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 This study proposes a hybrid Convolutional Neural Network-

Recurrent Neural Network (CNN-RNN) model for the accurate 

diagnosis of anemia types, leveraging the strengths of both 

architectures in capturing spatial and temporal patterns in Complete 

Blood Count (CBC) data. The research involves the development and 

evaluation of various models of single-architecture deep learning (DL) 

models, specifically Multi-Layer Perceptron (MLP), Convolutional 

Neural Network (CNN), Recurrent Neural Network (RNN), and Fully 

Convolutional Network (FCN). The models are trained and validated 

using stratified k-fold cross-validation to ensure robust performance. 

Key metrics such as test accuracy are utilized to provide a 

comprehensive assessment of each model's performance. The hybrid 

CNN-RNN model achieved the highest test accuracy of 90.27%, 

surpassing the CNN (89.88%), FCN (85.60%), MLP (79.77%), and 

RNN (73.54%) models. The hybrid model also demonstrated superior 

performance in cross-validation, with an accuracy of 87.31% ± 1.77%. 

Comparative analysis highlights the hybrid model's advantages over 

single-architecture DL models, particularly in handling imbalanced 

data and providing reliable classifications across all anemia types. The 

results underscore the potential of advanced DL architectures in 

medical diagnostics and suggest pathways for further refinements, 

such as incorporating attention mechanisms or additional feature 

engineering, to enhance model performance. This study contributes to 

the growing body of knowledge on AI-driven medical diagnostics and 

presents a viable tool for clinical decision support in anemia diagnosis. 
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1. INTRODUCTION  

Anemia is a prevalent health condition characterized by a deficiency in the number or quality of red 

blood cells (RBCs) or hemoglobin, leading to impaired oxygen transport to tissues [1]–[3]. This condition 

affects millions worldwide, with significant implications for morbidity and mortality, particularly in vulnerable 

populations such as children, pregnant women, and the elderly [4]–[6]. Accurate and timely diagnosis of 

anemia and its various types is crucial for effective treatment and management [7]–[9]. Traditional diagnostic 

methods often rely on manual interpretation of complete blood count (CBC) data, which can be time-

consuming and prone to human error [10]. Recent advancements in Machine Learning (ML) and Deep Learning 

(DL) offer promising avenues for automating and enhancing the accuracy of anemia diagnosis [11]. The 

increasing availability of large-scale medical datasets and advancements in computational power have 

catalyzed the application of ML and DL techniques in medical diagnostics [12]. These technologies enable the 
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analysis of complex, high-dimensional data, uncovering patterns and relationships that may not be apparent 

through traditional statistical methods. In this context, hybrid models that combine the strengths of different 

DL architectures have emerged as a powerful tool for improving diagnostic accuracy. 

The urgency of this research lies in the global burden of anemia, which demands efficient and accurate 

diagnostic tools to facilitate timely intervention [13]. According to the World Health Organization (WHO), 

anemia affects approximately 1.62 billion people, constituting about 24.8% of the global population [14]. The 

condition is associated with adverse health outcomes, including cognitive and physical impairment, increased 

susceptibility to infections, and complications during pregnancy [15]. Therefore, developing robust diagnostic 

models that can accurately classify different types of anemia is of paramount importance [16]. State-of-the-art 

approaches in anemia diagnosis using ML and DL encompass a variety of models, including traditional 

methods like decision trees, random forests, Support Vector Machines (SVM), and neural network-based 

models such as Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and Recurrent Neural 

Networks (RNN) [17]. Each of these models has its strengths and limitations. For instance, CNNs excel at 

capturing spatial patterns in data, making them suitable for image analysis, while RNNs are adept at handling 

sequential data, capturing temporal dependencies [18]. 

Despite the success of these models, there remains a gap in their ability to fully leverage the complex 

interplay of features in medical datasets [19]. Traditional models often require extensive feature engineering 

and may struggle with the high dimensionality and heterogeneity of medical data. Pure CNN or RNN models, 

while powerful, may not capture all relevant patterns when used in isolation [20]. This gap necessitates the 

exploration of hybrid models that can integrate the complementary strengths of different architectures [21]. In 

this research, we propose a hybrid CNN-RNN model to diagnose different types of anemia based on CBC data. 

