=2) is also supported by the ACF / PACF
analysis, which shows an exponential decline at high lags before the second differentiation, but reaches a
sharp cutoff and is typical of stationary data [20].

3.2.2 ARIMA Parameter Selection

The process of selecting the p, d, and g parameters is done using auto_arima, which automatically
selects the best model based on the AIC. This process is done to ensure a balance between accuracy and
model complexity. Based on the stepwise search to minimize AIC, the best model was found to be ARIMA
(0, 2, 0) for Indonesia, which has the lowest AIC value of 234.404. For other countries, the best models
found are ARIMA (2, 2, 0) and ARIMA (0, 2, 1). The following is the testing process:

1. Residual Test ARIMA
As part of the ARIMA parameter selection, here is the output of the residual results in Table 5.

Table 5. ARIMA Residuals

T Ljung-Box Test p-value
ARIMA (0,2,0) 1.86 0.17
ARIMA (2,2,0) 0.12 0.73
ARIMA (0,2,1) 0.41 0.52

P-values greater than 0.05 for all of these models confirm that the model residuals do not exhibit
significant autocorrelation, indicating that the models are good enough to optimize CO. emissions predictions
by taking into account the patterns in the data [21]. This reinforces the conclusion that the ARIMA models
have captured the patterns in the data well and the prediction results can be justified. This evaluation is in line
with the principle in time series analysis, that residuals that are free of autocorrelation and close to a normal
distribution indicate a good model fit [22], [23].

2. Evaluation of ARIMA Model Results
The ARIMA model parameter optimization process is projected in Table 6, namely by sorting the
model residual test results.

Carbon Emission Trends (1999-2022): Forecasting Association of... (Dhika and Lestari)
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The ARIMA model with parameters (0, 2, 0) for Indonesia provides good results. Based on CO:
predictions for future years, the model can provide consistent estimates of CO. emissions for Indonesia,
Malaysia, Brunei, Papua New Guinea, Thailand, Vietnam, Philippines, Laos and Cambodia. For example,
predicted CO: emissions for Indonesia in 2023 are 841,843, and are expected to increase to 2197,363 by
2035.

Table 6. ARIMA Model Evaluation
AIC Stationeritas Test

Model (0,2,0) ADF Statistic p-value
234.404 -5.8279 4.04e-07

3.3 Multi-Factor Analysis of CO2 Emissions Causes

In attempting to predict CO. emissions, various external and temporal factors interact and influence
the dynamics of changes in CO emissions. Based on data analysis using various countries through the
XGBoost and ARIMA model approaches, we can conclude that CO- emissions are influenced by complex.
interrelated economic, social, and environmental change factors. The model results in this study show
different growth patterns between countries, but generally remain within reasonable limits based on each
country's emission characteristics. Below are the correlations between relevant variables, as well as how non-
linear interactions can affect CO. emissions prediction results.

3.3.1 Correlation and Causality

Identify correlation relationships between variables that affect CO. emissions. The correlations
between GDP, population, total GHG and temperature change due to CO. provide an overview of the
interrelationships between the factors. A heatmap of the correlations is shown in Figure 8.

Heatmap of Correlation between Selected Variables
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e_from_co2

temperature_chang

Figure 8. Correlation heatmap

Based on Figure 8, there are several significant relationships, including:

1. The GDP x Population correlation with a value of 0.80 indicates that there is a strong relationship
between a country's income level and its population, which can affect total energy consumption and,
in turn, CO: emissions. This relationship is consistent with the finding that countries with high
economic growth and population tend to have greater energy intensity [24], [25].

