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 Accurately predicting household energy consumption is critical for 

efficient energy management, particularly as global energy demands 

rise. This study explores the predictive performance of various 

machine learning models, including linear regression, Ridge 

regression, Lasso regression, Random Forest, Gradient Boosting, 

XGBoost, CatBoost, and a hybrid model combining Long Short-Term 

Memory (LSTM) networks with Random Forest regression. The 

models were evaluated on a dataset consisting of minute-level energy 

readings over a 350-day period. Key performance metrics such as 

Mean Squared Error (MSE), Mean Absolute Error (MAE), and the 

coefficient of determination (𝑅2) were used to assess model accuracy. 

The results demonstrate that ensemble models, particularly Random 

Forest and CatBoost, outperformed traditional regression models in 

terms of error minimization. CatBoost achieved the lowest MSE 

among all models, highlighting its effectiveness in handling non-

linearities and categorical data. However, none of the models achieved 

a positive (𝑅2) score, indicating their limitations in fully explaining the 

variance within the dataset. The hybrid LSTM + Random Forest 

model, despite its expected strength in capturing temporal 

dependencies, performed worse than simpler models, suggesting 

issues with feature extraction and model integration.These findings 

suggest that while ensemble methods are well-suited for energy 

consumption prediction, more advanced modeling techniques or 

enhanced feature engineering are needed to improve performance. 

Future research could explore deeper neural networks or time-series 

models such as ARIMA to better capture the temporal patterns in 

household energy consumption. 
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1. INTRODUCTION  

 The growing global demand for energy, coupled with concerns about environmental sustainability, 

has made energy consumption a critical area of research [1]–[3]. Residential energy usage, in particular, 

accounts for a significant share of total energy demand, especially in urban areas [4]. As energy consumption 

continues to rise, managing this demand effectively has become essential for achieving broader energy 

efficiency goals [5]. In recent years, the deployment of smart meters and home energy management systems 

has enabled the collection of detailed, real-time energy consumption data [6]. This has opened new possibilities 

for analyzing usage patterns and developing predictive models that can help optimize energy use in households 

[7]. Predictive models that accurately forecast household energy consumption can assist in managing electricity 
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grids more effectively, reducing energy waste, and promoting sustainable living practices [8]. However, 

forecasting energy consumption is inherently complex due to the wide range of factors that influence it, 

including weather conditions, solar energy generation, and the usage patterns of individual household 

appliances [9]. Therefore, it is crucial to develop models that can capture both long-term consumption trends 

and short-term fluctuations, allowing for more reliable and actionable predictions [10]. 

Energy consumption forecasting has a long history, with earlier methods relying on statistical models 

such as Autoregressive Integrated Moving Average (ARIMA) models [11]. While effective for modeling linear 

relationships, these traditional approaches often struggle with the non-linear and complex interactions that 

characterize modern energy systems [12]. In response, machine learning models have emerged as a promising 

alternative, with a particular emphasis on deep learning techniques like Long Short Term Memory (LSTM) 

networks [13]. LSTM networks have proven to be especially effective in time series forecasting due to their 

ability to learn long-term dependencies and avoid the vanishing gradient problem, which hinders other types 

of RNNs. For instance, [14] demonstrated the efficacy of LSTM models in predicting short-term load in 

residential buildings, outperforming traditional statistical models. Similarly, [15] used LSTM networks to 

forecast energy consumption in commercial buildings, achieving higher accuracy compared to conventional 

methods. Despite these successes, LSTM models have limitations, particularly when it comes to handling 

highly variable or noisy data. Ensemble methods like Random Forests, on the other hand, excel at mitigating 

overfitting and improving model robustness. [16] proposed a hybrid model combining LSTM with Random 

Forest for energy forecasting, which significantly improved predictive performance compared to standalone 

models. This suggests that hybrid approaches, which integrate deep learning with traditional machine learning 

techniques, could offer more accurate and generalizable models for energy consumption forecasting. 

