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 The growing complexity of machine learning models has heightened 

the need for interpretability, particularly in applications impacting 

resource management and sustainability. This study addresses the 

challenge of interpreting predictions from sophisticated machine 

learning models used for building energy consumption predictions. By 

leveraging Explainable AI (XAI) techniques, including Permutation 

Importance, SHapley Additive exPlanations (SHAP), and Local 

Interpretable Model-Agnostic Explanations (LIME), we have 

dissected the predictive features influencing building energy usage. 

Our research delves into a dataset consisting of various building 

characteristics and weather conditions, applying an XGBoost model to 

predict Site Energy Usage Intensity (Site EUI). The Permutation 

Importance method elucidated the global significance of features 

across the dataset, while SHAP provided a dual perspective, revealing 

both the global importance and local impact of features on individual 

predictions. Complementing these, LIME offered rapid, locally 

focused interpretations, showcasing its utility for instances where 

immediate insights are essential. The findings indicate that 'Energy 

Star Rating', 'Facility Type', and 'Floor Area' are among the top 

predictors of energy consumption, with environmental factors also 

contributing to the models' decisions. The application of XAI 

techniques yielded a nuanced understanding of the model's behavior, 

enhancing transparency and fostering trust in the predictions. This 

study contributes to the field of sustainable energy management by 

demonstrating the application of XAI for insightful model 

interpretation, reinforcing the significance of interpretable AI in the 

development of energy policies and efficiency strategies. Our 

approach exemplifies the balance between predictive accuracy and the 

necessity for model transparency, advocating for the continued 

integration of XAI in AI-driven decision-making processes. 
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1. INTRODUCTION 

In the contemporary landscape of data-driven decision-making, the task of accurately predicting 

building energy usage stands at the forefront of efforts to enhance energy management, drive sustainability, 

and inform policy making [1]–[3]. The Women in Data Science (WiDS) Datathon 2022 encapsulates this 

challenge, presenting an intriguing problem: predicting the Site Energy Usage Intensity (Site EUI) of buildings 

across various states in the United States [4]–[6]. This problem is addressed using a comprehensive dataset 

encompassing roughly 100,000 observations collected over seven years, incorporating an array of variables 
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that range from specific building characteristics, like floor area and facility type, to location-centric weather 

data, such as annual average temperature and total precipitation [7]–[9]. The significance of this task goes 

beyond the mere statistical prediction of energy usage. It delves into the realm of Explainable AI (XAI), a field 

rapidly gaining traction in the AI community [10]–[12]. XAI stands as a cornerstone in this context, offering 

not just transparency but also crucial insights into the decision-making processes of machine learning models. 

In an era where global climate challenges are intensifying and the call for sustainable energy solutions is 

becoming increasingly urgent, the ability to predict building energy usage with precision and understanding is 

more vital than ever. This urgency is further amplified by the rapid pace of urbanization, leading to an 

escalation in building-related energy demands [13]–[15]. 

The core challenge in deploying machine learning models for such predictions lies in their complexity 

and the accompanying lack of transparency. Models based on deep learning, for instance, though capable of 

achieving high levels of precision, often operate as 'black boxes' [16]–[18]. Their inherent complexity renders 

them opaque, making it difficult for stakeholders to understand and trust their decision-making processes. This 

lack of transparency is not just a technical issue but also a matter of ethical concern, especially in sectors with 

significant societal impacts like energy management. It is here that XAI becomes invaluable, serving as a 

bridge between the high accuracy of complex models and the necessity for their decisions to be understandable 

and ethically sound. The existing work in the field of building energy consumption prediction is both extensive 

and diverse, encompassing a multitude of modeling approaches. Early studies primarily focused on linear 

regression and time-series forecasting techniques. While these methods offer a degree of interpretability, they 

often struggle to effectively manage complex, non-linear relationships inherent in large-scale datasets. The 

advent of deep learning brought about models with enhanced predictive accuracy but at the cost of reduced 

interpretability. This trade-off between model complexity and interpretability is a recurring theme in predictive 

modeling research and forms the crux of the current study. 

