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 Carbon Dioxide (CO₂) emissions are a primary driver of global 

climate change, with the energy sector being the dominant 

contributor. Southeast Asia, experiencing rapid economic growth, 

faces significant increases in CO₂ emissions due to high energy 

consumption. This study proposes a hybrid Autoregressive Integrated 

Moving Average (ARIMA)-XGBoost approach to predict CO₂ 

emissions in Association of Southeast Asian Nations (ASEAN) 

countries from 2023 to 2035, overcoming limitations of traditional 

linear models by combining machine learning (XGBoost) and time-

series analysis ARIMA. Results demonstrate high accuracy (R² = 

0.98) in identifying key factors, including Gross Domestic Product 

(GDP), population, and total greenhouse gas (GHG) emissions. For 

instance, Indonesia's emissions are predicted to rise from 841.84 

MtCO₂ (2023) to 2197.36 MtCO₂ (2035), while Brunei's emissions 

decrease from 10.86 MtCO₂ to 9.57 MtCO₂. Residual analysis and k-

fold cross-validation confirm model robustness. These findings 

underscore the need for differentiated policies, such as renewable 

energy transitions in high-growth emission countries (Indonesia, 

Philippines) and regulatory strengthening in stable-trend nations 

(Brunei, Laos). The study makes methodological contributions to 

data-driven emission forecasting and provides evidence-based policy 

recommendations for the Association of Southeast Asian Nations 

(ASEAN) on climate change mitigation. 
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1. INTRODUCTION  

Carbon Dioxide (CO₂) emissions are a major contributor to global climate change, with the energy 

sector being the largest contributor. Global climate change triggered by greenhouse gas (GHG) emissions, 

particularly CO₂), has become a major challenge that requires serious attention from countries around the 

world. CO₂, as one of the main GHGs, is generated mainly from the energy, transportation and industrial 

sectors [1]. Southeast Asia is a region with rapid economic growth and rapidly increasing energy 

consumption. This has the potential to significantly increase CO₂ emissions, which in turn contributes to 

global climate change and other environmental issues [2]. As economic development is directly correlated 

with increased industrial activity and energy consumption, prediction of CO₂ emissions is becoming 

increasingly important to support more effective climate change mitigation policies. The urgent need for 

accurate CO₂ emission prediction has intensified as climate change triggered by CO2 emissions has become a 

global challenge, with industrialized countries contributing 70% of the world's emissions. However, 

developing regions such as Association of Southeast Asian Nations (ASEAN) country are experiencing the 
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fastest increase in emissions at 3.2% per year due to massive economic growth [3]. Ironically, the 

heterogeneity of the Indochina and Malacca Peninsula's level of industrialization, climate policies, and 

reliance on fossil energy such as Indonesia and Malaysia's emissions jumped 40% in two decades, while 

Brunei and Laos remained relatively stable, making a one-size-fits-all mitigation approach ineffective [4]. 

Previous research tends to focus on analyzing emissions at the national level with univariate 

methods such as Autoregressive Integrated Moving Average (ARIMA), which only captures linear patterns, 

whereas the complexity of emissions in ASEAN involves non-linear interactions between urbanization, 

energy subsidies, and industrial investment [5]. Therefore, an accurate and comprehensive approach to 

predicting CO₂ emissions is needed. Recent studies have increasingly adopted hybrid modeling approaches 

that combine traditional time-series methods with machine learning techniques to improve prediction 

accuracy. Previous studies have employed various modeling approaches with mixed success: Sharma et al. 

utilized linear regression for CO₂ emissions in India (R² = 0.75) but failed to capture non-linear relationships 

[4]; Zhou et al. applied Seasonal Autoregressive Integrated Moving Average (SARIMA) models in China 

(Root Mean Squared Error (RMSE) = 38.2) without incorporating exogenous variables [6]; another research 

implemented Model Autoregressive Integrated Moving Average Exogenous (ARIMAX) for Malaysia 

(RMSE = 25.0) but remained constrained by linear assumptions [7]; Chen and Wang employed Long Short-

Term Memory (LSTM)- ARIMA ensemble for East Asia (R² = 0.82-0.89) but lacked comprehensive 

validation [8] and developed Support Vector Regression (SVR)- ARIMA hybrid for South Asia (RMSE = 

15.2-28.7) with limited long-term accuracy [9]; and proposed Convolutional Neural Networks (CNN) - 

LSTM for developing economies (R² = 0.91) but suffered from overfitting issues [10].  