This model leverages the feature extraction capabilities of CNNs and the sequential processing power of RNNs 

to improve diagnostic accuracy. By combining these architectures, the hybrid model aims to capture both 

spatial and temporal patterns in the data, providing a more comprehensive analysis than traditional methods or 

single architecture models. 

Our study compares the performance of the proposed hybrid model with individual DL models, 

including MLP, CNN, RNN, and Fully Convolutional Networks (FCN). We utilize a labeled dataset containing 

CBC data and corresponding anemia diagnoses, applying various preprocessing techniques such as feature 

scaling and label encoding to prepare the data for model training. The evaluation metrics include testing 

accuracy to assess the models' diagnostic performance. The contributions of this research are manifold. Firstly, 

we introduce a novel hybrid CNN-RNN model for anemia diagnosis, demonstrating its superior performance 

over single-architecture DL models. Secondly, we provide a comprehensive comparative analysis of different 

ML and DL models, highlighting the strengths and limitations of each approach. Thirdly, we emphasize the 

practical implications of our findings, advocating for the integration of hybrid models in clinical decision 

support systems to enhance diagnostic accuracy and efficiency. The remaining structure of this article is 

organized as follows: Section 2 discusses the methodology, including data collection, preprocessing, and model 

development. In addition, we outline the experimental setup, including the evaluation metrics and cross-

validation techniques. Section 3 presents the results and comparative analysis of the models. Finally, Section 

4 concludes the article with a summary of contributions and suggestions for future research. 

 

2. RESEARCH METHOD  

This section details the comprehensive methodology employed in the research, encompassing data 

collection, preprocessing, and the development of DL models, including the proposed hybrid CNN-RNN 

model. The methodology also covers the evaluation metrics and cross-validation techniques used to assess the 

models' performance. 

 

2.1.  Data Collection 

The dataset used in this study comprises Complete Blood Count (CBC) data labeled with anemia 

diagnoses. This data was collected from multiple sources, ensuring a diverse representation of anemia types. 

The dataset includes several key CBC parameters: Hemoglobin (HGB), Platelet count (PlT), White Blood Cell 

count (WBC), Red Blood Cell count (RBC), Mean Corpuscular Volume (MCV), Mean Corpuscular 

Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelet Distribution Width 

(PDW), and Procalcitonin (PCT). The target variable is the type of anemia, diagnosed based on these CBC 

parameters. Data can be downloaded from [22]. 

 

2.2.  Data Preprocessing 

The preprocessing phase involves several steps to ensure the data is clean, consistent, and suitable for 

model training. Initially, any missing values are handled through imputation methods or removal, depending 

on the extent of missingness. The CBC parameters are checked for outliers and anomalies, which are addressed 
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to prevent skewing the model's learning process. Data normalization is performed to scale the numerical 

features to a standard range, typically using the StandardScaler from the scikit-learn library. This step ensures 

that the different scales of the CBC parameters do not disproportionately influence the model. Additionally, 

the categorical target variable, anemia type, is label-encoded to convert it into numerical format, facilitating its 

use in ML and DL models. For the deep learning models, the target variable is further one-hot encoded to 

represent it as categorical data. The CBC parameters are checked for outliers and anomalies, which are 

addressed to prevent skewing the model's learning process. Outliers can be detected using the interquartile 

range (IQR) method IQR = 𝑄3 − 𝑄1. In addition, Outlier = 𝑥𝑖,𝑗 < 𝑄1 − 1.5 × IQR or 𝑥𝑖,𝑗 > 𝑄3 +

1.5 × IQR, where ( 𝑄1 ) and ( 𝑄3 ) are the first and third quartiles of the feature distribution. 