XAI emerges as a potent solution to this predicament, aiming to demystify the decision-making 

processes of AI models. The importance of XAI is particularly underscored in studies that highlight its potential 

in enhancing trust and facilitating more informed decision-making across various domains [19]–[21]. Despite 

its critical importance, the application of XAI techniques in the domain of energy prediction remains largely 

underexplored. This research gap is particularly glaring given the global emphasis on sustainable energy 

practices and the need for transparent decision-making processes that are accessible and understandable, even 

to non-expert stakeholders. Addressing this research gap, our study makes a novel contribution by applying 

three advanced XAI techniques: Permutation Importance [22], SHAP (SHapley Additive exPlanations) [23], 

and LIME (Local Interpretable Model-Agnostic Explanations) [24], to the domain of building energy usage 

prediction. Permutation Importance, implemented using the ELI5 library, offers a straightforward approach to 

assess the significance of different features by observing the impact of their random permutation on model 

accuracy. SHAP provides a more nuanced understanding by decomposing model predictions into individual 

feature contributions. LIME, on the other hand, enhances the interpretability of predictions at a local, individual 

observation level. 

Our methodology encompasses a comprehensive analysis of the dataset, including meticulous 

handling of missing values, nuanced feature engineering, and data normalization, all culminating in the 

application of an eXtreme Gradient Boosting (XGBoost) regression model. The choice of XGBoost is 

motivated by its proven effectiveness in managing large datasets and its compatibility with the XAI methods 

employed. This approach not only aims to enhance the predictive accuracy of the models but also provides a 

detailed understanding of how different building characteristics and environmental factors collectively 

influence energy consumption predictions. The subsequent sections of the paper are meticulously crafted to 

build upon this foundation. The methodology section details the data preprocessing steps, feature engineering, 

the development of the XGBoost predictive model, and the rationale behind the selection of the XAI 

techniques. The results section presents the findings from the application of the XGBoost model, including its 

predictive performance and the insights gleaned from the XAI methods, especially regarding the most 

influential factors in predicting building energy usage. The discussion section interprets these results within 

the broader context of existing literature, examining the implications of our findings for energy management 

and policymaking, and acknowledging the study's limitations while suggesting avenues for future research. 

Finally, the conclusion summarizes the key contributions of the study, emphasizing the critical role of XAI in 

building energy prediction and its potential impact on the landscape of sustainable energy management. 

 

2. RELATED THEORY 

The foundation of this research lies in the intersection of predictive modeling, energy efficiency, and 

XAI, each contributing critical theoretical underpinnings to our study. This section delves into the related 

theories that inform our research, providing a backdrop against which our methodology and findings can be 

contextualized. 
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2.1.  Predictive Modeling in Energy Efficiency 

Predictive modeling in the realm of energy efficiency revolves around the use of statistical and 

machine learning techniques to forecast energy consumption patterns. This aspect of the research is grounded 

in the theory of regression analysis, a statistical method used for predicting a continuous dependent variable 

based on one or more independent variables. The application of regression in energy prediction has evolved 

from simple linear models to more complex ones like the XGBoost algorithm used in this study. XGBoost [25], 

an advanced form of gradient boosting, is based on the principle of ensemble learning, where multiple models 

(often called “weak learners”) are trained and combined to improve the robustness and accuracy of predictions. 

Predictive modeling in energy efficiency relies heavily on regression analysis, which can be represented 

mathematically. In its simplest form, linear regression is modeled as presented in the equation (1). 