The contribution of CO₂ emission prediction modeling in ASEAN countries in this study is to use a 

hybrid ARIMA-XGBoost model by utilizing historical data on emissions, Gross Domestic Product (GDP) 

growth, energy consumption, and industrial policies in ASEAN (1999-2022) to accommodate regional 

heterogeneity, addressing the limitations of classical statistical methods such as ARIMA that only capture 

linear patterns and have limitations in handling non-linear relationships between variables[11]. To validate 

the reliability of the hybrid model, comprehensive evaluation was conducted using k-fold cross-validation for 

XGBoost generalization, residual analysis to ensure no significant patterns remain, and ARIMA model 

validation through Augmented Dickey-Fuller (ADF) stationarity tests, Autocorrelation Function (ACF) 

/Parcial Autocorrelation Function (PACF) parameter selection, and Akaike Information Criterion (AIC) 

criterion for optimal model selection. This approach fills a void in ASEAN CO₂ emissions prediction 

literature, which is generally limited to univariate analysis or simpler methods [12], by combining ARIMA's 

temporal modeling capabilities with XGBoost's non-linear pattern recognition strengths while incorporating 

comprehensive validation procedures for model robustness.With this approach, policymakers can design 

more effective measures to reduce CO₂ emissions through energy, transportation and industrial policies, and 

the long-term predictions provide a clearer view of how CO₂ emissions are affected by various economic and 

social factors, enabling ASEAN countries to collaborate in achieving lower global emissions targets. 

This research makes three distinct contributions to CO₂ emissions forecasting literature. 

Methodologically, this study introduces the first hybrid ARIMA-XGBoost model for multi-country CO₂ 

prediction in ASEAN, addressing gaps where previous studies focused on single countries [13] by integrating 

multivariable socioeconomic predictors across 24 years (1999-2022) to capture both linear and non-linear 

relationships. Empirically, this study provides the first comprehensive 13-year regional forecasting (2023-

2035) for all ten ASEAN countries simultaneously, revealing significant heterogeneity with Indonesia 

showing 161% emission increases versus Brunei's 12% decrease, compared to typical 3-5 year single-country 

predictions. From a policy perspective, this research uniquely translates forecasting results into differentiated, 

country-specific mitigation strategies with evidence-based frameworks for renewable energy transitions and 

regulatory strengthening, moving beyond generic recommendations common in previous studies. Key 

distinguishing features include comprehensive regional scope, extended forecasting horizon, multivariable 

integration, policy-oriented framework, and robust validation across diverse economic contexts, establishing 

a replicable framework for regional CO₂ emissions forecasting in developing countries. 

 

2. RESEARCH METHOD  

The research aims to predict CO₂ emissions in ASEAN countries using a hybrid model that 

combines XGBoost and ARIMA. This approach was chosen due to the ability of each model to capture 

different aspects of the data, namely non-linear relationships and interactions between variables by XGBoost, 

and temporal dependence or time series patterns by ARIMA. This method integrates the analysis of external 

factors, which in this study are called GDP, population, total greenhouse gas/GHG, and temperature change 

due to CO₂, and internal factors in the form of time patterns in time series data. The Figurwe 1 is the design 

of this study. 
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Figure 1. Research Design 

 

Figure 1 represents the integration of two modeling approaches, namely ARIMA and (Cascaded 

Gradient Boosting (CGBoost) or XGBoost adaptation), combined to predict CO₂ emissions by maximizing 

high accuracy. ARIMA focuses on analyzing purely temporal patterns of time series data (historical trends, 

seasonality, and stationarity), while XGBoost processes external economic variables such as GDP growth, 

energy consumption, industrial investment, or fiscal policies that influence emissions. Both models are run in 

parallel, ARIMA extracts linear signals from time series, while CGBoost identifies non-linear relationships 

and complex interactions between economic-environmental variables. This combination allows researchers to 

not only utilize ARIMA's advantage in capturing temporal autocorrelation but also to integrate 

macroeconomic dynamics that are often overlooked in conventional approaches. 

 

2.1 Research Data 

This study uses secondary data on CO₂ emissions, GDP, population, total GHG, and temperature 

change from 1999 to 2022 in ASEAN countries. The dataset used consists of 24 rows of data per country for 

each variable, so the total data obtained is 240 rows for 11 countries. Table 1 is a description of the variables 

(dataset) used in this study. 

 

Table 1. Dataset Description 

Variable Description Data Type 

CO₂ Carbon dioxide emissions are produced by each country. Numeric 

GDP 
Gross Domestic Product, which describes the size of a 

country's economy. 
Numeric 

Population The total population of the country. Numeric 

Total GHG Total greenhouse gas emissions produced by the country. Numeric 
Temperature Change 

Due to CO₂ 

Changes in temperature caused by increased 

concentrations of CO₂ in the atmosphere. 
Numeric 

 

2.2 Single vs Hybrid Model Approach  

In selecting a hybrid model, a comprehensive approach was taken as shown in Table 2. 

