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 Identifying the actual Single Nucleotide Polymorphisms (SNPs) by 

sourcing Next Generation Sequencing (NGS) data emerges an 

imbalanced problem due to the inherent high error rate of NGS 

technology. The imbalance problem has been found to have a negative 

impact on machine learning algorithms because it produces biased 

models and poor performance, particularly in detecting actual SNP that 

belong to the underrepresented class in question.   This study evaluates 

the effectiveness of several resampling techniques, including 

Borderline-SMOTE, Random Undersampling, and Tomek-Link, in 

enhancing the performance of machine learning algorithms, 

specifically Random Forest (RF) and Artificial Neural Networks 

(ANN). Furthermore, we compare these techniques to determine the 

most effective approach. Our results indicate that Borderline-SMOTE 

improves the F-Measure of RF from 69.72 to 91.52 (a 31.2% increase) 

and ANN from 79.75 to 91.32 (a 14.5% increase) and outperforms 

other resampling methods. These findings highlight the crucial role of 

resampling techniques and the careful selection of algorithms in 

improving classification accuracy for imbalanced datasets. 
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1. INTRODUCTION 

Single Nucleotide Polymorphisms (SNPs) can lead to genetic differences, occurring when a single 

nucleotide A, C, T, or G in the Deoxyribonucleic Acid (DNA) sequence differs among individuals [1]. SNP 

analysis is crucial in genetics research, with implications covering medicine, agriculture, and forensic science 

[2]. In humans, SNPs act as genetic markers, offering insights into various diseases and traits. They aid in 

identifying disease-associated genes and accelerate personalized drug development [3]. In agriculture, SNP 

mining in plant genomes improves breeding efficiency and serves as diagnostic markers for precise pathogen 

identification and disease management [4][5]. In forensics, downstream analysis of SNPs, specifically 

Microhaplotypes (MHs), serves as potential forensic markers for tasks like individual identification, kinship 

analysis, and lineage prediction [6]. Overall, the demand for valid SNP data is increasing rapidly due to their 

significant roles across multiple fields. 

Using machine learning to identify valid SNPs shows promise but faces challenges due to the high 

error rates in Next Generation Sequencing (NGS) data as the source of SNP mining. Those errors can arise 
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from sequencing process, alignment issues, or inadequate data coverage [7]. During multiple sequence 

alignment with the reference genome, most variations found are errors rather than valid SNPs that leads to an 

imbalanced data problem. Using imbalanced data to build a classifier leads to overfitting to the majority class 

during training and impacting downstream analyses [8][9]. Furthermore, limited exposure to minority class 

data may lead the model to overlook them and treat them as noise [10]. Consequently, the model may struggle 

to accurately classify minority class instances and frequently misclassifying them as the dominant class [11]. 

Thus, a robust method is needed to accurately distinguish valid SNPs from errors. 

Various methods can address imbalanced data in classification tasks, with algorithms such as Random 

Forest (RF) and Artificial Neural Networks (ANN) renowned for achieving strong classification performance 

in such challenges [12][13]. RF is considered effective in handling imbalanced datasets, whether they are 

binary or multiclass, because of its ensemble approach. In a study by [14], patient data was utilized to train RF 

models for predicting the risk of chronic illnesses based on medical records. The RF method outperforms 

Support Vector Machine (SVM), bagging, and boosting in predicting disease risk from highly imbalanced data, 

with an average Area Under the Curve (AUC) of 88.79%. In another study involving individuals without 

diagnosed coronary artery disease, RF with Synthetic Minority Over-sampling Technique (SMOTE) sampling 

achieved the highest AUC of 0.97, surpassing all other models [15]. Besides RF, ANN also renown to has a 

good performance in imbalanced dataset. In a study conducted by [16], ANN were used to predict fetal 

outcomes within the context of Systemic Lupus Erythematosus (SLE). The rarity of pregnancy among SLE 

patients, due to its low global prevalence, limits data-driven model predictions and creates an imbalance issue 

in machine learning. A well-trained ANN has a high sensitivity of 19/21 (90.8%) for identifying patients with 

fetal loss outcomes in SLE pregnancies. Another study focuses on addressing imbalanced data challenges using 

ANN in the context of network intrusion detection. The study demonstrates that ANN exhibit improved 

classification performance when applied to imbalanced data for network intrusion detection, especially after 

employing resampling techniques to rebalance the dataset, the ANN achieve better accuracy in classifying 

intrusion events [17]. 