 

Y =  β0 + β1𝑋1 + β2𝑋2 + ⋯ + β𝑛𝑋𝑛 +  ꞓ    (1) 

 

where Y is the dependent variable (energy consumption), 𝑋𝑖 are independent variables (building characteristics, 

weather conditions), β𝑖 are coefficients, and ϵ is the error term. The XGBoost algorithm, a more advanced 

model used in our study, operates on the principle of gradient boosting, which involves the sequential addition 

of predictors that correct the predecessors' errors. Mathematically, the prediction 𝑦𝑖  at the i-th iteration is 

presented in the equation (2). 

 

𝑦𝑖
(𝑖)̂

= 𝑦𝑖
(𝑖−1)̂

+ η ⋅ ℎ𝑖(𝑋)              (2) 

 

Where ℎ𝑖(X) is the output of the new model added at the i-th iteration, and 𝜂 is the learning rate. 

 

2.2.  Explainable AI (XAI) 

The concept of Explainable AI emerges from the need to make AI systems more transparent and 

understandable to humans [11]. XAI is a set of processes and methods that allows human users to comprehend 

and trust the results and output created by machine learning algorithms. In our study, XAI is crucial for 

providing insights into the predictive models used for estimating building energy consumption. Theories 

underpinning XAI emphasize the importance of interpretability and transparency, especially in models that are 

otherwise considered 'black boxes'. The XAI methods employed in this research – Permutation Importance, 

SHAP, and LIME – each have their theoretical foundations. Permutation Importance is based on the idea of 

feature importance ranking through random permutations, SHAP values are derived from game theory and 

offer a consistent approach to feature attribution, it can be calculated by equation (3). 

 

ϕ𝑖 = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!𝑆⊆𝑁∖{𝑖} [𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)]    (3) 

 

Where N is the set of all features, S is a subset of features excluding i and fx(S) is the prediction for the subset 

S. The SHAP value 𝜙𝑖 represents the average marginal contribution of a feature i across all possible 

combinations. In addition,  LIME's theory revolves around creating interpretable models that approximate the 

predictions of complex models locally. It approximates the local behavior of complex models using simpler 

models such as linear model as presented in equation (4). 

 

𝑔(𝑧′) = 𝛽0 + ∑ 𝛽𝑖𝑧𝑖
′          (4) 

 

Where 𝑔(𝑧′) is the explanation model, 𝑧𝑖
′ are the interpretable representations of the features, and 𝑏𝑖 are the 

coefficients learned by the explanation model. 

 

2.3.  Energy Efficiency and Building Characteristics 

The theory linking building characteristics to energy efficiency is a critical aspect of this research. 

This theory posits that various attributes of a building, such as its size, age, design, and construction materials, 

significantly impact its energy consumption patterns [26]. Weather factors, including temperature and 

humidity, also play a crucial role in determining a building's energy usage. Understanding these relationships 

is essential for developing accurate predictive models in the field of energy efficiency. The relationship 

between building characteristics and energy efficiency is often explored through regression models, where 

energy consumption (EC) is a function of various building attributes (BA) as presented in the equation (5). 

 

𝐸𝐶 = 𝑓(𝐵𝐴1, 𝐵𝐴2, … , 𝐵𝐴𝑛)     (5) 

 



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 7, No. 2, September 2024:  275 – 284 

278 

2.4.  Statistical Learning Theory 

Statistical learning theory provides the mathematical framework for machine learning. It involves 

understanding how different algorithms learn from data to make predictions or decisions [27]. This theory is 

particularly relevant to our research as it guides the model selection, validation, and testing processes. Concepts 

such as bias-variance trade-off, overfitting, and underfitting are integral to understanding the performance and 

limitations of the predictive models used in this study. A core concept in statistical learning is the bias-variance 

trade-off, which is crucial in model selection. The expected prediction error of a model can be decomposed as 

presented in the equation 6.  