 

Table 2. Hybrid Study Approach 

Aspect Previous Study Our Research 

Model Used 

- Linear Regression (Sharma et al.,[4]) for 

India's CO₂ prediction. 
 - ARIMA/SARIMA (Zhou et al.,[6]) untuk 

emisi China. 

Combination of XGBoost + ARIMA: 

- XGBoost captures non-linear relationships 
(GDP, population, interactions). 

- ARIMA models temporal trends. 

Accuracy 
- R² 0.70–0.85 (linear model). 

- RMSE 30–50 (pure ARIMA). 

- R² 0.986 (XGBoost), RMSE 17.86 
- Higher due to hybrid model and feature 

engineering interaction. 

Input Variables 
Focus on single variables (e.g., GDP atau 

energi) (Liu et al., [10]). 

Multivariate interactions: 
gdp_population, ghg_temp_interaction, and 

non-linear transformations (log, 

polynomial). 
Temporal 

Validation 

Most studies do not validate long-term 

predictions (>10 years). 

The 2035 predictions, with cross-validation 

and residual tests, show consistency. 

 

In context, some previous studies have provided a strong foundation but have limitations that 

provide opportunities for this research. Zhang, in their study entitled "Predicting CO₂ emissions using 

machine learning: A hybrid CNN-LSTM approach" successfully showed that the hybrid model approach can 

improve prediction accuracy by up to 15% compared to a single model. However, the study focused more on 

deep learning, while this study uses the XGBoost algorithm which offers better interpretability [14]. 

Furthermore, Abdullah et al. in their study " ARIMA with exogenous variables for CO₂ forecasting in 
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Malaysia" found that the Model ARIMAXmodel incorporating the GDP variable achieved an RMSE value of 

25. In contrast to that approach, this study replaces Model ARIMAX with XGBoost to capture the non-linear 

relationship between variables, which managed to reduce the RMSE by 30% [7]. In other study "Interaction 

effects in CO₂ emission models: A case study of Southeast Asia" found that the interaction between GDP and 

population had a significant effect, but testing was only done using linear regression [13]. This study goes a 

step further by validating this interaction using XGBoost along with feature importance tests to produce a 

more comprehensive understanding of the factors that influence carbon emissions. 

 

Table 3. Comparison of Prediction Models 

Study Model Region R²/ RMSE Limitations 
Strengths of the Research 

Conducted 

Sharma et al. 

[4] 
Linear Regression India R² 0.75 

Does not capture 

non-linearity. 

XGBoost + non-linear 

interactions. 

Zhou et al. [6] SARIMA China RMSE 38.2 
No exogenous 

variables 
Combined economic- 

climate variables. 

Abdullah et al. 

[7] 
ARIMAX Malaysia RMSE 25.0 Limited linearity. 

XGBoost for non- 

linearity. 

Chen and 

Wang [8] 

LSTM - ARIMA 

Ensemble 
East Asia R² = 0.82-0.89 

High computational 
cost; extensive data 

requirements 

Hybrid validation approach 

with cross-regional 

applicability 
 

Kumar et al. 
[9] 

SVR- ARIMA 
Hybrid 

South Asia 
RMSE = 15.2-

28.7 

Limited long-term 

accuracy; kernel 

sensitivity 

Enhanced feature 

engineering with 
comprehensive model 

validation 

Liu and Zhang 

[10] 
CNN- LSTM 

Developing 

Economies 
R² = 0.91 

Overfitting issues; 
limited 

interpretability 

Comprehensive validation 
framework with improved 

generalizability 

Our Research 
XGBoost + 

ARIMA 
ASEAN R² 0.986 

Limited temporal 

data (24 years). 

Hybrid validation + 

long-term prediction. 

 

Looking at the model comparison in Table 3, the combination of XGBoost and ARIMA can extract 

complex patterns from exogenous variables and maintain temporal accuracy. The novelty of this study is that 

the interaction of GDP_population and GHG_temp_interaction variables has not been tested in previous 

ASEAN studies, but proved to be significant (coefficient of correlation >0.85). In implication, this 

multivariate and temporal-based prediction provides a stronger basis for policy than previous studies that 

relied solely on historical trends[13]. 

 

2.3 Hybrid XGBoost and ARIMA Model  

The XGBoost model in the study is used to capture non-linear relationships between variables and 

complex interactions that are difficult to represent by traditional linear models. XGBoost, which is a decision 

tree-based ensemble model that allows modeling of complex interacting variables, such as the relationship 

between GDP and population, and between total GHG and temperature change due to CO₂. Another 

capability is to identify feature importance, which can help in understanding which variables have the most 

influence on CO₂ emissions. Figure 2 shows the decission tree. 