A part from selecting a suitable machine learning approach, another important strategy to solve 

imbalanced problem involves utilizing resampling techniques, either through oversampling or undersampling, 

with the aim of achieving a more balanced dataset. Oversampling methods typically involve duplicating 

existing samples, creating synthetic samples using techniques like SMOTE, or generating new samples using 

generative models [18]. Conversely, undersampling techniques entail either removing certain samples from the 

majority class or merging similar samples. However, both methods have their potential drawbacks such as 

oversampling may lead to overfitting and increased data complexity while undersampling could lead to the 

elimination of pertinent data associated with the majority class [19]. The choice between these two methods 

should consider the data characteristics and the specific goals of the classification analysis. In certain cases, a 

combination of both approaches and other techniques may be employed to achieve a better balance between 

classes [20], [21].  

Based on several prior research, SMOTE emerges as among the widely utilized oversampling 

procedure. SMOTE synthesizes augmented samples for the underrepresented class by generating synthetic data 

proportionate to the majority class [22]. This approach has gained immense popularity due to its simple 

implementation and remarkable efficacy in various applications [23]. Various studies have introduced 

enhancements to the original SMOTE algorithm in order to address limitations in its earlier versions. Presently, 

the literature reports the existence of 85 SMOTE variants to address the class imbalance in machine learning 

[24]. Further investigations by [25] involved comparing three SMOTE variations, namely Borderline-SMOTE, 

SVM-SMOTE, and Kmeans-SMOTE, in conjunction with diverse classification algorithms such as Logistic 

Regression, Random Forest, SVM, and Adaboost. The study demonstrated that Borderline-SMOTE, an 

extension of SMOTE that generates synthetic minority class samples near the decision boundary, achieved 

superior evaluation outcomes when combined with the Random Forest algorithm. Random Undersampling 

(RUS) is another technique used to address data imbalance by reducing the number of instances in the majority 

class to achieve a balanced dataset. According to [26], RUS significantly enhanced the performance of several 

classifiers in detecting web attacks using the dataset from CSE-CIC-IDS2018. In addition to oversampling and 

undersampling, several studies have indicated that data cleaning methods like Tomek Links can enhance 

classifier performance, as reported in a study by [27]. Furthermore, combining Tomek Links with RUS and 

SMOTE has shown superior performance compared to using resampling techniques alone, across various 

classification algorithms 

Based on the literature review, both machine learning algorithms such as RF and ANN, as well as 

resampling approaches show significant promise in addressing classification problems with imbalanced data. 

To the best of our knowledge, no direct comparison of SNP identification models with these methods has been 

done. In order to close this gap, this study compares SNP identification models that use ANN and RF and 

assesses how well machine learning algorithms work when combined with resampling approaches to identify 
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the best accurate method for SNP identification. The paper is structured as follows: the Introduction gives a 

summary of the issue the study addresses and establishes the context for discussing the difficulties in SNP 

identification and the need for improved techniques. The dataset used, together with its properties, is described 

in depth in the Materials and Methods section. It also describes the methods and experimental setups used in 

the research. The findings are presented and interpreted in the Results and Discussion section, which also 

discusses their importance and how they advance the field by connecting them to existing research. Finally, 

the Conclusion summarizes the key insights of the research to present the implications and suggesting potential 

directions for future investigation. 

 

2. RESEARCH METHOD  

2.1. Dataset Description 

The study used Single Nucleotide Polymorphisms (SNPs) candidate data from the soybean genome, 

sourced from previous research [28], and the initial dataset contained 24 features as detailed by [29]. However, 

research by [30]  demonstrated that using just five selected features for SNP calling improved the classification 

model's F-Measure and significantly reduced computational time compared to using all 24 features. Therefore, 

this study exclusively employs those five selected features, which comprise 20 chromosomes labeled as 

Glycine max, chromosome 1 (Gm01) to Gm20 and belong to two classes, namely positive and negative SNPs. 

The dataset comprises 2,823,602 positive SNPs and 36,631,026 negative SNPs, revealing a significant 

imbalance, with the negative class having 13 times more instances than the positive class. Figure 1 shows that 

chromosome Gm11, with a total of 1,653,668 candidate SNPs, has the highest imbalance ratio of 17.9. 