 

Error = Bias2 + Variance + Irreducible Error         (6) 

  

3. RESEARCH METHOD  

3.1. Dataset and Data Preprocessing 

This study utilizes a meticulously collated dataset from the WiDS Datathon 2022, featuring 

approximately 100,000 observations of building energy usage across various states in the United States, 

collected over seven years [28]. This dataset is rich in variables, ranging from specific building characteristics 

like floor area, building class, and facility type, to granular weather data, including metrics such as annual 

average temperature and total precipitation. The initial stage of data preprocessing involved a thorough 

cleaning process. Data integrity was paramount; hence, meticulous steps were taken to identify and rectify any 

inconsistencies or inaccuracies. This included addressing outliers – data points that deviate significantly from 

the majority of the data – which were either corrected or removed to prevent potential skewing of the predictive 

models. Missing values posed a significant challenge, given their potential to impact the model's performance 

adversely. A strategy was employed to handle missing data based on the nature of the variables. For continuous 

variables, missing values were imputed with the median or mean, as these measures provide a central tendency 

of the data that is less sensitive to outliers. For categorical variables, we used the mode for imputation, replacing 

missing values with the most frequently occurring category in the dataset. Normalization was another critical 

step in our preprocessing phase. Given the diversity of the variables in terms of scale and units (e.g., square 

footage of floor area vs. annual precipitation in millimeters), normalization was essential to ensure that no 

single feature disproportionately influenced the model's predictions. This process involved scaling all 

numerical features to a standard range, which not only facilitated a fair comparison across different variables 

but also expedited the convergence of the machine learning algorithm during training. 

 

3.2. Feature Engineering  

Feature engineering is a crucial process of transforming raw data into meaningful features that 

significantly improve the efficacy of machine learning models. This process was driven by both domain 

expertise and exploratory data analysis. For instance, we derived a 'building age' feature from the 'year built' 

data, providing a more direct measure of a building's age, which could be more relevant for energy usage 

predictions than the construction year alone. We also synthesized climate indicators by aggregating various 

weather parameters, such as combining temperature and humidity levels to create a more comprehensive 

'comfort index'. 

 

3.3. Model Development: XGBoost Regression Model 

The XGBoost regression model was chosen for its robustness and effectiveness in handling diverse 

and large datasets. XGBoost, an implementation of gradient-boosted decision trees, is designed for speed and 

performance and is particularly well-suited for the high-dimensional and feature-rich dataset in our study. The 

model development involved partitioning the dataset into a training set and a test set, with the training set used 

to train the model and the test set reserved for evaluating its predictive performance. A critical aspect of this 

phase was hyperparameter tuning, where we experimented with various combinations of parameters like 

learning rate, depth of trees, and the number of trees to find the optimal configuration for our model. This fine-

tuning was instrumental in enhancing the model's ability to generalize well to new, unseen data, striking a 

delicate balance between underfitting and overfitting. 

 

3.4. Application of Explainable AI (XAI) Techniques 

Integrating XAI techniques into our study was a strategic decision aimed at enhancing the 

interpretability of our model's predictions. We began with the application of permutation importance, utilizing 

the ELI5 library. This approach involved shuffling individual features within the dataset and observing the 

resultant impact on the model's performance. By evaluating the changes in performance metrics, we were able 

to quantify the significance of each feature, providing a concrete measure of its influence on the accuracy of 

the model. Following this, we employed SHAP values, rooted in cooperative game theory, to dissect and 
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elucidate the contribution of each feature to individual predictions. This process entailed breaking down each 

prediction into the cumulative effects of each feature's introduction to the model, offering a thorough and 

nuanced perspective on how each feature affects the model's output. Additionally, we incorporated LIME to 

interpret individual predictions. LIME accomplishes this by constructing simple, local surrogate models around 

each prediction, shedding light on how various features in a specific instance contribute to the final prediction. 

This technique allows for a detailed understanding of the model's behavior at the level of individual predictions, 

providing valuable insights into the inner workings of our predictive model. 