2. The GDP x CO: (0.85) and Population x CO- (0.85) correlations suggest that economic growth and
large populations are positively correlated with increased CO. emissions. This is in line with
research [26], which found that every 1% increase in GDP correlates with a 0.7-0.8% increase in
CO: emissions in developing countries. This finding is also supported by Liddle [27] which states
that population growth is the main driver of increased emissions in the Asian region.
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3. The Total GHG x Temperature Change correlation (0.95) shows a very strong relationship between
total GHG emissions and temperature change due to CO: emissions. This result is consistent with
the IPCC report [28] which states that 90% of global warming since 1950 is caused by human
activities that increase GHG concentrations in the atmosphere.

From the above results, the correlation between population and temperature change due to CO: with
a value of 0.95 allows reflection of increased energy consumption due to a larger population, so countries
with high population growth such as Indonesia, the Philippines, and Vietnam need to strengthen energy
efficiency policies in the urban settlement and transportation sectors [29], Implement low-carbon urban
planning to anticipate population migration to [30], accelerate decentralized renewable energy transition and
develop community-based climate education programs [31].

3.3.2 Effect of non-linear interactions

Interactions between variables in the XGBoost model indicate that non-linear relationships between
economic and environmental variables are important in predicting CO- emissions. XGBoost modeling
revealed critical non-linear relationships between economic-environmental variables in CO. emission
prediction. Key interactions include GDP -population (B=0.4), demonstrating exponential emission increases
in densely populated regions during economic growth, and GHG-temperature change (p=0.3), indicating
accelerating rather than proportional impacts at specific thresholds.

The XGBoost model was successfully optimized using Optuna, with the best parameters at trial 47:
n_estimators = 500, max_depth = 9, learning_rate = 0.0283, subsample = 0.8249, colsample_bytree = 0.6741,
reg_alpha = 0.4321, and reg_lambda = 0.0840. The model evaluation showed excellent predictive
performance with an R2 score = 0.9865, MAE = 10.41, and RMSE = 17.70. This indicates that the model is
able to explain more than 98% of the variation in the CO. emission target data, and the prediction error is
very low.

In contrast, the ARIMA (0, 2, 0) model used to predict CO. emission trends based on historical data
provides reliable results in capturing long-term trends, resulting in the prediction that the largest ASEAN-
wide increase in CO: emissions is in Indonesia, with emissions increasing from 841,843 in 2023 to 2,197,363
in 2035. The ARIMA model used in this research is to capture the temporal trend component purely, which
cannot be done by the machine learning model, which in this research case is the XGBoost model.

3.4 Emission Trend Prediction

Predicting and analyzing CO. emission trends in ASEAN countries over the period 2023 to 2035
plays an important role in formulating appropriate and efficient climate change policies. ASEAN countries
with diverse economic and demographic conditions have different emission patterns, which are influenced by
various factors such as economic growth, population, energy policy, and the level of industrialization and
urbanization. Using a hybrid ARIMA and XGBoost model approach that incorporates time series analysis
and non-linear interactions between variables such as GDP, population, totalGHG, and temperature, we can
predict the development of CO. emissions in each country.

Based on the predictions generated from the model, it can be seen that CO. emission trends for
ASEAN countries show different patterns reflecting differences in economic growth, energy consumption,
and environmental policies. In the predictions shown in Table 7, countries with fast economic growth and
large populations, such as Indonesia, show a steadily increasing emissions trend until 2035, while countries
with slower economic growth and stricter emissions policies, such as Brunei, show a steady decline in
emissions.

The emission dynamics presented in Table 7 are attributable to multifaceted determinants captured
through the hybrid modeling approach: nations characterized by accelerated economic expansion and
substantial demographic bases, exemplified by Indonesia, demonstrate pronounced ascending trajectories
with projected increases of 161% culminating at 2,197.3 metric tons by 2035, primarily driven by intensive
industrialization processes and energy-dependent developmental pathways. Conversely, countries
experiencing moderate economic growth, including Singapore and Malaysia, exhibit incremental upward
trends of 71% and 30% respectively, indicative of sustainable development approaches that integrate
economic advancement with environmental considerations.