Therefore, the Gm11 data was used to train the model. Contrarily, chromosome Gm16 which has the fewest 

candidate SNPs of 1,524,574 was used as the testing data. 

 

 

Figure 1.  Illustration of imbalance ratio for each chromosome in the soybean genome 

 

2.2. Methods 
In general, the workflow of this research can be described through Figure 2. Firstly, the min-max 

normalization technique transforms each attribute value into a range between 0 and 1 to facilitate uniformity 

in the dataset. Subsequently, during the resampling stage, the performance of three distinct methods, namely 

Borderline-SMOTE, Random Undersampling, and Tomek Links, will be evaluated regarding their 

effectiveness in tackling the challenge of imbalance problem. The resulting balanced dataset will be used to 

train and test classifiers built using Random Forest (RF) and Artificial Neural Networks (ANN), with 

hyperparameter tuning applied to optimize performance. This study compares various evaluation metrics, 

including F-measure, G-Mean, precision, and recall, under different conditions: imbalanced data, oversampled 

data, undersampled data, and data processed with Tomek Links. 
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 Figure 2. Research workflow to analyze the best approach to identify SNPs. 

 

2.3. Resampling 
In this research, we investigate what method is most appropriate to solve imbalanced problems in the 

context of SNP identification. This research compares three different resampling techniques including 

Borderline-SMOTE, Random Undersampling (RUS), and Tomek Link. Borderline-SMOTE, an extension of 

SMOTE, targets creating artificial instances for the minority class near the decision boundary, termed 

borderline samples. The process divides the dataset into two classes: the minor class (SNP positive) and the 

major class (SNP negative). In each pi (where i ranges from 1 to pnum) within the minor class P, count the 

nearest neighbors m in T dataset. All samples from the minor class that are in the nearest neighbor range m are 

denoted by m' (0 ≤ m' ≤ m). Then the candidate samples from minor class are categorized into three sort of 

range, namely 'SAFE', 'NOISE', dan 'DANGER' based on equation 1-3. 

  

if m' = m then pi  is "NOISE"         (1) 

 

if  
m

2
  ≤  m' < m then pi  is "DANGER"                (2) 

 

if  0  ≤ m' < 
m

2
   then pi  is "SAFE"                           (3) 

 

Instances that are in the DANGER range are data that are on the borderline in the P minor class that 

will be synthesized. This study uses the Borderline-SMOTE Python module from the Imblearn library to handle 

imbalanced datasets. This module has several input parameters, including sampling_strategy, which is used to 

adjust the imbalance ratio rate, and k_neighbors, which determines the number of k-nearest neighbors to be 

sought [31]. The procedure for generating synthetic samples using Borderline-SMOTE is explained in Figure 

3.  

 

 

Figure 3. The oversampling procedure in Borderline-SMOTE 
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This study explored parameters in the Borderline-SMOTE technique for optimal synthetic data 

generation to train an SNP identification model. The sampling strategy parameter, representing the ratio of 

synthetic data generated, was investigated at levels of 0.2, 0.4, 0.6, 0.8, and 1, indicating the percentage of 

minor data to be generated. Results showed that a sampling strategy of 1 achieved the highest F-measure value, 

leading to a balanced 1:1 ratio between minor and major classes. Additionally, the k_neighbors’ parameter, set 

to 5, determined the nearest neighbors count for each minor class instance to create synthetic samples. 

The opposite of oversampling is undersampling, which involves reducing the number of majority class 

instances to achieve a more balanced class distribution. Popular undersampling techniques include Random 

Undersampling and Tomek Link, as recommended in the following reference studies [32], [33]. The advantages 

of RUS include reducing computational complexity and effectively handling imbalanced data. Nevertheless, 

this strategy also has its drawback that it has the potential loss of valuable information, as it discards potentially 

relevant information by removing numerous samples of the majority class [29]. The procedures of RUS can be 

observed in Figure 4. In this study, several values of sampling strategy were explored, which are 0.2, 0.4, 0.6, 

0.8, and 1. These values determine the amount of data that will be eliminated from major class. Based on the 

experimental results, the highest outcomes were achieved by setting the sampling strategy to 0.4. Therefore, 

for the subsequent RUS approach, a sampling strategy with a value of 0.4 will be employed. 

