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 The development of information technology has opened up new 

opportunities in stock market forecasting, especially in nickel 

commodities, which are increasingly strategic in the global energy 

transition. This study uses a Deep Learning Method as Recurrent 

Neural Network (RNN), Long Short-Term Memory (LSTM), and a 

Gated Recurrent Unit (GRU) to forecast the movement of the S&P 

GSCI Nickel stock index value. Yahoo Finance time series data for 

the years 2018–2024 are used in the dataset. The study's findings are 

used to evaluate each model's capacity to forecast changes in nickel 

stock prices. The RNN model is used in this study because it can 

work with sequential information, while LSTM works with three 

memory gates (input, forget, output), and GRU works with 2 gates, 

namely update and reset. Mean Absolute Percentage Error (MAPE) 

presents the results of open and closed variable forecasting errors 

with the lowest average for the RNN model of 2.08%, the LSTM 

model of 2.505%, and the GRU model of 1.505%. This study is 

expected to contribute to investor decision-making and the 

identification of the most accurate forecasting model for the nickel 

stock index. 
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1. INTRODUCTION  

Information technology is not difficult to access because it has become a part of people's life [1]. 

The field of information technology is constantly evolving and becoming more advanced; as a result, it has 

the potential to bring about a multitude of benefits that the lives of individuals can benefit from [1]. One of 

the efforts to utilize information technology is currently being implemented in forecasting[2]. In order to 

meet the demand for goods or services, forecasting involves calculating the number of future requirements, 

including quantity, quality, time, and location [2]. Forecasting has many purposes, including projecting future 

values, one of which is to analyze the stock market [2]. One of the stocks now the target of investors is nickel 

due to the increasing global demand for nickel commodities caused by the transformation of fossil energy 

utilization towards environmentally friendly electrical energy using batteries with nickel raw materials [3]. 

Indonesia is one of the largest nickel producers globally, and its strategic role should be taken into 

account in the global market to meet the growing demand for nickel [4]. In recent years, nickel has 

increasingly been considered a viable alternative in the transition from fossil fuels to environmentally 

friendly energy sources. One notable use is in the transportation manufacturing industry, where nickel serves 
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as a key raw material for electric vehicle batteries [5]. This surge in demand has attracted strong investor 

interest in the nickel sector, particularly in the stock market. One prominent platform reflecting nickel’s 

market performance is the S&P (Standard & Poor’s), which provides index-based assessments of real assets. 

Since acquiring the Global Supply Chain Intelligence (GSCI) from Goldman Sachs in 2007, S&P has 

maintained the GSCI as a benchmark for global commodity futures contracts. In practice, the S&P GSCI 

Nickel index demonstrates considerable price fluctuations, which are influenced by various factors including 

technical production issues, global economic conditions, and national downstream industrial policies 

promoted by the Indonesian government. These conditions complicate accurate prediction of nickel stock 

index movements [6]. Furthermore, selecting the most suitable forecasting model and optimizing 

hyperparameters for machine learning methods such as Recurrent Neural Network (RNN), Long Short-Term 

Memory (LSTM), and Gated Recurrent Unit (GRU) remains a complex challenge. Currently, there is no 

specialized application or model to support investors in forecasting the S&P GSCI Nickel index. This 

highlights the urgency and relevance of research that applies and compares these algorithms in order to assist 

decision-making in nickel stock investments. 

  Numerous studies have explored the implementation of Deep Learning (DL) algorithms in 

forecasting stock prices and economic indicators, particularly emphasizing models such as RNN, LSTM, and 

GRU due to their proven capability in capturing temporal dependencies in sequential data. Arfan and ETP 

[7], for example, investigated the performance of LSTM in predicting the stock prices of several sharia-

compliant Indonesian companies, namely PT Aneka Tambang Tbk, Erajaya Swasembada Tbk, Kalbe Farma, 

Semen Indonesia, and Wijaya Karya. Their study reported highly accurate results, with Mean Absolute 