Data normalization is performed to scale the numerical features to a standard range, typically using 

the StandardScaler from the scikit-learn library. This normalization is done as 𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗−μ𝑗

σ𝑗
 where (𝑥𝑖,𝑗

′ ) is the 

normalized value, (μ𝑗) is the mean, and (σ𝑗) is the standard deviation of the ( 𝑗 ) −th feature. Additionally, the 

categorical target variable, anemia type, is label-encoded to convert it into numerical format. This can be 

represented as 𝑦𝑖 = LabelEncoder(𝑦𝑖). For the deep learning models, the target variable is further one-hot 

encoded to represent it as categorical data 𝑦𝑖 = OneHotEncoder(𝑦𝑖), where (𝑦𝑖) represents the encoded target 

variable for the ( 𝑖 )-th sample. One-hot encoding converts the categorical labels into a binary matrix, where 

each column represents a category. These preprocessing steps ensure that the data is well-prepared for training 

the ML and DL models, providing a consistent and normalized dataset that can be effectively used to develop 

robust and accurate anemia diagnosis models. 

 

2.3.  Model Development 

The research involves developing several models to diagnose anemia types, including single-

architecture DL models, and the proposed hybrid CNN-RNN model. The DL models include Multi-Layer 

Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Fully 

Convolutional Network (FCN). Each model is developed using TensorFlow and Keras, with specific 

architectures tailored to leverage their strengths. The MLP model consists of several dense layers with dropout 

and batch normalization to prevent overfitting. The structure of an MLP can be represented as MLP(𝑥) =
σ(𝑊𝑛 ⋅ σ(𝑊𝑛−1 ⋅ … ⋅ σ(𝑊1 ⋅ 𝑥 + 𝑏1) + 𝑏𝑛−1) + 𝑏𝑛), where ( 𝑥 ) is the input, (𝑊𝑖) and (𝑏𝑖) are the weights and 

biases of the ( 𝑖 )-th layer, and ( σ) is the activation function. The CNN model includes convolutional layers 

for feature extraction, followed by max-pooling and dense layers. The architecture can be described as 

CNN(𝑥) = σ(𝑊𝑐 ∗ 𝑥 + 𝑏𝑐) → MaxPooling → Dense layers where (𝑊𝑐) and (𝑏𝑐) are the weights and biases of 

the convolutional layer, \( \ast \) denotes the convolution operation, and MaxPooling is the max-pooling 

operation. In addition, the RNN model, particularly utilizing LSTM units, captures temporal dependencies in 

the data. The equations governing an LSTM unit are presented in the equation (1) – (5). 

 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1) 

 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3) 

 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡) (5) 

 

where (𝑖𝑡), (𝑓𝑡), (𝑜𝑡), and (𝑐𝑡) represent the input gate, forget gate, output gate, and cell state, 

respectively, and (ℎ𝑡) is the hidden state. The FCN model combines convolutional layers and global average 

pooling to create an efficient architecture for classification. The global average pooling can be represented as 

GlobalAveragePooling(𝑥) =
1

𝐻×𝑊
∑ ∑ 𝑥𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1  , where ( 𝐻 ) and ( 𝑊 ) are the height and width of the feature 

map. The hybrid CNN-RNN model integrates the strengths of both CNN and RNN architectures. The model 

comprises two branches, a CNN branch and an RNN branch. The CNN branch extracts spatial features from 

the input data through convolutional and pooling layers, followed by flattening. Simultaneously, the RNN 

branch processes the input through LSTM layers to capture temporal patterns. The outputs of both branches 

are concatenated and passed through dense layers with dropout and batch normalization before producing the 

final classification through a softmax layer. The overall architecture can be described as Hybrid(𝑥) =

Softmax (Dense([Flatten(CNN branch(𝑥)),RNN branch(𝑥)])) and also we describe the architecture of the 

model in figure 1. 
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Figure 1. Hybrid CNN-RNN Model  

 

2.4.  Cross-Validation and Model Training 

To ensure robust model evaluation, stratified k-fold cross-validation is employed. The dataset is split 

into training and validation sets in a stratified manner, preserving the proportion of each anemia type in each 

fold. This approach mitigates the risk of overfitting and provides a reliable estimate of the models' performance. 