 

 

Figure 4. The undersampling procedure in RUS 
 

The Tomek Link algorithm is a data cleansing technique used to handle class imbalance by removing 

instances. It eliminates pairs of samples from distinct classes that are the nearest neighbors of each other with 

minimal distance. The procedure involves determining minority and majority class samples and removing 

samples that form Tomek Links, indicating a clear boundary between classes. By removing Tomek Links, the 

algorithm enhances class separation and removes noisy or ambiguous samples. The resulting dataset is then 

used for model training and evaluation to promote better class balance [34]. The procedure of Tomek Link can 

be seen in Figure 5. 

 

 
 Figure 5. The data cleansing procedure with Tomek Link 



IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150  

 

Enhancing Single Nucleotide Polymorphisms Detection from… (Nurhasanah et al) 

293 

2.4. Hyperparameter tuning for Random Forest (RF) 

RF employs a divide-and-conquer strategy to bolster classifier performance. It combines weak learners 

to form a strong learner, thereby surpassing the performance of individual classifiers [35]. RF mitigates 

overfitting by constructing multiple decision trees independently, each trained on a different subset of samples, 

and subsequently combining their outputs to yield robust predictions [36]. Its ensemble nature is particularly 

effective for handling imbalanced data. The voting mechanism of RF further reduces the impact of 

misclassifications on the minority class by considering predictions from various decision trees.  

In this investigation, hyperparameter tuning for the RF algorithm involved exploring various 

combinations of parameters, including n_estimators ranging from 10 to 100, to optimize the number of trees. 

The criterion parameter determined the split type at each node, set to "gini" based on prior studies, as it 

demonstrated similar performance to entropy but with faster computation [37]. The random state, set to 42 to 

ensure consistent results across dataset changes [38]. The max_depth parameter, tested at values of 2, 5, 8, 10, 

and 20, controlled tree depth, with a max_depth of 5 yielding optimal results based on F-measure and Geometric-

mean evaluations. The best F-measure value of 91.638, along with the highest G-mean, was achieved with 80 

trees, max_depth set to 5, criterion "gini," and random_state 42. Given that 80 trees are faster to build than 90 

trees with nearly identical performance, 80 trees were selected for the final model. Hyperparameters were 

optimized using Grid Search Cross Validation to enhance data prediction accuracy.  

 

2.5. Hyperparameter tuning for Artificial Neural Network 

The ANN algorithm gains inspiration from the functioning of the human brain. A “neuron”, the basic 

computational unit in an ANN, processes and transmits information by receiving input signals from other 

neurons, each with distinct weights and biases. The model processes data sequentially through interconnected 

layers, calculates predictive errors at the output layer, and adjusts neuron weights and biases by 

backpropagating these errors to improve the network's performance. The ANN may have single or multiple 

hidden layers, thereby improving its capacity for intricate knowledge acquisition and processing [39]. Several 

key parameters of ANN were optimized in this study, including the maximum number of epochs for training 

iterations, batch sizes of 64, 128, and 256 to determine the optimal number of observations processed before 

weight updates, and the selection of the AdamW optimizer with a learning rate of 0.001 for enhanced training 

performance and stability, consistent with default settings for the Adam optimizer as detailed in references 

[40].  

In this study, two activation functions were compared: softmax and log softmax. Results indicate that 

log softmax, combined with other parameters, outperforms softmax in terms of F-Measure, consistent with 

prior findings [41]. Another parameter is the criterion (also known as a loss function) that measures how well 

the model's predictions match the actual target values in the training data. The goal of training a neural network 

is to minimize this criterion, which effectively means reducing the discrepancy between predicted and actual 

values. In this study, we adopt the negative log likelihood criterion as suggested by [42]. Their findings reveal 

that employing the negative log-likelihood loss significantly enhances prediction rules, ensuring improved 

calibration and minimal deviation in predicted survival probability. Likelihood-based training also outperforms 

cross-entropy-based models, yielding noteworthy reductions in prediction errors. The model's performance 

was assessed using F-measure and Geometric-mean. Among the experiments, three achieved an F-measure of 

73 and a G-mean of 93. Notably, the experiment using the log softmax activation function with a batch size of 

64 resulted in significantly faster training time. This finding is consistent with [43], which highlighted the 

superiority of log softmax in higher-dimensional scenarios compared to other activation functions. As a result, 

these parameters were selected to optimize the model in this study. 