Percentage Error (MAPE) values ranging from 1.51% to 2.66%, demonstrating LSTM’s suitability for 

modeling non-linear time series in stock forecasting. In contrast, Pakaja et al [8] utilized the Autoregressive 

Integrated Moving Average (ARIMA) model on five major Indonesian stocks Adaro Energy Indonesia Tbk 

(ADRO), Aneka Tambang Tbk (ANTM), Bank Central Asia Tbk (BBCA), Astra International Tbk (ASII) 

and Bank Negara Indonesia (Persero) Tbk (BBNI) and obtained more varied MAPE results, with values 

peaking at 7.93%, indicating limitations in ARIMA’s ability to handle volatile and dynamic stock data. 

Meanwhile, Yulisa et al [9] conducted a comparative study between LSTM and GRU for forecasting 

Indonesia’s oil and gas exports. The results indicated that LSTM outperformed GRU slightly, achieving a 

MAPE of 12.8% compared to GRU's 13.3%, suggesting both models are viable but LSTM offers a marginal 

edge in accuracy. Furthermore, Ciptaswara [10] developed a hybrid model combining ARIMA with GRU to 

predict palm oil prices, yielding a remarkably low MAPE of 0.0117, which reflects the potential of hybrid 

approaches in enhancing prediction performance. Alim [11] assessed LSTM, RNN, and ARIMA on LQ45 

index data and confirmed the superiority of deep learning models LSTM achieved MAPE values of 0.048 

and 0.033, outperforming RNN (0.0601 and 0.0295) and ARIMA (0.7 and 0.9), thus validating LSTM's 

robustness in capturing long-term dependencies in financial time series. In addition, Saputra et al [12] and 

Rijal et al [13] focused on forecasting Indonesia’s export values of oil and gas using GRU and LSTM. 

Saputra et al found GRU yielded a MAPE of 13.38%, while Rijal et al demonstrated LSTM’s stronger 

accuracy at 6.23% for oil and gas and 8.18% for non-oil and gas, significantly outperforming the traditional 

Vector Autoregression (VAR) model, which resulted in MAPE values of 18.4% and 32.1%, respectively. 

These collective findings underline the effectiveness of deep learning, particularly LSTM, in financial 

forecasting tasks. However, despite the widespread use of RNN, LSTM, and GRU in various financial 

forecasting contexts, there is a noticeable absence of studies applying these methods specifically to the S&P 

GSCI Nickel index. Therefore, this study aims to fill that gap by conducting a comparative analysis of RNN, 

LSTM, and GRU models in forecasting the S&P GSCI Nickel index, contributing a novel application of 

machine learning to commodity index forecasting. 

  The purpose of this research is to compare the RNN, LSTM and GRU forecasting models using the 

S&P GSCI Nickel index dataset with Open and Close variables, to identify which model is the best and 

determine the optimal hyper-parameter combination. 

 

2. RESEARCH METHOD  

Forecasting the open and close values of S&P GSCI Nickel using The RNN, LSTM, and GRU 

methods uses several visualized processes based on the flow in Figure 1. 

The initial phase of this study involved collecting historical data on the S&P GSCI Nickel index, 

specifically the daily opening and closing prices from 2008 to 2024, retrieved from the Yahoo Finance 

platform. Yahoo Finance is a widely recognized source for financial datasets, offering comprehensive 

information on stock performance, market trends, and economic indicators. After data acquisition, the 

preprocessing stage was carried out to enhance data quality and ensure compatibility with the machine 

learning models. This phase included handling missing values, converting date formats into appropriate time-

series indices, and applying normalization using the Min-Max Scaler method to scale the input features 



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 8, No. 2, July 2025:  370 – 379 

372 

within the range of 0 to 1. This normalization was essential to reduce the impact of differing value scales and 

to improve model convergence. 

Following pre-processing, the dataset was divided into training and testing subsets using a 

chronological split to preserve the time-dependent structure of the data. Feature selection was performed to 

identify and retain the most relevant attributes specifically, the normalized opening and closing prices-

serving as inputs for the predictive models. 