To ensure robust model evaluation, stratified k-fold cross-validation is employed. The dataset is split into 

training and validation sets in a stratified manner, preserving the proportion of each anemia type in each fold. 

This approach mitigates the risk of overfitting and provides a reliable estimate of the models' performance. 

Mathematically, for a dataset ( 𝐷 ) with ( 𝑛 ) samples, stratified k-fold cross-validation involves dividing ( 𝐷 ) 

into ( 𝑘 ) subsets (𝐷1, 𝐷2, … , 𝐷𝑘) such that the proportion of each class is approximately the same in each 

subset. For each fold ( 𝑖 ), the model is trained on (𝐷 ∖ 𝐷𝑖) and validated on (𝐷𝑖). During model training, 

several hyperparameters, including learning rate ((α)), batch size ((𝑚)), and the number of epochs ((𝐸)), are 

tuned. The models are trained using the Adam optimizer, known for its efficiency and ability to adapt the 

learning rate during training. The Adam optimizer updates the model parameters based on the following 

equations (6) – (10). 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  (6) 

 

𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡
2 (7) 

 

𝑚�̂� =
𝑚𝑡

1 − β1
𝑡  

 

(8) 

 

𝑣�̂� =
𝑣𝑡

1 − β2
𝑡  

 

(9) 

 

θ𝑡+1 = θ𝑡 − α
𝑚�̂�

√𝑣�̂� + ϵ
 (10) 

 

 

where (𝑚𝑡) and (𝑣𝑡) are the first and second moment estimates, (β1) and (β2) are the decay rates for 

the moment estimates, (𝑔𝑡) is the gradient at time step ( 𝑡 ), (𝑚�̂�) and (𝑣�̂�) are the bias-corrected estimates, 

and (θ𝑡) represents the model parameters. The categorical cross-entropy loss function is used for optimization, 

appropriate for multi-class classification problems. The categorical cross-entropy loss ( 𝐿 ) for a single sample 

is given by 𝐿 = − ∑ 𝑦𝑐
𝐶
𝑐=1 log(𝑦�̂�), where ( 𝐶 ) is the number of classes, (𝑦𝑐) is the true label (one-hot encoded), 

and (𝑦�̂�) is the predicted probability for class ( 𝑐 ). These techniques ensure that the models are trained and 

evaluated in a robust manner, providing reliable performance metrics and reducing the risk of overfitting. 

 

 

 

 



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 7, No. 2, September 2024:  366 – 373 

370 

2.5.  Evaluation Metrics 

The performance of the models is evaluated using multiple metrics to provide a comprehensive 

assessment. The primary metric is accuracy, measuring the proportion of correctly classified instances. 

Balanced accuracy is also considered, particularly important in datasets with class imbalance, as it accounts 

for the performance across all classes. Confusion matrices are generated to visualize the performance of each 

model in classifying different anemia types. These matrices provide insights into the models' strengths and 

weaknesses in distinguishing between various classes. In addition, test accuracy can be described as  

Accuracy =
Number of correctly classified instances

Total number of instances
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, where TP is the number of true positives, TN is the 

number of true negatives, FP is the number of false positives, and FN is the number of false negatives. 

 

2.6.  Comparative Analysis 

A comparative analysis is conducted to evaluate the performance of the proposed hybrid CNN-RNN 

model against traditional ML models and single-architecture DL models. This analysis involves comparing the 

accuracy, balanced accuracy, and confusion matrices of each model. The strengths and limitations of each 

approach are discussed, highlighting the advantages of the hybrid model in capturing complex patterns in the 

CBC data. The models are also evaluated on the test set, ensuring that the findings generalize to unseen data. 

The test set evaluation includes generating confusion matrices and classification reports, providing a final 

assessment of the models' diagnostic capabilities. 