As the global population continues to urbanize, the demand for energy is expected to increase 

significantly [17]. This rise in energy consumption poses several challenges, including strain on energy 

infrastructure, increased operational costs, and the environmental impact of higher carbon emissions. To 

address these issues, it is critical to improve energy efficiency, particularly in the residential sector where 

energy demand is diverse and unpredictable [18]. Accurate energy consumption forecasts can play a vital role 

in optimizing energy distribution, reducing operational inefficiencies, and enabling demand-response strategies 

[19]. With the increasing deployment of smart meters in households, there is a growing need for real-time 

predictive models that can help homeowners and utilities make informed decisions about energy use [20]. 

Predictive models that fail to accurately capture energy consumption patterns can lead to misallocation of 

resources, increased energy costs, and unnecessary stress on the energy grid [21]. Therefore, developing 

accurate and reliable forecasting models for household energy consumption is of utmost importance in 

achieving sustainability goals. 

The current state of research in energy consumption forecasting has evolved significantly with the rise 

of machine learning and deep learning techniques [13]. Traditional statistical methods, such as ARIMA and 

exponential smoothing, have been largely supplanted by machine learning models that can handle the complex 

and non-linear relationships present in energy data [22]. Among these, LSTM networks have emerged as one 

of the leading methods for time series forecasting, due to their ability to capture both long-term trends and 

short-term variations in energy consumption [23]. However, LSTM models alone may struggle with certain 

types of data, particularly when the data is highly variable or affected by external factors such as weather 

conditions [24]. In such cases, combining LSTM with more robust machine learning models like Random 

Forest can help improve the model’s accuracy and generalizability [25]. Hybrid models that integrate deep 

learning and ensemble techniques have shown significant promise in recent studies, offering improved 

predictive performance over standalone models [26]. Despite these advancements, there remains a gap in the 

application of hybrid models to household-level energy consumption forecasting. While LSTM and Random 

Forest models have been used in commercial and industrial settings, their application in residential energy 

forecasting is still relatively unexplored [27]. This study aims to address this gap by developing and testing a 

hybrid LSTM-Random Forest model specifically for household energy consumption prediction. 

The goal of this research is to develop a hybrid machine learning model that can accurately forecast 

household energy consumption using a combination of LSTM and Random Forest techniques. LSTM networks 

will be used to extract temporal features from the time series data, while Random Forest will be used to make 

predictions based on these features. By leveraging the strengths of both models, we aim to improve the accuracy 

of short-term and long-term energy consumption forecasts. This study uses real-world energy consumption 

data collected over a period of 350 days, with 1-minute resolution data for various household appliances such 

as dishwashers, furnaces, and refrigerators and can be downloaded from [28]. The model’s performance is 

evaluated using standard metrics like mean absolute error (MAE), root mean squared error (RMSE), and R-

squared (R²) score. Our goal is to minimize prediction errors and develop a model that generalizes well across 

different household usage patterns. 
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The remainder of this article is organized as follows. The Methodology section outlines the dataset 

and the preprocessing steps involved in preparing the data for modeling. It also describes the architecture of 

the LSTM-Random Forest hybrid model and the evaluation metrics used to assess its performance. The Results 

and Discussion section presents the outcomes of the model’s predictions and provides an analysis of the factors 

influencing household energy consumption. Finally, the Conclusion summarizes the key findings of the study 

and discusses the implications of this research for future work in energy forecasting. 

 

2. MATERIAL AND METHOD 

This research adopts a structured methodological approach to predict household energy consumption 

using a hybrid model that integrates Long Short-Term Memory (LSTM) networks and Random Forest 

Regression. The methodology encompasses data acquisition, preprocessing, model development, feature 

extraction, and model evaluation. Each step is rigorously explained with mathematical formulations to enhance 

clarity and precision. 