The core modeling phase involved the implementation of three deep learning architectures: RNN, 

LSTM and GRU. These models were selected due to their ability to process sequential data and learn 

temporal dependencies, which are crucial for time-series forecasting. Each model was constructed using a 

standard architecture consisting of input, hidden, and output layers, with variations in internal memory 

mechanisms tailored to each algorithm’s design. 

Hyper-parameter tuning was conducted through a grid search approach to optimize critical 

parameters such as the number of hidden units, number of epochs, batch size, activation function. This 

optimization aimed to improve the generalization ability and predictive accuracy of each model. Once the 

training phase was complete, model performance was evaluated using the Mean Absolute Percentage Error 

(MAPE) metric, which provides a clear indication of forecast accuracy by comparing predicted values 

against actual observations. The model with the lowest MAPE value was considered the most effective in 

capturing the trend and volatility of the S&P GSCI Nickel index. 

 

 

Figure 1. Flowchart System 

 

2.1 Forecasting 

Forecasting is predicting a time series’s future using information from the past based on the time 

series and several related variables [14]. Forecasting is an integral part of decision-making in setting goals 

and objectives for an organization or company [15]. As management seeks to reduce reliance on uncertainty 

and adopt a more scientific approach to handling situations, the forecasting demand is growing [2]. Because 

every organization can estimate the impact of good and bad, such as scheduling, forecasting is important 

[15]. 

 

2.2 MinMax Scaler 

 MinMax Scaller normalization is a technique that transforms data into a scale between 0 and 1 [16]. 

This procedure, which can be computed using Equation (1), is known as MinMax normalization because it 

places the results within a consistent range [16]. Since 𝐗𝐦𝐚𝐱 is the largest data value, 𝐗𝐦𝐢𝐧 is the smallest, 

and 𝐗 is the actual data. 

 

   𝐗𝐬𝐜𝐚𝐥𝐞𝐝 =
𝐗−𝐗𝐦𝐢𝐧

𝐗𝐦𝐚𝐱−𝐗𝐦𝐢𝐧
                          (1) 

      

2.3 RNN Model 

 RNN is defined as learning that uses a cycle model of repeated connections in a network of nodes so 

that it can capture sequence dynamics [17]. At first, this may seem counterintuitive. However, the forward 

architecture of neural networks ensures a clear computational sequence. The repeating connections are well-

defined, leaving no room for ambiguity.  Each step uses the same basic parameters, and the RNN remains 

constant throughout the time and stages of the sequence [17]. Each step uses the same fundamental 

parameters, maintaining the RNN’s consistency across time and sequence stages [17]. The RNN operates 

through a series of sequential computational steps, each defined by specific mathematical Equations [14]. 

The following analysis breaks down the core components and their several steps: 
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Step-1: Neural Network Layer Initialization. The process begins with initializing the network’s memory 

mechanism, where the first hidden state is computed. This step combines the input data with the network’s 

parameters to establish an initial representation of the sequence described in Equation (2). The hidden state 

h(t) stores information from the current timestep, acting as the network’s memory. The weight matrix Wxh 

dictates the impact of the input x(t)  on the hidden state while  bh serves as a bias term to fine-tune the 

calculation. 

 

    h(t) = tan h(Wxh ⋅ x(t) + bh)              (2) 

 

Step-2: Hidden State Processing. After initialization, the hidden state is updated at each timestep by 

integrating information from both the previous hidden state and the current input. This allows the network to 

maintain temporal dependencies in sequential data, which can be calculated by Equation (3). Where the 

matrix Whh defines how the weight hidden to the hidden state from the previous timestep h(t − 1) affects 

the current hidden state. The term Wxh ⋅ x(t) captures the contribution of the new input and bh remains a 

biased term that fine-tunes the transformation. 

 

   h(t) = tanh(Whh ⋅ h(t − 1) + Wxh ⋅ x(t) + bh)                            (3) 

 

Step-3: Output Generation. Once the hidden state is processed, the final step is to generate an output based on 

the current hidden state. This transformation maps the hidden representation into Equation (4). The output 

y(t) represents the network’s prediction at time t, derived from the hidden state h(t)using the weight matrix 

Why, which maps hidden representations to output space. The bias term by adjusts the output before the final 

prediction. 