 

3.5. Model Evaluation and Validation 

Evaluating and validating the performance of our model was a multifaceted process. We used standard 

evaluation metrics such as Mean Squared Error (MSE) to quantify the model's accuracy and R-squared to 

determine the proportion of variance in the dependent variable that was predictable from the independent 

variables. To ensure the model's robustness and generalizability, we employed k-fold cross-validation, a 

technique where the dataset is divided into k subsets, and the model is trained and tested k times, each time 

with a different subset as the test set and the remaining data as the training set. This method provided a 

comprehensive assessment of the model's performance across different subsets of data, reducing the likelihood 

of anomalies influencing the results. 

 

3.6. Ethical Considerations and Data Privacy 

Throughout this research, ethical considerations and data privacy were paramount. The dataset was 

anonymized to protect privacy and confidentiality, ensuring that no sensitive or personally identifiable 

information was accessible. The study was conducted with strict adherence to ethical research standards and 

data protection regulations, reflecting our commitment to responsible and ethical data handling and analysis. 

 

4. RESULTS AND ANALYSIS  

In contemporary research, where machine learning (ML) models play a pivotal role in decision-

making processes, the quest for precision often overshadows the need for transparency and understandability. 

This is particularly evident in the realm of deep learning models, which, while achieving remarkable levels of 

accuracy, frequently operate as enigmatic 'black boxes'. The imperative, therefore, is not just for these models 

to perform efficiently but also for their decision-making mechanisms to be transparent and comprehensible. It 

is essential that we, as humans, can fully grasp how decisions are made by AI systems to foster trust and 

reliance on these technologies. Transparent and explainable ML models are not just a preference but a necessity 

for their practical application and acceptance. In this research, we address this crucial need for explainability 

in ML through a detailed exploration of three significant model explainability methods: Permutation 

Importance, SHAP, and LIME. Each of these methods offers unique insights into the internal workings of ML 

models, providing us with the tools to delve into the 'why' and 'how' behind the predictions made by our 

models. 

Our primary task involves predicting the energy consumption of buildings, a task for which our model 

has been trained and tested. While the model adeptly predicts energy consumption for each sample in the test 

data, the core of our investigation revolves around deciphering the rationale behind these predictions. We seek 

to answer critical questions such as: Why is our model predicting the values it predicts? Which variables are 

positively or negatively correlated with the target? And importantly, which variables hold the most significant 

sway in the prediction process, either for the dataset as a whole or for individual examples? The integration of 

Permutation Importance, SHAP, and LIME into our analytical framework allows us to methodically address 

these queries. Permutation Importance helps us identify the most influential features by observing changes in 

the model's accuracy when the values of each feature are randomly shuffled. 

SHAP, rooted in cooperative game theory, provides a more granular understanding by attributing each 

prediction to the contribution of individual features. LIME complements these by offering local interpretations, 

explaining predictions on a per-instance basis, and thus illuminating how specific combinations of features 

drive the model's output. This comprehensive approach not only enhances our understanding of the model's 

predictive behavior but also demystifies the complex interactions between various features and their impact 

on the final predictions. By employing these methods, our study transcends beyond mere predictive accuracy, 

venturing into the realms of accountability and interpretability in machine learning. This endeavor aligns 

closely with the growing demand for ethical AI, where the ability to explain and justify algorithmic decisions 

is as crucial as the decision-making process itself. 

 

4.1. Permutation Importance Result 

Based on table 1 that describing about the Permutation Importance results, the analysis indicates that 

the 'Energy Star Rating' is the most influential feature when predicting the energy consumption of a building 
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within the dataset used. This suggests that the energy efficiency rating assigned to a building, which often 

encapsulates various aspects of its design and operation, is a significant predictor of its energy usage. 

Following the 'Energy Star Rating', the 'Facility Type' emerges as the second most important feature. This 

aligns with the understanding that the kind of activity a building is used for—whether it's a hospital, office, 

school, or otherwise—has a substantial impact on its energy consumption patterns. Different facilities will 

inherently have varying energy needs based on their usage patterns, equipment, and occupancy schedules. 