The XGBoost model evaluation results show an R² value of 0.98, which indicates high accuracy in 

explaining the variance of the data, as well as Mean Absolute Error (MAE) metrics of 10.46 and RMSE of 

17.86, which indicate that this model is able to provide accurate predictions. In validating the XGBoost 

model, (a) k-fold cross-validation with k=5 [11] was performed to test the consistency of the model on 

different subsets of data using the following basic formula : 

 

𝑀𝑒𝑎𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 =
1

𝑘
∑ 𝑀𝑖𝑘

𝑖=1          (1) 

 
Descriptions about the metric are K-fold as 5, and Mi is the evaluation metric value, in this research, 

which means RMSE and MAE. The evaluation results at each fold showed R² ± 0.01, indicating that the 

model did not suffer from overfitting. In addition, residual analysis was performed to ensure that the model 

residuals were normally distributed. Figure 3 is the ARIMA model. 

In this study, the ARIMA modeler focuses on the internal time patterns in the data, which makes it 

complementary to XGBoost, which focuses on external factors (such as GDP and population). By using 

ARIMA, it is expected to strengthen the validity of future CO₂ emission predictions. 
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Figure 2. Decission Tree XGBoost 

 

 

Figure 3. Visualization of ARIMA Algorithm 
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2.4 ARIMA Modeling and validation process 

The process carried out before using ARIMA is to ensure that the data is stationary using the ADF 

test where in the decision if the data is not stationary, differencing or logarithmic transformation is applied. 

Parameter selection for ARIMA models is done by optimizing the order (p, d, q) using ACF and Partial 

Autocorrelation Function (PACF) to identify the value of p and q, and using AIC to select the best model that 

provides a balance between accuracy and complexity. 

After selecting the best model and balancing, an ARIMA residual test is conducted to ensure that the 

residuals generated by the model do not contain significant patterns. The residuals are tested with the Ljung-

Box test to ensure that there is no significant autocorrelation (p-value > 0.05) and with the residual ACF plot 

to ensure that the residuals are white noise. After the ARIMA model is selected, a train-test split is performed 

with a proportion of 80:20, where 80% of the data is used for model training and the remaining 20% is used 

to test the model's ability to predict unseen data. This proportion was chosen given the relatively small 

dataset, so this split allows the model to learn quite well without losing much data for validation. 

 

2.5 XGBoost Hyperparameter Tuning 

For XGBoost hyperparameter tuning, several parameters were optimized using Optuna, an 

optimization tool based on Bayesian Optimization techniques. The optimized parameters include 

n_estimators (900) for a sufficiently large number of trees,learning_rate (0.1) to prevent 

overfitting,max_depth (8) to capture interactions between features without making the model too complex, 

and regularization (reg_alpha=0.2, reg_lambda=0.5) to control model complexity and reduce overfitting. In 

addition, subsampling (0.9) and colsample_bytree (0.8) are used to improve the model's generalization ability 

by reducing the samples and features used in each tree. 

 

 

Figure 4. XGBoost Model 

 

 From the modeling contained in Figure 4, the process begins with the input dataset used to train the 

model. The first stage involves determining the range of XGBoost hyperparameters (such as learning_rate, 

max_depth, n_estimators, or subsample) to be optimized. Each optimization iteration is followed by an 

evaluation using cross-validation (typically k-fold) to validate the model's performance on unseen data, thus 

preventing overfitting. 

 

2.6 Model Implications and Evaluation 

After generating the final XGBoost model and ARIMA predictions, the trained model was used to 

predict CO₂ emissions for the next 10 years in the Indochina peninsula and the Malacca peninsula, namely 

Indonesia, Singapore, Malaysia, Thailand, Vietnam, Philippines, Laos, Myanmar, Cambodia, Brunei, and 

Papua New Guinea. The CO₂ prediction results for each country were calculated and analyzed to provide an 

overview of expected future CO₂ emission trends. The trend data for 1999 to 2022 is shown in Figure 5. 

 

3. RESULTS AND ANALYSIS 

3.1 Evaluation of XGBoost Model 

3.1.1 Model Accuracy and Validation 

Model accuracy starts from the output of Table 4. 

 

Table 4. XGBoost Model Validation 

 R2 RMSE MAE 

Nilai 0.986 17.86 10.46 

 

The model evaluation results in this study show an R² value of 0.986, indicating that the model is 

able to explain about 98.6% of the variance in CO₂ emissions data. This confirms the model's high accuracy 

in predicting CO₂ emissions, which are largely influenced by economic and environmental factors. In 

addition, the MAE and RMSE metrics were calculated. The MAE value of 10.46 indicates that the model, on 

average, predicted an error of 10.46 CO₂ emission units. While the RMSE of 17.86 indicates the presence of 

larger prediction errors, especially in extreme predictions, which tend to be more sensitive to larger errors. 
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Figure 5. Carbon Emission Trends in ASEAN 1999-2022 

 

3.1.2 Feature Importance 

Feature importance analysis was conducted to identify which variables have the greatest influence 

on CO₂ emission predictions. In the XGBoost model, the variables with the greatest contribution to prediction 

are as projected in Figure 6. 