   

   y(t) = Why ⋅ h(t) + by        (4) 

 

2.4 LSTM Model 

 LSTM is one of the architecture types of artificial neural networks (ANNs) in natural language 

processing and machine learning[18]. LSTMs are designed to address the problem of long-term dependency 

of data sequences [14]. Computer logic gates inspire the LSTM design with a new component called a 

memory cell, which functions as a classic long-term memory. The LSTM has several gates with different 

functions, such as adding, reading, and forgetting information from this memory cell. This memory cell acts 

as a gradient highway, allowing gates to pass through the network relatively unimpeded [14]. LSTM is the 

main innovation that avoids the loss of gradients in RNNs [14]. According to an analysis of the error flow in 

existing RNNs, which forms the basis of the LSTM architecture, present architectures cannot handle long-

time lags since the backpropagated error would either increase or decrease exponentially [19]. The following 

stages can be used to describe how LSTM operates [14]. 

 

Step-1: LSTM Cell Initialization. The process begins with initializing the network’s memory mechanism, 

where the first hidden and cell states are computed. Unlike standard RNNs, LSTMs maintain a memory cell 

Ct that helps regulate the flow of information through different gates. As explained in Equation (5), Both the 

current input and the previous concealed state's data are read by the input gate. Where the input gate is 

located the cell status determines the amount of extra information that should be added. In the input xt and 

the prior hidden state Ht−1, the weights are defined by the matrices Wxi and Whi, respectively. The bias term 

bi ensures additional flexibility in the computation.  

 

   It = σ(Wxi ⋅ xt + Whi ⋅ Ht−1 + bi)             (5) 

 

Step-2: Processing in Hidden States. The forget gate chooses which data from the prior cell state should be 

removed to preserve pertinent information. The sigmoid activation function, which produces values between 

0 and 1, is used to calculate it, as shown in Equation (6). After computing the forget gate, the new candidate 

cell state is updated using the input gate It, and a new candidate value C̃ is computed using the tanh activation 

function in Equation (7). The final cell state Ct is then updated using Equation (8). Where the forget gate Ft 

controls the retention of information from the previous cell state Ct−1, while the input gate It determines how 

much of the new candidate’s value C̃t should be added. The element-wise multiplication ⊙ ensures selective 

updating of memory. 

 

   Ft = σ(Wxf ⋅ xt + Whf ⋅ Ht−1 + bf)                (6) 
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   C̃t = tanh(Wxc ⋅ xt + Whc ⋅ Ht−1 + bc)                   (7) 

 

   Ct = Ft ⊙ Ct−1 + It ⊙ C̃t                      (8) 

 

Step-3: Output Generation. The output gate controls how much cell state information should be passed to the 

hidden state. This transformation is computed as described in Equation (9) and (10). The output gate Ot 
determines how much information from the cell state Ct should be passed to the hidden state Ht. The final 

output yt is obtained using the weight matrix Wy, which maps the hidden representation to the output space 

while acting as a bias term to refine the final prediction. The three gates that are most important in 

information processing are the input, forget, and output gates. To regulate the information that flows across 

the network, the weight parameters are essential, with the weight parameters for hidden-to-input represented 

by Whi, hidden-to-forget represented by Whf, and hidden-to-output  Who. 

To regulate the information that flows across the network, the weight parameters are essential. The weight 

parameters for the hidden-to-input are represented by Whi, , the hidden-to-forget by Whf, , and the hidden-to-

output by Who. 

 

   Ot = σ(Wxo ⋅ xt + Who ⋅ Ht − 1 + bo)                       (9) 

 

    Ht = Ot ⊙ tanh(Ct)      (10) 

 

Finally, the network output at time t is computed using Equation (11). Each computational step 

involves the hidden state at the previous time, representing the network’s short-term memory. The weight 

parameter U connects the input directly to the hidden layer, while the input at any given time and the bias (b) 

influence the computation. The result is the current hidden state (h), which reflects the complex 

transformation of the input information based on the advanced gate mechanism in the LSTM architecture. 