 

Table 1. The Performance of Permutation Importance 

Weight  Feature 

0.2749 ± 0.0058 facility_star_rating 

0.1905 ± 0.0058 energy_type 

0.0938 ± 0.0067 floor_area 

0.0312 ± 0.0055 building_class 

0.0218 ± 0.0061 Scale_Factor 

0.0132 ± 0.0073 year_built 

0.0095 ± 0.0055 building_avg_temp 

0.0091 ± 0.0065 ELEVATION 

0.0091 ± 0.0075 january_avg_temp 

0.0089 ± 0.0065 february_avg_temp 

0.0089 ± 0.0054 days_below_20F 

0.0084 ± 0.0054 heating_degree_days 

 

The ‘Floor Area’ of a building comes in as the third most influential factor according to the 

Permutation Importance results. Intuitively, this makes sense since larger buildings typically have greater 

energy needs for heating, cooling, and lighting compared to smaller ones. The weights assigned to these 

features, accompanied by their standard deviations, provide a quantified measure of their importance. The 

weight represents the feature’s average impact on the accuracy of the model when its values are randomly 

shuffled, thus breaking the link between the feature and the outcome. The standard deviation gives an 

indication of the variability of the feature’s weight, which can be seen as a measure of the confidence in the 

importance ranking. To interpret these results in the context of energy consumption prediction, it can be 

concluded that initiatives aimed at improving a building’s energy star rating could potentially lead to 

substantial gains in energy efficiency. Similarly, understanding the energy profiles of different facility types 

can inform targeted energy-saving strategies. Lastly, the impact of floor area on energy consumption highlights 

the importance of space management and optimization in energy conservation efforts. 

 

4.2. SHAP Result 

The visual provided in figure 1 appears to be a SHAP summary plot, which illustrates the impact of 

each feature on the model’s output. The SHAP summary plot visualizes the mean absolute SHAP values for 

each feature across all the samples, which gives us an understanding of the overall importance of each feature 

in the model. In the given SHAP summary plot, the features are ranked by the mean absolute SHAP value, 

which is indicated on the x-axis. This value quantifies the average impact of a feature on the model’s output 

magnitude, disregarding the direction of the impact (i.e., whether it increases or decreases the prediction). The 

features with larger mean absolute SHAP values are deemed to have a greater influence on the model’s 

predictions. 

The ‘energy_star_rating’ emerges as the most significant feature, with the largest mean absolute 

SHAP value, indicating that it has the most substantial average effect on the energy consumption predictions. 

This is followed by ‘facility_type’ and ‘building_class’, which also exhibit high mean absolute SHAP values, 

showing they are important predictors in the model. These top features suggest that the model gives 

considerable weight to the energy efficiency rating, the type of facility, and the building class when estimating 

energy usage. Features like ‘State_Factor’, ‘floor_area’, and ‘year_built’ also contribute notably to the model’s 

predictions, as indicated by their positive mean SHAP values. These factors are likely related to geographical 

influences, physical size, and age of the building, respectively, each playing a significant role in determining 

energy consumption. 

The variables 'january_avg_temp', 'january_min_temp', and 'snowdept’_inches' suggest that weather 

conditions during winter, particularly in January, and snow depth are also influential factors, although to a 

lesser degree than the top features. The plot also shows the summed impact of 51 other features, which have 

smaller individual mean absolute SHAP values. This indicates that while these features do contribute to the 

model’s predictions, their influence is less pronounced when compared to the leading features. The key 

takeaway from the SHAP summary plot is that while all the listed features influence the model’s output, the 
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magnitude of their impact varies. Understanding these effects allows researchers and practitioners to focus on 

the most influential factors when considering building energy efficiency interventions and can also provide 

insights into areas where data collection and feature engineering could be improved. In practice, these results 

would support targeted strategies to improve energy efficiency. For example, efforts could be focused on 

improving the ‘energy_star_rating’ of buildings, or specific adjustments could be made for certain 

‘facility_types’ or ‘building_classes’ known to have higher energy consumption. Furthermore, the influence 

of weather-related features underscores the importance of considering seasonal and climate factors in energy 

usage predictions and planning. 