 

2.1.   Data Acquisition 

The dataset utilized in this research was collected from a smart meter installed in a residential 

household over a span of 350 consecutive days, with minute-level readings. The dataset includes various energy 

consumption metrics such as overall house energy consumption, specific appliance-level consumption, and 

energy generated from renewable sources. Let (𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑁}) represent the dataset, where each 

observation (𝑑𝑖) consists of multiple features such as 𝑑𝑖 =
{time,use [kW],gen [kW],House overall [kW], … }. The primary target variable is the "House overall [kW]" 

value, denoted as (𝑦𝑖), representing the total energy consumed by the household at time ( 𝑖 ). The dataset is 

resampled to daily intervals, computing the daily energy consumption by averaging the minute-level readings 

𝑦daily =
1

1440
∑ 𝑦𝑖

1440
𝑖=1  where 1440 represents the total number of minutes in a day. Furthermore, the data is 

normalized using Min-Max scaling to ensure consistency during model training. The normalization for each 

data point (𝑦𝑖). Next, time series sequences are created for the LSTM model, where each sequence represents 

the previous ( 𝑇 ) days of energy consumption 𝑋𝑖 = [𝑦𝑖−𝑇 , 𝑦𝑖−𝑇+1, … , 𝑦𝑖−1]. The corresponding output value is 

𝑦𝑖 = 𝑦𝑖
′. The preprocessing steps employed in this study aimed to prepare the dataset for optimal performance 

of the machine learning models by ensuring consistency, accuracy, and relevance. Initially, missing values in 

the dataset were imputed using linear interpolation, which is particularly suitable for time-series data as it 

estimates missing values based on the continuity of data points. This approach ensures that the temporal 

structure of the data remains intact.  

 

2.2.   LSTM and Random Forest Model Design 

The selection of models and meta-model combinations was guided by the need to balance temporal 

feature extraction and robust regression capabilities. Preliminary experiments highlighted the individual 

strengths of LSTM and Random Forest models. LSTM excelled at capturing sequential patterns and long-term 

dependencies, while Random Forest demonstrated robustness against overfitting and adaptability to complex 

interactions. The hybrid model combining LSTM with Random Forest was chosen to leverage these 

complementary strengths. LSTM served as the feature extractor, summarizing temporal dynamics into fixed-

size vectors, which were then used as inputs for Random Forest. While initial standalone experiments with 

LSTM and Random Forest produced moderate performance, their combination showed promise in improving 

predictive accuracy. Figure 2 showcases a comparison of model performances during the preliminary 

experimentation phase, reinforcing the rationale for the hybrid approach. 

The LSTM model captures temporal dependencies through its memory cell structure. At each time 

step ( 𝑡 ), the LSTM cell processes the input (𝑥𝑡) and the previous hidden state (ℎ𝑡−1). The forget gate is 

computed as 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓). The input gate and candidate cell state are calculated as 𝑖𝑡 =

σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) and 𝐶�̃� = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶). Then, the final cell state (𝐶𝑡) and hidden state 

(ℎ𝑡) are updated as 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� and ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡). The LSTM model is trained using the 

Mean Squared Error (MSE) loss function as computed as MSE =
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1 . Once the LSTM model is 

trained, the hidden state ( ℎ𝑇) is extracted as a feature vector representing the energy consumption patterns 

over the previous ( 𝑇 ) days 𝐻 =  { ℎ𝑇
𝑖 }{𝑖=1}

{𝑁}
. On the other hand, the Random Forest model predicts the next 

day's energy consumption by averaging the predictions from multiple decision trees 𝑦�̂� =
1

𝑀
∑ 𝑓𝑚(ℎ𝑇

𝑖 )𝑀
𝑚=1  

where ( 𝑀 ) is the number of decision trees. Each tree minimizes the Mean Squared Error (MSE) ℒte(𝑓𝑚) =
1

𝑁
∑ (𝑦𝑖 − 𝑓𝑚(ℎ𝑇

𝑖 ))
2

𝑁
𝑖=1 . Finally, the hybrid model is evaluated using Mean Squared Error (MSE), Mean 
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Absolute Error (MAE), and the coefficient of determination (𝑅2) as computed as MSE =
1

𝑁test
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁test
𝑖=1 , 

MAE =
1

𝑁test
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁test
𝑖=1 , 𝑅2 = 1 −

∑ (𝑦𝑖−𝑦�̂�)2𝑁test
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑁test
𝑖=1

. 