 

   yt = Wy ⋅ Ht + by      (11) 

 

2.5 GRU Model 

 GRU is an RNN model variant with a simpler structure than LSTM [14]. GRU has two main gates, 

the update gate and the reset gate, without using a long-term memory component and a hidden state to 

disseminate information [14]. The advantage of GRU is that it is simpler and only requires a smaller number 

of parameters, thus making GRU faster to train and more efficient use of computing resources [14]. GRU can 

be described in the following steps: 

Step-1: Reset Gate Computation. The process begins with the reset gate, which determines how much 

information from the past should be forgotten. This gate computes a weighted sum of the current input xt and 

the Ht−1 variable is a previous hidden state, using the respective weight matrices Wxr and Whr, followed by a 

bias term br. A sigmoid activation function σ, which produces values ranging from 0 to 1, is applied to the 

result, thereby controlling the amount of the previous hidden state that is preserved. The output Rt is 

explained in Equation (12). 

 

 Rt = σ(Wxr ⋅ xt + Whr ⋅ Ht − 1 + br)                           (12) 

 

Step-2: Update gate computation. The update gate determines the amount of fresh data that should be kept in 

the hidden state. It mixes the prior hidden state Ht−1 with the current input xt, using the weight matrices Wxh 

and Whu and adding a bias term bu. The output is again passed through a sigmoid activation function σ, 

which produces a value between 0 and 1. The output of the update gate, Ut, controls how much of the 

previous hidden state Ht−1 will be retained, and how much of the new candidate’s hidden state will be 

included. The Equation for the update gate is computed in Equation (13). Update the computation of the gate. 

The update gate determines the amount of fresh data that should be kept in the hidden state. It mixes the prior 

hidden state Ht−1 with the current input xt. 
 

 Ut = σ(Wxh ⋅ xt + Whu ⋅ Ht−1 + bu)            (13) 

 

Step-3: Candidate hidden states computation. The Candidate of the hidden state H̃t, is calculated. This stage 

determines how much more data could be added to the hidden state. The input xt and the previous hidden state 

 Ht−1 (which was reset by the reset gate Rt) are combined using weighted sums utilizing the matrices Wxh 

and Whh, and then a bias term bh is added to determine the candidate's hidden state. The outcome is run 
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through the tanh activation function to make sure the results fall inside a range that can be used for additional 

computations. It is possible to calculate the candidate's hidden state H̃t using Equation (14).  

 

 H̃t = tanh(Wxh ⋅ xt + Whh ⋅ (Rt ⊙ Ht−1) + bh)                      (14) 

 

Step-4: Update on Hidden State. Calculating the updated hidden state Ht, which combines the candidate's 

hidden state H̃t with the prior hidden state Ht−1, is the last step.  While the remainder of the candidate's 

hidden state H̃t is included. The update gate Ut decides how much of the prior hidden state should be retained. 

The element-wise multiplication ⊙ is used to accomplish this. Equation (15) can be used to determine the 

updated hidden state. 

 

 Ht = Ut ⊙ Ht − 1 + (1 − Ut) ⊙ H̃t                        (15) 

 

2.6 Grid Search Hyper-Parameter Tuning 

Grid search means trying all possible combinations of the hyper-parameters of interest [18]. Grid 

search is a hyperparameter optimization technique that systematically explores all possible combinations of 

predefined hyperparameters to get the best configuration for a machine learning model by creating a discrete 

grid throughout the search space, with each point representing a unique combination of hyperparameter 

values [19]. 