 

3. RESULTS AND ANALYSIS  

3.1. Classification with Random Forest and Artificial Neural Networks 

This study compares RF and ANN performance in identifying actual SNPs using precision and recall 

metrics. Balancing recall and precision are challenging, as increasing one often decreases the other. The F-

measure effectively combines these aspects for comprehensive evaluation. Figure 6 illustrates that with 

imbalanced data, ANN outperforms RF in F-measure, scoring 79.75 compared to RF's 69.72. Moreover, ANN 

achieves nearly balanced precision and recall values, with precision at 80.71 and recall at 78.82. In contrast, 

RF shows disparate precision and recall values of 85.91 and 58.67, resulting in an F-measure of 69.72. This 

result observe that ANN maintains a better balance between precision and recall with unbalanced data that 

minimize false positives and negatives.  
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Figure 6. Comparison of RF and ANN in SNP identification model with unbalanced data 

 

Other evaluation metrics commonly used in classification are sensitivity and specificity. Sensitivity 

measures the model's performance in identifying positive or minority class samples, while specificity assesses 

its ability to detect negative or majority class samples that presents a trade-off. The geometric mean (G-Mean) 

evaluates classification balance across classes, with low G-Mean indicating poor positive case classification 

despite accurate negative case classification. Based on Figure 6, without dataset resampling, ANN also exceeds 

RF in G-Mean with 87.83 whereas RF only obtains 76.18. This improvement can be attributed to ANN’s 

robustness in learning from imbalanced data, where other methods might struggle. According to theoretical 

frameworks, ANN's capability to adjust weights dynamically during training allows for better handling of class 

imbalance, though it may still favor the negative class as the imbalance ratio increases [43]. 

The implication of this findings are considerable for genomics research and related fields. ANN’s 

ability to deal with unbalanced datasets makes it a valuable tool for applications where data imbalance is 

prevalent, such as medical diagnosis, fraud detection, and anomaly detection. This capability can lead to more 

accurate predictions and better decission-making in critical areas. Moreover, the dynamic weight adjustment 

capability of ANN during training allows for better handling of class imbalance, though it may still favor the 

negative class as the imbalance ratio increases.   

 

3.2. The Influence of Resampling Strategy on Classification Using RF and ANN 

To determine the optimal resample combination to RF in identifying valid SNPs, several experimental 

scenarios were conducted, and the outcomes are depicted in the following Figure 7. 

 

 

Figure 7. Evaluation of RF combined with Borderline_SMOTE, Tomek Link and RUS. 

 

The use of Borderline-SMOTE within RF significantly increased F-Measure from 69.72 to 91.52. 

Similarly, integrating RUS and T-Link raised F-Measure to 89 and 81.21, respectively. The study also 

combined T-Link with RUS, in line with previous research suggesting T-Link's role as a data cleaning method 

integrated with RUS. This integration improved F-Measure to 90.11, slightly surpassing RF+RUS and 
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RF+TLink alone. Furthermore, improvement is also evident in the G-Mean metric, which initially scored only 

76.18. After undergoing resampling, its values increased to 91.16 for RF+BS, 86.68 for RF+TLink, and 92.65 

for RF+RUS. In addition, the application of T-Link combined with RUS also increases the G-Mean value into 

the highest score of 93.25. The rise in G-Mean stems from increased recall/sensitivity that represent the 

classifier's ability to accurately identify positive instances. Resampling techniques notably boosted sensitivity 

from 58.67 to 94.67 for RF+BS, 90.48 for RF+RUS, and 90.91 for RF+TLink+RUS. Improved sensitivity is 

crucial in scenarios like SNP identification, where accurate classification of positive instances is essential and 

indicate the model's enhanced ability to avoid false negatives and identify positive instances. 

This study also observes the impact of applying resampling techniques to ANN, with the results of 

several experiments summarized in the following Figure 8. 

 

 

Figure 8. Evaluation of ANN combined with Borderline_SMOTE, Tomek Link and RUS. 

 

Figure 8 demonstrates that employing Borderline-SMOTE significantly enhances ANN performance, 

consistently achieving scores exceeding 90 across all metrics, with an F-Measure of 91.32. Conversely, using 

T-Link yields the lowest scores in both RF and ANN models. This emphasizes that solely relying on T-Link 

may not adequately tackle the issues presented by imbalanced data. In principle, T-Link only removes a small 

portion of the majority data, specifically those meeting the Tomek-Link criteria as illustrated in Figure 9. 