Furthermore, hyperparameter optimization played a crucial role in enhancing model performance. A 

grid search strategy was employed for the ensemble models, exploring ranges of critical hyperparameters such 

as the number of trees, learning rates, and maximum depth. For instance, the Random Forest model was 

optimized by varying the number of trees between 50 and 500 and testing maximum depths ranging from 10 

to 50. For gradient-boosting models like XGBoost and CatBoost, Bayesian optimization was preferred over 

grid search due to its efficiency in high-dimensional spaces. The optimization targeted learning rates (0.01–

0.1), maximum depths (3–12), and the number of boosting rounds (50–300). The hybrid LSTM-Random Forest 

model underwent a two-step tuning process: first, the LSTM's architecture was optimized (hidden layers: 1–3, 

neurons: 32–128, and dropout rates: 0.2–0.5), followed by tuning the Random Forest parameters based on the 

extracted features. 

 

3. RESULTS AND ANALYSIS  

3.1    Result Discussion 

This section presents a detailed analysis of the performance of several regression models for predicting 

household energy consumption. The models assessed include linear regression, Ridge regression, Lasso 

regression, Random Forest, Gradient Boosting, XGBoost, CatBoost, and a hybrid model that combines Long 

Short-Term Memory (LSTM) networks with Random Forest regression. The evaluation is based on key 

metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R2) 

as presented in the figure 1-3 respectively. The linear regression model performed poorly, as indicated by a 

high MSE of 0.2022 and a substantial MAE of 0.2950. The negative R2 value of -2.9206 suggests that the 

model is not able to capture the variability in the dataset, performing worse than a simple mean-based 

prediction. This result highlights the limitations of linear models when dealing with complex and non-linear 

datasets like energy consumption data, where temporal dependencies and other non-linear factors likely play a 

significant role. The poor performance underscores the linearity assumption’s inadequacy in this context, 

making linear regression unsuitable for this prediction task. 

Ridge regression, which incorporates L2-norm regularization to reduce overfitting, showed a 

noticeable improvement in performance compared to the standard linear regression model. The MSE dropped 

to 0.0765, and the MAE decreased to 0.1921, but the R2 value remained negative at -0.4843. This suggests that, 

while regularization helps to reduce the prediction error, the model still fails to explain the underlying patterns 

in the data effectively. The improvement over linear regression can be attributed to the regularization term 

penalizing large coefficients, which mitigates some of the overfitting. However, the results still indicate that 

Ridge regression, despite its improvements, cannot adequately model the non-linear relationships present in 

the dataset. Lasso regression, which applies L1-norm regularization, resulted in a further reduction in MSE to 

0.0633, although the MAE increased slightly to 0.2114. The R2 score of -0.2269 indicates that the model still 

underperforms in terms of explaining the variance in the data. The key advantage of Lasso over Ridge 

regression is its ability to perform feature selection by shrinking some coefficients to zero, thereby simplifying 

the model. However, even with this simplification, the negative R2 score highlights the model’s struggle to 

capture the complex non-linearities in the dataset. This suggests that, while regularization methods like Ridge 

and Lasso can mitigate overfitting, they are not sufficient for this type of data, where non-linear and temporal 

dependencies are prevalent. MSE Comparison of Machine Learning Models can view figure 1. 

The Random Forest model exhibited a significant improvement in predictive performance compared 

to the linear and regularized regression models. With an MSE of 0.0600 and an MAE of 0.1682, the Random 

Forest model benefits from its ability to capture non-linear relationships by constructing multiple decision trees 

and averaging their predictions. Although the R2 score remained negative at -0.1645, the improvement in MSE 

and MAE demonstrates that Random Forest is better suited to this dataset than linear methods. The ensemble 

nature of the Random Forest model, which reduces variance by aggregating the outputs of several decision 

trees, allows it to model more complex interactions between features. However, the negative R2 still indicates 

that the model's performance is suboptimal, possibly due to the inherent noise in the data or the limitations of 

decision trees in capturing long-term temporal dependencies. 
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Figure 1. MSE Comparison of Machine Learning Models 

 