 

2.7 MAPE 

 MAPE is a method for calculating a forecasting model’s performance value MAPE measures the 

average percentage error between the actual and predicted values, considering the magnitude of the error 

relative to the true value taken without regard to sign [20][15]. MAPE presents the prediction error as a 

percentage, allowing users to understand how large the prediction error is compared to the size of the true 

value. The prediction model is more accurate when the MAPE value is lower. MAPE is widely used in 

various industries, such as business, economics, and data science, to evaluate the performance of predictive 

models and improve future prediction strategies [15]. The MAPE equation can be described in Equation (16) 

[15]. 

 

       MAPE =  
1

n
∑ |

Ai−Fi

Ai
|n

i=1 × 100%                                      (16) 

 

3. RESULTS AND ANALYSIS  

The research utilizes a web crawling methodology to collect S&P GSCI Nickel data from Yahoo 

Finance using Python libraries, as presented in Table 1. The analysis encompasses weekly data spanning 

from 2008 to 2024, specifically focusing on the opening and closing values of the S&P GSCI Nickel index. 

The dataset comprises 856 data points, providing a comprehensive temporal coverage of price movements 

throughout this period. These observations capture the dynamic behaviour of nickel prices in the global 

commodity market over a 16-year timeframe. 

 

Table 1. Open and Close S&P GSCI Nickel 

Date Open Close 

2008-01-01 614,05 611,67 
2008-01-08 616,09 615,28 

2008-01-15 612,57 597,16 

2008-01-22 576,76 603,29 
……… …….. …….. 

2024-04-16 596.95 589.96 

2024-04-23 589.96 592.55 
2024-04-30 592.5 576.95 

2024-05-07 577.14 579.50 

2024-05-14 579.5 591.04 
   

 

3.1 Data Normalization 

Before being applied to the dataset model, it must first be normalized according to the format of the 

three models and scaled with a scale of 0 to 1 using MinMax Scaler. The following is the result of the dataset 

after normalization, which can be seen in Table 2.  
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Table 2. Normalized Dataset 

Date Open Close 

2008-01-01 0.594259 0.589203 
2008-01-08 0.597419 0.594782 

2008-01-15 0.591966 0.566776 

2008-01-22 0.536491 0.576251 
2008-01-29 0.579619 0.574844 

2008-01-01 0.594259 0.589203 

 

3.2 Grid Search Hyper-Parameter Tuning 

This study employed grid search for hyper-parameter tuning, a systematic approach to selecting the 

optimal set of parameters for the model. In this case, the hyperparameters tuned include the number of 

neurons in each layer, batch size, and activation function. The candidate parameters used for this study are in 

Table 3. 

Table 3. Candidate Hyper-Parameter 

Neuron Activation Function Batch Size 

[32, 64, 32] Relu 16 
[64, 128, 64] Tanh 32 

[128, 256, 128] Sigmoid 64 
 

  
After Hyper-parameter tuning is done, training will be carried out on each forecasting model. An 

example of the forecasting result graph can be seen in Figure 2, the forecasting graph of the three models 

with architectures combining 64,128,64 neurons with a batch size of 32 and using the RELU activation 

function. 

 

 
Figure 2. The Result of Model Prediction 

 

Hyperparameter tuning experiments on the three models will be conducted from the candidate 

hyperparameters in Table 1. The MAPE result of the three models can be summarized in Table 4. RNN 

development with [32, 64, 32] neurons, tanh activation function, and 16 batch size presents the lowest 

average MAPE value of 2.08%. LSTM with the architecture of neurons [128, 256, 128], tanh activation 

function, and batch size 16 achieved a MAPE value of 2.505%. The RNN model, which combines [64, 128, 

64] neurons with tanh activation function and batch size 64, has the highest average MAPE value of 7.02%. 

The GRU model, with the architecture of neurons [128, 256, 128] and the RELU activation function and 

batch size of 16, obtained the lowest MAPE value of 1.505%, which means that this architecture is the best in 

this study. 