Consequently, minimal alteration occurs in the data distribution and class imbalance ratio, resulting in less 

satisfactory evaluation scores. However, T-Link can serve as a valuable data cleaning tool that could enhance 

RUS technique performance, and optimizing computational efficiency in developing superior classification 

models. 

We also benchmarked our results against previous studies on SNP discovery conducted by [44] and 

[45], which used Decision Tree C4.5 and SVM, respectively, with precision (also known as Positive Predictive 

Value, PPV) as the evaluation metric. Our results show that the ANN-Borderline SMOTE in this study achieved 

the best precision of 90%, surpassing both previous methods, which achieved precision values of 84.8% and 

61%, respectively. This demonstrates the effectiveness of proposed methods especially ANN-Borderline 

SMOTE in SNP identification. The implications of this research highlight the effectiveness of integrating 

resampling techniques, particularly Borderline-SMOTE and RUS, in improving classification performance on 

imbalanced datasets. These findings suggest that RF and ANN models benefit significantly from these 

methods, particularly in terms of sensitivity and F-Measure. However, one limitation of this study is its focus 

on only a few resampling techniques (Borderline-SMOTE, RUS, and T-Link) and their application in RF and 

ANN models. This study does not consider other advanced oversampling or undersampling methods, which 

may offer additional benefits. Future research could explore a wider range of resampling and data-cleaning 

techniques, including more hybrid methods, to further optimize model performance on imbalanced datasets. 

Furthermore, exploring the use of ensemble methods or deep learning techniques in combination with 

resampling strategies could potentially lead to even more robust classification models. 

 

79,75

91,32

81,93

87,83 89,1287,83

91,18

88,62

92,94 93,22

80,71

90

84,06
82,55

86,03

78,82

92,69

79,91

93,82
92,44

50

55

60

65

70

75

80

85

90

95

ANN ANN + BS ANN + TLINK ANN + RUS ANN + TLINK +RUS

F-measure G-mean Precision Recall



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 8, No. 1, March 2025:  288 – 299 

296 

 

Figure 9. Tomek-Link data cleaning illustration. 

 

4. CONCLUSION  

This study evaluates the performance of Random Forest (RF) and Artificial Neural Networks (ANN) 

in identifying Single Nucleotide Polymorphisms (SNPs) using various metrics, including precision, recall, F-

measure, and G-Mean. The analysis reveals that ANN outperforms RF in balancing precision and recall, 

particularly with imbalanced data. ANN achieves a higher F-measure of 79.75 compared to RF’s 69.72. In 

contrast, RF exhibits a discrepancy between precision (85.91) and recall (58.67), resulting in a lower F-

measure. Additionally, ANN demonstrates superior performance in G-Mean, which reflects a better balance 

between positive and negative class classification. 

The study also explores the impact of various resampling techniques on RF and ANN. Borderline-

SMOTE significantly enhances RF’s performance and improves the F-measure from 69.72 to 91.52. This 

improvement reflects Borderline-SMOTE's effectiveness in generating synthetic samples to balance class 

distributions and improve RF and ANN to classify SNPs accurately. Combining resampling methods like 

Random Undersampling (RUS) and Tomek Link also boosts F-measure and G-Mean scores. It indicates 

improved model performance. For ANN, Borderline-SMOTE consistently yields high scores across all metrics, 

with an F-measure of 91.32, while Tomek Link alone shows less effectiveness. Resampling techniques notably 

increase sensitivity that highlight their crucial role in accurately identifying positive instances in SNP 

classification. These findings have implications for improving SNP identification in genomic research and 

provide insightful information on how to optimize machine learning methods for unbalanced datasets. 

However, this study has limitations, such as focusing on only a few resampling methods and using a dataset 

limited to SNP candidates from soybean genomes. Future studies should investigate a wider range of 

resampling techniques or hybrid approaches to improve the efficiency of machine learning models in SNP 

detection. Significant advances could also result from exploring deep learning systems, particularly those 

designed to handle highly imbalanced data. To gain a more general understanding, future research should 

employ diverse genomic datasets to ensure the robustness of the proposed methodology. Further investigation 

in these areas will help refine and streamline techniques for addressing imbalanced datasets in genomic 

research, ultimately enhancing our ability to detect genetic variants more effectively. 
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