The Gradient Boosting model did not perform as well as Random Forest, yielding an MSE of 0.0841 

and an MAE of 0.1885. The R2 score of -0.6304 indicates that Gradient Boosting struggles more to generalize 

to the data compared to Random Forest. Gradient Boosting builds trees sequentially, with each new tree 

attempting to correct the errors of the previous one. However, the model may have overfitted to the training 

data, as evidenced by the relatively poor performance on the test set. One possible explanation for this is the 

sensitivity of Gradient Boosting to hyperparameters, such as the learning rate and the number of trees, which 

may not have been optimally tuned in this case. Additionally, Gradient Boosting can struggle with noisy data, 

which might explain its higher error rates compared to Random Forest. XGBoost, an optimized version of 

Gradient Boosting, showed an improvement over its predecessor with an MSE of 0.0690 and an MAE of 

0.1805. However, the R2 score remained negative at -0.3384, indicating that while XGBoost performs better 

than Gradient Boosting, it still fails to capture the complexity of the data fully. XGBoost's enhancements, such 

as its use of regularization to prevent overfitting and its ability to handle missing data, contribute to its improved 

performance. However, the negative R2 suggests that more advanced feature engineering or temporal modeling 

techniques may be necessary to further enhance the model's predictive accuracy. Despite XGBoost's popularity 

for regression tasks, its performance in this case highlights the challenges posed by the specific nature of this 

dataset, which likely contains intricate temporal patterns that the model is not fully able to capture. MAE 

Comparison of Machine Learning Models and R^2 Comparison of Machine Learning Models can view figure 

2 and figure 3. 

 

 

Figure 2. MAE Comparison of Machine Learning Models 
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Figure 3. 𝑅2 Comparison of Machine Learning Models 

 

CatBoost, another gradient-boosting algorithm optimized for categorical features, outperformed both 

Gradient Boosting and XGBoost in terms of MSE, achieving a value of 0.0586. The MAE for CatBoost was 

0.1830, slightly higher than that of Random Forest, but the model's overall performance is superior in terms of 

error minimization. The R2 score of -0.1371, while still negative, is the least negative among the ensemble 

models, indicating that CatBoost captures more variance in the data than the other models. CatBoost's ability 

to efficiently handle categorical variables and its use of ordered boosting, which reduces overfitting, likely 

contributed to its superior performance. However, the fact that the R2 score is still negative suggests that there 

are limitations to what boosting methods can achieve with this dataset. The failure to achieve a positive R2 

value indicates that even the most advanced boosting models struggle to fully explain the data's complexity, 

likely due to the presence of long-term dependencies that are not easily captured by these models. 

The hybrid model, combining LSTM and Random Forest, performed worse than expected. The MSE 

of 0.1412 and MAE of 0.2578 indicate that the hybrid approach did not improve prediction accuracy compared 

to the simpler models. The highly negative R2 score of -1.7391 suggests that the hybrid model failed to capture 

the patterns in the data effectively. LSTM is designed to capture temporal dependencies in sequential data, 

which should have been advantageous for this time-series task. However, in this case, the feature extraction 

from LSTM may not have been sufficiently informative or may have introduced noise that negatively impacted 

the performance of the Random Forest model. The combination of these two models, which are both powerful 

individually, may not have been synergistic due to improper tuning or issues in the feature extraction process. 

Additionally, the high complexity of the hybrid model could have led to overfitting, especially if the LSTM 

component failed to generalize well to unseen data. 

 

Table 1. The Performance of Machine Learning Models 

Model MSE MAE R² 

Linear Regression 0.20216862012614534 0.2950177504247536 -2.920.555 

Ridge Regression 0.07654014595541446 0.1920687323023098 -0.4843048 

Lasso Regression 0.06326449564539213 0.21140984433244656 -0.226856 
Random Forest 0.06004752773825827 0.16816828258703692 -0.164471 

Gradient Boosting 0.08407317596929552 0.18846674316965906 -0.630389 

XGBoost 0.06901520425444 0.18047730509070126 -0.338377 
CatBoost 0.05863519998110511 0.18302092656941996 -0.137083 

Hybrid (LSTM + Random Forest) 0.14124454723586197 0.25783152016106997 -1.739.085 

 