In contrast, nations manifesting declining emission patterns at Vietnam (32% reduction), Thailand,
Myanmar, Laos, and Brunei to demonstrate descending trajectories predominantly attributed to the
implementation of stringent environmental regulations, renewable energy portfolio diversification, enhanced
energy efficiency mechanisms, and structural economic transitions toward low-carbon industrial sectors.
These divergent emission patterns emerge from the complex interdependencies among macroeconomic
indicators (GDP growth coefficients), demographic variables (population dynamics), energy governance
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frameworks (renewable energy adoption rates), and industrial development indices, which collectively reflect
each nation's distinctive socioeconomic trajectory and climate policy commitment levels as quantified by the

predictive model.

Table 7. CO: Emission Prediction Results (in metric tons) for

ASEAN Countries 2023-2035

Negara 2023 2024 2025 2026 2027 2028 2029
Singapura 66.88 65.67 70.03 77.73 78.46 84.46 89.23
Indonesia 841.84 954.8 1067 1180 1293 1406 1519.6
Malaysia 298.38 303.5 310.5 319.2 327.4 334.6 341.86
Brunei 10.86 10.78 10.57 10.54 10.42 10.29 10.21
Papua Nugini 7.89 7.9 7.9 7.93 7.94 7.95 7.97
Thailand 269.76 268.77  267.79 266.8 265.81 26482  263.84
Vietnam 334.66 325.72  316.77 307.82 298.88 289.93  280.99
Filipina 155.32 160.24  165.17 170.09 175.02 179.94  184.87
Laos 23.02 22.85 22.67 22.5 22.32 22.15 21.98
Myanmar 34.23 33.53 32.83 32.13 31.44 30.74 30.04
Kamboja 20.77 21.58 22.39 23.2 24.01 24.82 25.63
(a) Prediction Result 2023-2029
Negara 2030 2031 2032 2033 2034 2035
Singapura 92.02 97.66 101.53 105.5 110.46 114.31
Indonesia 1632.56 1745.52 1858.48 1971 2084.4 2197.3
Malaysia 349,51 357.35 365 3725 380.04 387.68
Brunei 10.1 9.99 9.89 9.78 9.68 9.57
Papua Nugini 7.98 8 8.01 8.03 8.04 8.06
Thailand 262.85 261.86 260.88 259.89 258.9 257.92
Vietnam 272.04 263.09 254.15 245.2 236.26 227.31
Filipina 189.79 194.71 199.64 204.56 209.49 214.41
Laos 21.8 21.63 21.45 21.28 2111 20.93
Myanmar 29.35 28.65 27.95 27.26 26.56 25.86
Kamboja 26.44 27.25 28.06 28.87 29.68 30.49
(b) Prediction Result 2030-2035
CO2 Emission Trend Chart for ASEAN Countries (2023-2035)
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Figure 9. ASEAN Carbon Emissions trend chart 1999-2022

Based on the results of the prediction analysis in Figure 9, CO: emissions for ASEAN countries
from 2023 to 2035 are notable:

1. Indonesia and Malaysia show a significant increase in CO. emissions throughout the analyzed
period. This is influenced by large populations, rapid urbanization, and high economic growth,
leading to increased energy demand and fossil fuel use. Indonesia, for example, is expected to see
CO: emissions rise from 841.84 million tons in 2023 to 2197.36 million tons in 2035, reflecting the
impact of rapid economic growth.

2. Singapore shows a more stable emissions trend. While Singapore experiences an increase in CO2
emissions from 66.88 million tons in 2023 to 114.31 million tons in 2035, the growth rate is lower
compared to other countries, such as Indonesia and Malaysia. This is due to stricter emission
reduction policies and the use of low-carbon technologies.
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3. Brunei and Papua New Guinea show a decrease in emissions or stability in CO- emission levels over
this period. Brunei, with its small population and efficient energy policies, is expected to maintain
emissions at very low levels (around 9 million tons in 2035). Likewise, Papua New Guinea shows a
similar trend with stable emissions below 10 million tons.