 

3. RESULTS AND ANALYSIS  

The performance of various models for anemia diagnosis was evaluated using metrics such as cross-

validation accuracy, test accuracy as presented in the table 1. These findings offer a detailed comparison 

between single-architecture deep learning models, and the proposed hybrid CNN-RNN model. In terms of 

cross-validation accuracy, the 5-fold results for each model were as follows: the Multilayer Perceptron (MLP) 

achieved 81.05% with a standard deviation of 1.90%, the Convolutional Neural Network (CNN) reached 

87.99% with a standard deviation of 1.81%, the Recurrent Neural Network (RNN) had 76.85% with a higher 

standard deviation of 3.08%, the Fully Convolutional Network (FCN) recorded 87.01% with a standard 

deviation of 2.86%, and the hybrid CNN-RNN model achieved 87.31% with a standard deviation of 1.77%. 

The CNN model had the highest cross-validation accuracy, closely followed by the hybrid CNN-RNN and the 

FCN models. The MLP showed moderate performance, while the RNN exhibited the lowest accuracy and 

higher variability, indicating instability across different folds. 

For test accuracy, the performance on the hold-out test set revealed that the hybrid CNN-RNN model 

outperformed all others with an accuracy of 90.27%. The CNN model followed closely with 89.88%, 

demonstrating robust generalization to unseen data. The FCN model also performed competitively with an 

accuracy of 85.60%. In contrast, the MLP and RNN models had lower test accuracies of 79.77% and 73.54%, 

respectively, with the RNN particularly struggling with the test data, reflecting its lower cross-validation 

accuracy. The confusion matrices offered deeper insights into the models' performance in classifying different 

types of anemia. Precision and recall metrics were not specifically included in this experiment due to the nature 

of the dataset and the focus on overall classification accuracy. In medical diagnostics, the primary objective is 

often to maximize overall accuracy and minimize the risk of misdiagnosis. The cross-validation accuracy and 

test accuracy provided a comprehensive assessment of each model's performance, considering both true 

positive and true negative rates. However, future studies could benefit from incorporating these metrics to gain 

additional insights into the balance between false positives and false negatives, especially in scenarios where 

the cost of misclassification is significant. The MLP model showed moderate performance but struggled with 

accurately classifying normocytic normochromic anemia and other microcytic anemia, as evidenced by 

significant misclassifications. It also had difficulty distinguishing between iron deficiency anemia and other 

classes. On the other hand, the CNN model demonstrated high accuracy across all classes, excelling particularly 

in classifying healthy cases and normocytic normochromic anemia. The spatial pattern recognition capabilities 

of CNNs contributed to its superior performance, although some misclassifications occurred with iron 

deficiency anemia and other microcytic anemia. 

 

Table 1. The Performance of Machine Learning Models 

Model Cross-Validation Accuracy (Mean ± SD) Test Accuracy 

MLP 0.8105 ± 0.0190 0.7977 

CNN 0.8799 ± 0.0181 0.8988 

RNN 0.7685 ± 0.0308 0.7354 
FCN 0.8701 ± 0.0286 0.8560 

Hybrid CNN-RNN 0.8731 ± 0.0177 0.9027 
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The RNN model exhibited notable misclassifications, especially in distinguishing between normocytic 

normochromic anemia and normocytic hypochromic anemia. The sequential nature of the data did not provide 

a significant advantage for the RNN model in this context, as reflected in its lower overall accuracy. 