 

 

Figure 1. SHAP Result 

 

4.3. LIME Result 

As presented in the figure 2, the LIME method has been employed to deconstruct a particular 

prediction from a complex XGBoost model, offering a granular and intuitive understanding of the model's 

behavior for an individual instance. This local explanation is crucial for identifying the direct influence of 

specific features on the model's output, thereby enabling a level of interpretability that is often lacking in 

sophisticated machine learning models. In the LIME visualization presented, each feature is associated with a 

value range, and its influence is denoted by the length and direction of a bar—green for a positive contribution 

and red for a negative impact on the predicted outcome. The visualization indicates that the 'Energy Star 

Rating' for this instance, when exceeding a threshold of 0.65, appears to have a substantial and positive 

influence on the energy consumption prediction, which is depicted by a prominent green bar. This might 

initially seem paradoxical as energy star ratings are generally indicative of energy efficiency; however, in this 

context, it could be reflective of an underlying pattern where buildings with higher energy star ratings—

potentially due to larger sizes or more advanced functionalities—also exhibit higher energy usage. 

Conversely, the 'Facility Type' feature, when below a threshold of 0.09, has been shown to contribute 

negatively to energy consumption, as demonstrated by a significant red bar. This suggests that types of 

facilities, as categorized within this dataset, are predicted to consume less energy. Additionally, the 'Building 

Class' feature negatively correlates with the energy prediction, indicating that certain classifications of 

buildings are associated with lower energy consumption within the model's reasoning for this specific case. 

Interestingly, the feature 'Floor Area' presents a divided impact with both positive and negative contributions 

within a specified range, implying a nuanced relationship where the floor area by itself does not 

unambiguously affect the energy consumption prediction for this instance. This might indicate that the effect 

of floor area on energy consumption is conditional on other factors or that it has a complex interaction with 

other variables not immediately discernible from the global model. 

The visualization also highlights other features like 'State Factor' and 'Year Built', which exert a 

smaller influence on the prediction. Weather-related features, such as 'snowdepth_inches' and 

'days_above_110F', underscore the role of environmental conditions, pointing towards an increase in energy 

usage for heating or cooling in response to weather extremes. The core strength of LIME lies in its local 

fidelity—the linear model it constructs to approximate the predictions of the complex model is particularly 

accurate around the specific instance under analysis. This is achieved by generating synthetic samples in the 
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vicinity of the instance and using the predictions from the original model, weighted by their proximity, to build 

an interpretable linear model. The outcome is a locally faithful explanation, as evidenced by the proximity-

focused interpretation, which allows for a high degree of confidence in understanding why the model made a 

specific prediction. Through LIME, we gain insights that are not just relevant but also actionable. For example, 

in the realm of building energy management, understanding the positive correlation between a high energy 

star rating and increased energy usage for a particular building can guide energy efficiency initiatives. 

Similarly, recognizing how facility type influences energy consumption can lead to more targeted and effective 

energy conservation strategies. 
 

 

Figure 2. LIME Result 

 

From the figure 3, we can interpret that for the given instance, 'facility_type' has the most significant 

positive impact on the model's prediction, suggesting that when the facility type is less than or equal to 0.09, 

it considerably increases the predicted value. Conversely, 'building_class' and 'floor_area' show a strong 

negative influence, indicating that certain values for these features lead to a lower predicted outcome. 

Additionally, features like 'State_Factor' and 'ELEVATION' appear to have a smaller negative impact. In 

contrast, 'cooling_degree_days', 'may_max_temp', and 'september_avg_temp' have a positive influence but 

with a lesser magnitude compared to 'facility_type'. 