 

Table 4.  RNN, LSTM, and GRU Model Performance 

Neurons Activation Batch Size 
MAPE (%) 

Open Close Average 

RNN Model 

[32, 64, 32] Relu 16 1,65 2,52 2,085 

[32, 64, 32] Relu 32 1,92 3,04 2,48 
[32, 64, 32] Relu 64 3,16 3,87 3,515 

[32, 64, 32] Tanh 16 1,45 2,71 2,08 
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Neurons Activation Batch Size 
MAPE (%) 

Open Close Average 

[32, 64, 32] Tanh 32 2,53 3 2,765 

[32, 64, 32] Tanh 64 3,02 3,57 3,295 
[64, 128, 64] Relu 16 1,45 3,44 2,445 

[64, 128, 64] Relu 32 1,87 3,28 2,575 

[64, 128, 64] Relu 64 2,63 4,2 3,415 
[64, 128, 64] Tanh 16 2,73 3,84 3,285 

[64, 128, 64] Tanh 32 4,38 3,69 4,035 

[64, 128, 64] Tanh 64 6,91 7,13 7,02 
[128, 256, 128] Relu 16 2,27 2,94 2,605 

[128, 256, 128] Relu 32 2,45 3,53 2,99 

[128, 256, 128] Relu 64 3,36 5,01 4,185 
[128, 256, 128] Tanh 16 3,88 3,79 3,835 

[128, 256, 128] Tanh 32 3,42 7,35 5,385 

[128, 256, 128] Tanh 64 3,29 3,97 3,63 
[32, 64, 32] Sigmoid 16 2,56 3,26 2,91 

[32, 64, 32] Sigmoid 32 3,76 4,3 4,03 

[32, 64, 32] Sigmoid 64 3,04 3,72 3,38 
[64, 128, 64] Sigmoid 16 2,22 3 2,61 

[64, 128, 64] Sigmoid 32 2,24 3,05 2,645 

[64, 128, 64] Sigmoid 64 3,28 3,57 3,425 
[128, 256, 128] Sigmoid 16 2,16 3,01 2,585 

[128, 256, 128] Sigmoid 32 2,45 3,39 2,92 

[128, 256, 128] Sigmoid 64 3,29 4,06 3,675 

LSTM Model 

[32, 64, 32] Relu 16 3,35 3,73 3,54 

[32, 64, 32] Relu 32 4,26 4,93 4,595 

[32, 64, 32] Relu 64 5,18 5,61 5,395 
[32, 64, 32] Tanh 16 2,66 3,5 3,08 

[32, 64, 32] Tanh 32 4,31 5,31 4,81 

[32, 64, 32] Tanh 64 5,03 5,56 5,295 
[64, 128, 64] Relu 16 2,96 3,77 3,365 

[64, 128, 64] Relu 32 3,37 4,04 3,705 

[64, 128, 64] Relu 64 4,66 5,17 4,915 
[64, 128, 64] Tanh 16 2,58 3,51 3,045 

[64, 128, 64] Tanh 32 3,21 3,94 3,575 

[64, 128, 64] Tanh 64 4,17 4,95 4,56 
[128, 256, 128] Relu 16 2,99 3,34 3,165 

[128, 256, 128] Relu 32 3,16 3,95 3,555 

[128, 256, 128] Relu 64 4,25 4,81 4,53 
[128, 256, 128] Tanh 16 1,86 3,15 2,505 

[128, 256, 128] Tanh 32 3,01 4,29 3,65 

[128, 256, 128] Tanh 64 3,78 4,57 4,175 
[32, 64, 32] Sigmoid 16 4,3 5,41 4,855 

[32, 64, 32] Sigmoid 32 4,15 4,66 4,405 

[32, 64, 32] Sigmoid 64 5,43 5,97 5,7 
[64, 128, 64] Sigmoid 16 3,24 3,98 3,61 

[64, 128, 64] Sigmoid 32 5,22 5,94 5,58 
[64, 128, 64] Sigmoid 64 4,71 5,3 5,005 

[128, 256, 128] Sigmoid 16 3,53 4,67 4,1 

[128, 256, 128] Sigmoid 32 4,1 4,81 4,455 
[128, 256, 128] Sigmoid 64 4,05 4,52 4,285 