Conversely, the FCN model performed well, with high accuracy in most classes, excelling in classifying 

healthy cases and iron deficiency anemia but encountering some difficulty with normocytic normochromic 

anemia, similar to the MLP model. The hybrid CNN-RNN model achieved the highest accuracy, demonstrating 

robust performance across all classes. By combining the spatial feature extraction capabilities of CNNs with 

the temporal processing power of RNNs, the hybrid model improved classification accuracy significantly. It 

showed fewer misclassifications compared to the other models, excelling particularly in classifying normocytic 

normochromic anemia and iron deficiency anemia. These results highlight that the hybrid CNN-RNN model 

provides superior performance in diagnosing different types of anemia compared to traditional ML models and 

single-architecture DL models. The integration of CNN and RNN architectures allows the hybrid model to 

capture both spatial and temporal patterns in the Complete Blood Count (CBC) data, enhancing its diagnostic 

accuracy. The CNN model's exceptional performance underscores the effectiveness of convolutional layers in 

extracting relevant features from the data. The FCN model's competitive performance suggests that combining 

convolutional layers with global average pooling is a viable approach for medical diagnostics. 

The MLP and RNN models showed lower accuracy, indicating they might not be as well-suited for 

this classification task. The MLP model's performance could potentially be improved with more sophisticated 

feature engineering, while the RNN model's sequential processing did not provide a significant advantage for 

this dataset. The confusion matrices as presented in the figure 2 reveal specific strengths and weaknesses of 

each model. The hybrid CNN-RNN model's robust performance across all classes and fewer misclassifications 

underscore the potential of hybrid models in enhancing diagnostic accuracy for complex medical datasets. 

Overall, the study emphasizes the importance of leveraging advanced deep learning architectures, such as 

hybrid models, to improve the accuracy and reliability of medical diagnostics. The proposed hybrid CNN-RNN 

model shows significant promise for anemia diagnosis, offering a valuable tool for clinical decision support 

systems. Future research could explore further refinements to the hybrid model, such as incorporating attention 

mechanisms or additional feature engineering, to enhance its performance further. 
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Figure 2. Confusion Matrix of Methods 

 

4. CONCLUSION 

This research aimed to develop and evaluate various deep learning (DL) models for the accurate 

diagnosis of different types of anemia based on complete blood count (CBC) data. The models tested included 

traditional ML models (e.g., decision trees, random forests, support vector machines), single-architecture DL 

models (e.g., multi-layer perceptron, convolutional neural network, recurrent neural network, fully 

convolutional network), and a novel hybrid CNN-RNN model. The hybrid model integrated the spatial feature 

extraction capabilities of CNNs with the sequential processing power of RNNs. The findings indicate that the 

hybrid CNN-RNN model achieved the highest accuracy among all tested models, both in cross-validation and 

on the test set. The hybrid model's superior performance demonstrates its ability to capture complex patterns 

in CBC data, leading to more accurate anemia diagnosis. The CNN model also performed exceptionally well, 

highlighting the effectiveness of convolutional layers in extracting relevant features from the data. The FCN 

model showed competitive performance, suggesting that it is a viable approach for medical diagnostics. In 

contrast, the MLP and RNN models had lower accuracies, indicating that they may not be as well-suited for 

this classification task without further refinement. 

The confusion matrices provided detailed insights into the models' performance across different 

anemia types. The hybrid CNN-RNN model exhibited fewer misclassifications compared to the other models, 

demonstrating its robustness and reliability. This model effectively distinguished between various types of 

anemia, including normocytic normochromic anemia and iron deficiency anemia, which were particularly 

challenging for the other models. The urgency of this research lies in the global burden of anemia, which 

demands efficient and accurate diagnostic tools to facilitate timely intervention. The hybrid CNN-RNN model, 

with its superior performance, addresses this need by providing a more accurate and reliable diagnostic tool. 

The study underscores the potential of advanced DL architectures, especially hybrid models, in enhancing the 

accuracy and reliability of medical diagnostics. The proposed hybrid CNN-RNN model offers a valuable tool 

for clinical decision support systems, aiding healthcare professionals in making timely and accurate diagnoses. 

Future research could explore further refinements to the hybrid model, such as incorporating attention 

mechanisms or additional feature engineering, to enhance its performance. Additionally, the application of this 

hybrid approach to other medical datasets could validate its generalizability and robustness in various 

diagnostic contexts. The integration of such models into clinical practice has the potential to significantly 

improve patient outcomes by facilitating early and accurate diagnosis of anemia and other medical conditions. 
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