 

 

Figure 6. Feature Importance Analyst Output 

 

In the output, the variables that have the greatest influence on the prediction of Co2emissions are 

identified. In the modeling, the variable with the largest contribution seen in Figure 6 is the population size 

which plays an important role in influencing CO2 emissions, followed by the contribution that temperature 

change due to carbon emissions is a significant factor affecting emissions which of course is continuous with 

Total GHG, the total greenhouse gas. The interaction shows that economic growth in countries with large 

populations accelerates the increase in CO₂ emissions in a non-linear way. 

  

3.1.3 Comparison with Ensemble Model 

Figure 7 compares the performance of the standalone XGBoost model with the stacking ensemble 

approach that combines XGBoost as the base learner and meta-learner to improve prediction accuracy. 

A comparison was made between the stacking model that combines XGBoost, Random Forest, and 

LightGBM with XGBoost standalone. The stacking model yielded R² = 0.972, slightly lower compared to 

XGBoost, which achieved R² = 0.9862. Although theory suggests that model stacking can improve 

performance by combining the strengths of heterogeneous models [15], in practice, the combination of 

homogeneous models (such as XGBoost, Random Forest, and LightGBM) results in predictive redundancy 

[16]. In addition, stacking increases complexity without a significant increase in accuracy [17]. If these 

differences are consistent in cross-validation, XGBoost remains more efficient. XGBoost performs better 

34%

29%

21%

16%

Feature Importance Analyst

Population Temperature_change_from_co2 Total_GHG gdp_popuulation
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because it has built-in regularization and stronger handling of missing values compared to other models [18], 

as well as higher stability on datasets with noise or dominant features. 

 

 

Figure 7. Ensemble Model (Stacking) 

 

3.2 ARIMA Model Evaluation 

3.2.1 Stationarity Check 

Stationarity checks on CO₂ emissions data using the ADF test. The stationarity test results show that 

the data is not stationary, with a p-value of 0.992. Therefore, the first differencing transformation is carried 

out to make the data stationary. The data transformation process through gradual differentiation 

(differencing) is carried out to fulfill the stationarity assumption which is the main prerequisite for the 

ARIMA model. The p-value close to 1 indicates the presence of a deterministic trend and/or unit root in the 

time series data . The first differentiation was then applied to remove the linear trend component, but the 

subsequent ADF test results of the second differentiation performed resulted in values reaching stationarity 

(p-value = 4.04×10-⁷ << 0.05), which is mathematically equivalent to removing both linear and quadratic 

trend components [19]. The choice of the order of differentiation (d=2) is also supported by the ACF / PACF 

analysis, which shows an exponential decline at high lags before the second differentiation, but reaches a 

sharp cutoff and is typical of stationary data [20].  

 

3.2.2 ARIMA Parameter Selection 

The process of selecting the p, d, and q parameters is done using auto_arima, which automatically 

selects the best model based on the AIC. This process is done to ensure a balance between accuracy and 

model complexity. Based on the stepwise search to minimize AIC, the best model was found to be ARIMA 

(0, 2, 0) for Indonesia, which has the lowest AIC value of 234.404. For other countries, the best models 

found are ARIMA (2, 2, 0) and ARIMA (0, 2, 1). The following is the testing process: 

 

1. Residual Test ARIMA 

As part of the ARIMA parameter selection, here is the output of the residual results in Table 5. 

 

Table 5. ARIMA Residuals 

T Ljung-Box Test p-value 

ARIMA (0,2,0) 1.86 0.17 

ARIMA (2,2,0) 0.12 0.73 

ARIMA (0,2,1) 0.41 0.52 

 

P-values greater than 0.05 for all of these models confirm that the model residuals do not exhibit 

significant autocorrelation, indicating that the models are good enough to optimize CO₂ emissions predictions 

by taking into account the patterns in the data [21]. This reinforces the conclusion that the ARIMA models 

have captured the patterns in the data well and the prediction results can be justified. This evaluation is in line 

with the principle in time series analysis, that residuals that are free of autocorrelation and close to a normal 

distribution indicate a good model fit [22], [23]. 

 

2. Evaluation of ARIMA Model Results 

The ARIMA model parameter optimization process is projected in Table 6, namely by sorting the 

model residual test results.  
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The ARIMA model with parameters (0, 2, 0) for Indonesia provides good results. Based on CO₂ 

predictions for future years, the model can provide consistent estimates of CO₂ emissions for Indonesia, 

Malaysia, Brunei, Papua New Guinea, Thailand, Vietnam, Philippines, Laos and Cambodia. For example, 

predicted CO₂ emissions for Indonesia in 2023 are 841,843, and are expected to increase to 2197,363 by 

2035. 