GRU Model 

[32, 64, 32] Relu 16 0,63 2,51 1,57 

[32, 64, 32] Relu 64 2,76 3,72 3,24 
[32, 64, 32] Tanh 16 0,73 2,83 1,78 

[32, 64, 32] Tanh 32 1,37 2,81 2,09 

[32, 64, 32] Tanh 64 2,6 3,58 3,09 
[64, 128, 64] Relu 16 1,05 2,33 1,69 

[64, 128, 64] Relu 32 1,75 3,15 2,45 

[64, 128, 64] Relu 64 2,17 3,33 2,75 
[64, 128, 64] Tanh 16 1,28 2,58 1,93 

[64, 128, 64] Tanh 32 1,5 2,87 2,185 

[64, 128, 64] Tanh 64 2,42 3,12 2,77 
[128, 256, 128] Relu 16 0,63 2,38 1,505 

[128, 256, 128] Relu 32 1,38 2,64 2,01 

[128, 256, 128] Relu 64 2,74 3,65 3,195 
[128, 256, 128] Tanh 16 0,74 3,32 2,03 

[128, 256, 128] Tanh 32 0,89 2,65 1,77 

[128, 256, 128] Tanh 64 2,22 3,29 2,755 
[32, 64, 32] Sigmoid 16 1,3 2,53 1,915 

[32, 64, 32] Sigmoid 32 2,09 3,13 2,61 

[32, 64, 32] Sigmoid 64 3,03 3,74 3,385 
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Neurons Activation Batch Size 
MAPE (%) 

Open Close Average 

[64, 128, 64] Sigmoid 16 2,08 2,88 2,48 
[64, 128, 64] Sigmoid 32 1,7 2,92 2,31 

[64, 128, 64] Sigmoid 64 2,22 3,22 2,72 

[128, 256, 128] Sigmoid 16 1,91 2,61 2,26 
[128, 256, 128] Sigmoid 32 1,85 3,15 2,5 

[128, 256, 128] Sigmoid 64 2,35 3,9 3,125 

 

The result RNN, LSTM, and GRU models for predicting the S&P GSCI Nickel index revealed that 

the GRU model with [128, 256, 128] neurons, relu activation function, and batch size 16 achieved the lowest 

MAPE of 1.505%, outperforming both LSTM (2.505%) and RNN (2.08%) models. GRU's superior 

performance can be attributed to its architectural advantages in handling time series data through efficient 

update and reset gates, while smaller batch sizes across all models suggested better adaptation to commodity 

price volatility. These findings extend previous research on deep learning for financial forecasting, 

challenging assumptions about gated architectures while providing practical implications for traders and 

analysts in commodity markets. Despite strengths in comprehensive hyper-parameter optimization, 

limitations include focus on a single commodity index and reliance on MAPE as the primary metric, 

suggesting future research directions such as evaluating performance across different prediction horizons, 

implementing ensemble approaches, incorporating additional external features, developing adaptive models 

for different market regimes, and exploring newer architectures like Transformer-based models. 

 

4. CONCLUSION  

 GRU is the most effective model for predicting the S&P GSCI Nickel index prices, achieving the 

lowest MAPE of 1.505% with an architecture of [128, 256, 128] neurons, RELU activation function, and 

batch size 16. LSTM, which got a MAPE of 2.505% with a similar architecture but using tanh activation, 

comes in second. The RNN model, which combines [64, 128, 64] neurons with tanh activation function and 

batch size 64, has the highest average MAPE value of 7.02%. RNN is the third one in the series. According 

to the research findings, the RELU activation function consistently performs better than tanh and sigmoid 

activations, particularly when applied to small batch sizes. Smaller batch sizes tend to give better results. For 

future development, researchers should explore these deep learning models (RNN, LSTM, and GRU) with a 

focus on optimizing computational efficiency to handle larger data sets while maintaining or improving 

prediction accuracy, which could involve applying parallel processing techniques, optimizing model 

architecture, and exploring advanced pre-processing methods. Researchers could also develop a practical 

mobile-based application to help investors easily determine the optimal time to invest in the future. 
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