4. Thailand and Vietnam show a more moderate decline in CO- emissions over this period. Vietnam, in
particular, is expected to see emissions drop from 334.66 million tons in 2023 to 227.31 million tons
in 2035, showing the impact of stricter environmental policies and improved energy efficien.

5. Laos, Myanmar and Cambodia show a more stagnant or slightly declining trend, with lower
emissions than major countries such as Indonesia or Malaysia. These countries, despite having
lower economic growth rates, may experience increased energy consumption along with
infrastructure development and industrialization.

Based on the findings of predicted CO. emissions in the ASEAN region, a targeted and
differentiated policy approach is required according to each country's characteristics. For high emission
growth countries such as Indonesia and Malaysia, priority measures include implementing progressive
carbon taxes on the industrial sector and fossil fuel power plants, along with incentives to transition to
renewable energy [32]. These policies need to be reinforced by strict energy efficiency standards, especially
in the transport and construction sectors, given the significant contribution of urbanization to increasing
emissions [33]. Meanwhile, stable emission countries such as Singapore and Brunei can take the lead in
developing Carbon Capture and Storage (CCS) and green hydrogen technologies, while serving as regional
innovation hubs for knowledge transfer [34].

4. CONCLUSION

This research provides a comprehensive approach to predicting CO. emissions in Southeast Asian
countries using advanced predictive models, namely XGBoost and ARIMA, successfully fulfilling the
primary research objective of developing an integrated predictive framework for regional emission
forecasting. The results obtained from these two models provide valuable insights into future CO. emissions
trajectories, from 2023 to 2035, reflecting both regional trends and country-specific patterns, directly
addressing the research objective of creating a hybrid modeling approach that captures both temporal
dependencies and complex variable interactions.

The CO: prediction results for ASEAN countries from 2023 to 2035 show that some countries
experience significant increases in CO. emissions, while others show decreases or smaller fluctuations. For
example, Indonesia is predicted to experience a steady increase in emissions from 841.84 MtCarbon Dioxide
(MtCO) in 2023 to 2197.36 MtCO: in 2035, while Brunei experiences a decrease in emissions from 10.86
MtCO: in 2023 to 9.57 MtCO: in 2035. Singapore, on the other hand, shows an upward trend in emissions,
albeit on a smaller scale, with predicted CO- values increasing from 66.88 MtCO- in 2023 to 114.31 MtCO-
in 2035. These differentiated emission patterns successfully achieve the research objective of providing
country-specific emission forecasts that enable targeted policy interventions.

The use of XGBoost is particularly effective in capturing the non-linear relationships and complex
interactions between variables such as GDP, population, total GHG emissions and CO--induced temperature
change. The model shows a very high level of accuracy, with an R2 score of around 0.98, indicating that it
successfully explains the variance of CO. emissions in the region. The identification of key variables, such as
the interaction between GDP and population, provides a deeper picture of the factors affecting carbon
emissions, which traditional linear models have difficulty revealing. Furthermore, the use of the ARIMA
model allowed us to model the temporal dependencies in the CO. emissions data, taking into account the
established trends from 1999 to 2022. This model also provides useful predictions of future emission patterns
based on historical patterns, enriching the results obtained from XGBoost. These technical achievements
directly fulfill the research objective of identifying critical determinants of emission patterns and
demonstrating superior predictive performance through hybrid modeling.

The prediction results can be used as a basis for more targeted climate change mitigation policies.
These policies need to consider factors such as economic growth (GDP), population increase, and more
effective GHG emission reduction policies. Overall, the research results can be an important basis for policy
makers in designing data driven climate change mitigation standards, as well as provide a literature review
for future researchers. Thus, the study successfully achieves its ultimate objective of establishing a data-
driven foundation for evidence-based climate policy development while contributing valuable
methodological insights to the scientific community.
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