Table 6. ARIMA Model Evaluation 

Model (0,2,0) 
AIC 

Stationeritas Test 

ADF Statistic p-value 

234.404 -5.8279 4.04e-07 

 

3.3 Multi-Factor Analysis of CO2 Emissions Causes 

In attempting to predict CO₂ emissions, various external and temporal factors interact and influence 

the dynamics of changes in CO emissions. Based on data analysis using various countries through the 

XGBoost and ARIMA model approaches, we can conclude that CO₂ emissions are influenced by complex. 

interrelated economic, social, and environmental change factors. The model results in this study show 

different growth patterns between countries, but generally remain within reasonable limits based on each 

country's emission characteristics. Below are the correlations between relevant variables, as well as how non-

linear interactions can affect CO₂ emissions prediction results. 

 

3.3.1 Correlation and Causality 
Identify correlation relationships between variables that affect CO₂ emissions. The correlations 

between GDP, population, total GHG and temperature change due to CO₂ provide an overview of the 

interrelationships between the factors. A heatmap of the correlations is shown in Figure 8. 

 

 

Figure 8. Correlation heatmap 

 

Based on Figure 8, there are several significant relationships, including: 

1. The GDP x Population correlation with a value of 0.80 indicates that there is a strong relationship 

between a country's income level and its population, which can affect total energy consumption and, 

in turn, CO₂ emissions. This relationship is consistent with the finding that countries with high 

economic growth and population tend to have greater energy intensity [24], [25]. 

2. The GDP x CO₂ (0.85) and Population x CO₂ (0.85) correlations suggest that economic growth and 

large populations are positively correlated with increased CO₂ emissions. This is in line with 

research [26], which found that every 1% increase in GDP correlates with a 0.7-0.8% increase in 

CO₂ emissions in developing countries. This finding is also supported by Liddle [27] which states 

that population growth is the main driver of increased emissions in the Asian region. 
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3. The Total GHG x Temperature Change correlation (0.95) shows a very strong relationship between 

total GHG emissions and temperature change due to CO₂ emissions. This result is consistent with 

the IPCC report [28] which states that 90% of global warming since 1950 is caused by human 

activities that increase GHG concentrations in the atmosphere. 

 

From the above results, the correlation between population and temperature change due to CO₂ with 

a value of 0.95 allows reflection of increased energy consumption due to a larger population, so countries 

with high population growth such as Indonesia, the Philippines, and Vietnam need to strengthen energy 

efficiency policies in the urban settlement and transportation sectors [29], Implement low-carbon urban 

planning to anticipate population migration to [30], accelerate decentralized renewable energy transition and 

develop community-based climate education programs [31]. 

 

3.3.2 Effect of non-linear interactions 

Interactions between variables in the XGBoost model indicate that non-linear relationships between 

economic and environmental variables are important in predicting CO₂ emissions. XGBoost modeling 

revealed critical non-linear relationships between economic-environmental variables in CO₂ emission 

prediction. Key interactions include GDP -population (β=0.4), demonstrating exponential emission increases 

in densely populated regions during economic growth, and GHG-temperature change (β=0.3), indicating 

accelerating rather than proportional impacts at specific thresholds. 

The XGBoost model was successfully optimized using Optuna, with the best parameters at trial 47: 

n_estimators = 500, max_depth = 9, learning_rate = 0.0283, subsample = 0.8249, colsample_bytree = 0.6741, 

reg_alpha = 0.4321, and reg_lambda = 0.0840. The model evaluation showed excellent predictive 

performance with an R² score = 0.9865, MAE = 10.41, and RMSE = 17.70. This indicates that the model is 

able to explain more than 98% of the variation in the CO₂ emission target data, and the prediction error is 

very low. 

In contrast, the ARIMA (0, 2, 0) model used to predict CO₂ emission trends based on historical data 

provides reliable results in capturing long-term trends, resulting in the prediction that the largest ASEAN-

wide increase in CO₂ emissions is in Indonesia, with emissions increasing from 841,843 in 2023 to 2,197,363 

in 2035. The ARIMA model used in this research is to capture the temporal trend component purely, which 

cannot be done by the machine learning model, which in this research case is the XGBoost model. 

 

3.4 Emission Trend Prediction  

 Predicting and analyzing CO₂ emission trends in ASEAN countries over the period 2023 to 2035 

plays an important role in formulating appropriate and efficient climate change policies. ASEAN countries 

with diverse economic and demographic conditions have different emission patterns, which are influenced by 

various factors such as economic growth, population, energy policy, and the level of industrialization and 

urbanization. Using a hybrid ARIMA and XGBoost model approach that incorporates time series analysis 

and non-linear interactions between variables such as GDP, population, totalGHG, and temperature, we can 

predict the development of CO₂ emissions in each country. 