3.2    Practical Implication 

The findings of this study have significant practical applications in various domains, particularly in 

energy management and sustainability. One of the primary implementations is the integration of the predictive 

models into smart home systems. By embedding the Random Forest and CatBoost models into smart 

thermostats and energy monitors, households can optimize energy consumption, reduce utility costs, and 

minimize environmental impacts. For instance, these systems can predict peak usage periods and automatically 

adjust appliance schedules to avoid high energy costs during peak times. Such automation not only improves 

energy efficiency but also enhances user convenience. Utility companies can benefit from the predictive 

capabilities of these models by incorporating them into demand response programs. The ability to forecast 

household energy consumption enables utilities to incentivize off-peak energy use, thereby balancing grid loads 
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and reducing the risk of outages. This approach aligns with broader efforts to transition toward more efficient 

and resilient energy systems. Additionally, the hybrid LSTM and Random Forest model, despite its current 

limitations, can be employed in real-time monitoring systems to analyze temporal energy usage patterns. This 

application can identify anomalies or unusual consumption spikes, which may indicate malfunctioning 

appliances or inefficiencies, allowing homeowners to take corrective actions promptly. 

The study also has potential applications in renewable energy management. Predictive insights from 

the models can assist in aligning energy demand with renewable energy generation, such as solar or wind 

power. For example, the system could forecast high-demand periods and ensure that energy storage systems or 

renewable sources are optimally utilized during these times, enhancing the overall efficiency of energy 

distribution. Furthermore, policymakers and planners can leverage these models to develop strategies that 

promote energy efficiency at the household level. Insights into model performance and limitations provide a 

strong foundation for investing in advanced energy infrastructure, such as smart grids and distributed energy 

resources. Beyond residential applications, the scalability of these models makes them suitable for larger-scale 

energy management in commercial and industrial settings. With retraining and data customization, these 

algorithms can optimize energy use in businesses, helping reduce operational costs and support corporate 

sustainability initiatives. Moreover, the research findings can serve as an educational resource, raising public 

awareness about the importance of energy efficiency and sustainability. Universities and training programs can 

integrate this work into their curriculum to teach students about the practical applications of machine learning 

in addressing global challenges. 

 

4. CONCLUSION  

This study aimed to evaluate various regression models for predicting household energy consumption 

using a dataset containing minute-level energy readings. The models tested included traditional linear 

regression, regularized regression (Ridge and Lasso), ensemble methods (Random Forest, Gradient Boosting, 

XGBoost, and CatBoost), and a hybrid model that combined LSTM networks with Random Forest regression. 

The performance of these models was assessed using Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and the coefficient of determination (𝑅2). The results indicate that ensemble methods, particularly 

Random Forest and CatBoost, outperformed traditional linear models and regularized regression models. The 

Random Forest model exhibited a strong capacity to capture non-linear patterns in the data, while CatBoost, 

which is specifically designed for handling categorical data, achieved the lowest MSE among all models. 

However, despite the improvements offered by these methods, none of the models achieved a positive (𝑅2) 

score, which suggests that the models were unable to fully explain the variance in the dataset. 

The hybrid model, combining LSTM and Random Forest, was expected to leverage LSTM's strength 

in capturing long-term temporal dependencies and Random Forest's robust regression capabilities. However, 

the hybrid approach underperformed, yielding higher MSE and MAE values than most models. This outcome 

suggests that either the feature extraction from LSTM was suboptimal or that the combination of these two 

models did not lead to the expected synergistic effects. In conclusion, while ensemble methods such as Random 

Forest and CatBoost demonstrated the best overall performance, none of the models could fully capture the 

complexity of the energy consumption data, as evidenced by the negative (𝑅2) values. This suggests that future 

research should explore more sophisticated techniques, such as advanced feature engineering, autoregressive 

models (e.g., ARIMA), or deeper neural network architectures, to better handle the temporal and non-linear 

nature of the dataset. Improvements in model tuning, feature extraction, and preprocessing are also essential to 

achieving higher predictive accuracy and better performance in explaining the variance in household energy 

consumption. 
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