 

 

Figure 3. LIME Detailed Result 

 

The bar lengths represent the strength of each feature's impact, while the numbers at the end of the 

bars indicate the mean SHAP value associated with the features. The predicted value is given in the center, 

which is the output from the XGBoost model for this instance, and it is compared against the intercept, which 

represents the base value without any feature influence. The LIME model's intercept and the coefficients for 

each feature are combined to produce the LIME prediction, which is a locally faithful approximation of the 
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XGBoost model's complex decision function. This local prediction is based on a linear model that 

approximates the prediction surface in the vicinity of the instance being explained, aiming to capture the 

behavior of the complex model as closely as possible for that specific case. Now, while SHAP offers both 

global and local interpretability, providing insights into feature importance across the entire dataset as well as 

for individual predictions, it requires calculating SHAP values for each feature by training models across all 

possible feature combinations. This exhaustive approach provides a very detailed and accurate interpretation 

but can be computationally intensive and time-consuming, especially for larger datasets with many features. 

In contrast, LIME focuses solely on local interpretability. It simplifies the explanation by sampling 

the vicinity of the instance and using a surrogate linear model to approximate the predictions of the original 

complex model. This approach is generally faster and less computationally expensive than SHAP, as it avoids 

the need for global recalculations. LIME's simplicity in providing quick and understandable explanations for 

individual predictions makes it particularly useful when speed is a concern, or when explanations are needed 

on-the-fly, for instance, in real-time applications or when many instances need to be explained individually to 

users or stakeholders.Therefore, while SHAP is comprehensive, LIME's efficiency makes it a pragmatic choice 

for scenarios where local explanations are sufficient, and computational resources or time are limited. The 

decision to use LIME over SHAP, or vice versa, will depend on the specific requirements of the explanation 

task, the size of the dataset, the computational resources available, and the balance between the need for speed 

versus the need for comprehensive interpretability. 

 

5. CONCLUSION  

Throughout this research, we have embarked on a meticulous exploration of building energy usage 

prediction using advanced machine learning models, with a particular focus on the interpretability of these 

models through Explainable AI (XAI) techniques. By applying Permutation Importance, SHAP, and LIME 

methodologies, we have uncovered not only the factors that most significantly influence building energy 

consumption but also illuminated the decision-making processes of complex predictive models. Our findings 

have demonstrated that features such as 'Energy Star Rating', 'Facility Type', and 'Floor Area' are paramount in 

influencing the energy consumption predictions, with weather-related variables also playing a non-negligible 

role. The Permutation Importance results highlighted the global significance of these features across the 

dataset, while SHAP values provided both global and local interpretability, offering a deeper dive into how 

each feature affects individual predictions. 

LIME's contribution to our research has been particularly notable in its provision of fast, 

understandable, local interpretations, emphasizing its utility in scenarios where computational efficiency and 

speed are crucial. While SHAP's detailed approach to feature importance calculation is invaluable, LIME 

serves as an agile tool for real-time or on-demand explanations, making it an indispensable asset in the toolkit 

of data scientists and industry practitioners alike. In conclusion, this study underscores the critical importance 

of model interpretability in the domain of energy efficiency. The ability to explain model predictions is not 

merely an academic exercise but a practical necessity that has significant implications for the development of 

trust in AI systems, the formulation of energy policies, and the implementation of energy conservation 

measures. As the demand for AI-driven decision-making in energy management continues to grow, the 

significance of tools like SHAP and LIME will only become more pronounced. As we look to the future, the 

integration of interpretability into AI systems will likely be a key determinant of their success and acceptance. 

The methodologies discussed herein will undoubtedly evolve, and new techniques will emerge. Nonetheless, 

the principles of transparency, accountability, and ethical consideration that have guided this research will 

remain central to the responsible deployment of AI in energy management and beyond. The path forward is 

one of continuous improvement, where each step taken towards explainability not only enhances our 

understanding but also strengthens the foundation for responsible AI. 
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