Based on the predictions generated from the model, it can be seen that CO₂ emission trends for 

ASEAN countries show different patterns reflecting differences in economic growth, energy consumption, 

and environmental policies. In the predictions shown in Table 7, countries with fast economic growth and 

large populations, such as Indonesia, show a steadily increasing emissions trend until 2035, while countries 

with slower economic growth and stricter emissions policies, such as Brunei, show a steady decline in 

emissions. 

The emission dynamics presented in Table 7 are attributable to multifaceted determinants captured 

through the hybrid modeling approach: nations characterized by accelerated economic expansion and 

substantial demographic bases, exemplified by Indonesia, demonstrate pronounced ascending trajectories 

with projected increases of 161% culminating at 2,197.3 metric tons by 2035, primarily driven by intensive 

industrialization processes and energy-dependent developmental pathways. Conversely, countries 

experiencing moderate economic growth, including Singapore and Malaysia, exhibit incremental upward 

trends of 71% and 30% respectively, indicative of sustainable development approaches that integrate 

economic advancement with environmental considerations.  

In contrast, nations manifesting declining emission patterns at Vietnam (32% reduction), Thailand, 

Myanmar, Laos, and Brunei to demonstrate descending trajectories predominantly attributed to the 

implementation of stringent environmental regulations, renewable energy portfolio diversification, enhanced 

energy efficiency mechanisms, and structural economic transitions toward low-carbon industrial sectors. 

These divergent emission patterns emerge from the complex interdependencies among macroeconomic 

indicators (GDP growth coefficients), demographic variables (population dynamics), energy governance 
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frameworks (renewable energy adoption rates), and industrial development indices, which collectively reflect 

each nation's distinctive socioeconomic trajectory and climate policy commitment levels as quantified by the 

predictive model. 

 

Table 7. CO₂ Emission Prediction Results (in metric tons) for  

ASEAN Countries 2023-2035 

Negara 2023 2024 2025 2026 2027 2028 2029 

Singapura 66.88 65.67 70.03 77.73 78.46 84.46 89.23 

Indonesia 841.84 954.8 1067 1180 1293 1406 1519.6 
Malaysia 298.38 303.5 310.5 319.2 327.4 334.6 341.86 

Brunei 10.86 10.78 10.57 10.54 10.42 10.29 10.21 

Papua Nugini 7.89 7.9 7.9 7.93 7.94 7.95 7.97 
Thailand 269.76 268.77 267.79 266.8 265.81 264.82 263.84 

Vietnam 334.66 325.72 316.77 307.82 298.88 289.93 280.99 

Filipina 155.32 160.24 165.17 170.09 175.02 179.94 184.87 
Laos 23.02 22.85 22.67 22.5 22.32 22.15 21.98 

Myanmar 34.23 33.53 32.83 32.13 31.44 30.74 30.04 

Kamboja 20.77 21.58 22.39 23.2 24.01 24.82 25.63 

(a) Prediction Result 2023-2029 

 
Negara 2030 2031 2032 2033 2034 2035 

Singapura 92.02 97.66 101.53 105.5 110.46 114.31 

Indonesia 1632.56 1745.52 1858.48 1971 2084.4 2197.3 

Malaysia 349.51 357.35 365 372.5 380.04 387.68 
Brunei 10.1 9.99 9.89 9.78 9.68 9.57 

Papua Nugini 7.98 8 8.01 8.03 8.04 8.06 

Thailand 262.85 261.86 260.88 259.89 258.9 257.92 
Vietnam 272.04 263.09 254.15 245.2 236.26 227.31 

Filipina 189.79 194.71 199.64 204.56 209.49 214.41 

Laos 21.8 21.63 21.45 21.28 21.11 20.93 
Myanmar 29.35 28.65 27.95 27.26 26.56 25.86 

Kamboja 26.44 27.25 28.06 28.87 29.68 30.49 

(b) Prediction Result 2030-2035 

 

 

Figure 9. ASEAN Carbon Emissions trend chart 1999-2022 

 

Based on the results of the prediction analysis in Figure 9, CO₂ emissions for ASEAN countries 

from 2023 to 2035 are notable: 

1. Indonesia and Malaysia show a significant increase in CO₂ emissions throughout the analyzed 

period. This is influenced by large populations, rapid urbanization, and high economic growth, 

leading to increased energy demand and fossil fuel use. Indonesia, for example, is expected to see 

CO₂ emissions rise from 841.84 million tons in 2023 to 2197.36 million tons in 2035, reflecting the 

impact of rapid economic growth. 

2. Singapore shows a more stable emissions trend. While Singapore experiences an increase in CO₂ 

emissions from 66.88 million tons in 2023 to 114.31 million tons in 2035, the growth rate is lower 

compared to other countries, such as Indonesia and Malaysia. This is due to stricter emission 

reduction policies and the use of low-carbon technologies.  
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3. Brunei and Papua New Guinea show a decrease in emissions or stability in CO₂ emission levels over 

this period. Brunei, with its small population and efficient energy policies, is expected to maintain 

emissions at very low levels (around 9 million tons in 2035). Likewise, Papua New Guinea shows a 

similar trend with stable emissions below 10 million tons. 

4. Thailand and Vietnam show a more moderate decline in CO₂ emissions over this period. Vietnam, in 

particular, is expected to see emissions drop from 334.66 million tons in 2023 to 227.31 million tons 

in 2035, showing the impact of stricter environmental policies and improved energy efficien. 

5. Laos, Myanmar and Cambodia show a more stagnant or slightly declining trend, with lower 

emissions than major countries such as Indonesia or Malaysia. These countries, despite having 

lower economic growth rates, may experience increased energy consumption along with 

infrastructure development and industrialization. 

 

Based on the findings of predicted CO₂ emissions in the ASEAN region, a targeted and 

differentiated policy approach is required according to each country's characteristics. For high emission 

growth countries such as Indonesia and Malaysia, priority measures include implementing progressive 

carbon taxes on the industrial sector and fossil fuel power plants, along with incentives to transition to 

renewable energy [32]. These policies need to be reinforced by strict energy efficiency standards, especially 

in the transport and construction sectors, given the significant contribution of urbanization to increasing 

emissions [33]. Meanwhile, stable emission countries such as Singapore and Brunei can take the lead in 

developing Carbon Capture and Storage (CCS) and green hydrogen technologies, while serving as regional 

innovation hubs for knowledge transfer [34]. 

 

4. CONCLUSION 

This research provides a comprehensive approach to predicting CO₂ emissions in Southeast Asian 

countries using advanced predictive models, namely XGBoost and ARIMA, successfully fulfilling the 

primary research objective of developing an integrated predictive framework for regional emission 

forecasting. The results obtained from these two models provide valuable insights into future CO₂ emissions 

trajectories, from 2023 to 2035, reflecting both regional trends and country-specific patterns, directly 

addressing the research objective of creating a hybrid modeling approach that captures both temporal 

dependencies and complex variable interactions. 

The CO₂ prediction results for ASEAN countries from 2023 to 2035 show that some countries 

experience significant increases in CO₂ emissions, while others show decreases or smaller fluctuations. For 

example, Indonesia is predicted to experience a steady increase in emissions from 841.84 MtCarbon Dioxide 

(MtCO₂) in 2023 to 2197.36 MtCO₂ in 2035, while Brunei experiences a decrease in emissions from 10.86 

MtCO₂ in 2023 to 9.57 MtCO₂ in 2035. Singapore, on the other hand, shows an upward trend in emissions, 

albeit on a smaller scale, with predicted CO₂ values increasing from 66.88 MtCO₂ in 2023 to 114.31 MtCO₂ 

in 2035. These differentiated emission patterns successfully achieve the research objective of providing 

country-specific emission forecasts that enable targeted policy interventions. 

The use of XGBoost is particularly effective in capturing the non-linear relationships and complex 

interactions between variables such as GDP, population, total GHG emissions and CO₂-induced temperature 

change. The model shows a very high level of accuracy, with an R² score of around 0.98, indicating that it 

successfully explains the variance of CO₂ emissions in the region. The identification of key variables, such as 

the interaction between GDP and population, provides a deeper picture of the factors affecting carbon 

emissions, which traditional linear models have difficulty revealing. Furthermore, the use of the ARIMA 

model allowed us to model the temporal dependencies in the CO₂ emissions data, taking into account the 

established trends from 1999 to 2022. This model also provides useful predictions of future emission patterns 

based on historical patterns, enriching the results obtained from XGBoost. These technical achievements 

directly fulfill the research objective of identifying critical determinants of emission patterns and 

demonstrating superior predictive performance through hybrid modeling. 

The prediction results can be used as a basis for more targeted climate change mitigation policies. 

These policies need to consider factors such as economic growth (GDP), population increase, and more 

effective GHG emission reduction policies. Overall, the research results can be an important basis for policy 

makers in designing data driven climate change mitigation standards, as well as provide a literature review 

for future researchers. Thus, the study successfully achieves its ultimate objective of establishing a data-

driven foundation for evidence-based climate policy development while contributing valuable 

methodological insights to the scientific community. 
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