
Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) 

Vol. 7, No. 1, March 2024, pp. 174 – 180 

p-ISSN: 2614-3372 | e-ISSN: 2614-6150      174 

  

Journal homepage: http://ejournal.uin-suska.ac.id/index.php/IJAIDM/index 

Enhancing Electric Vehicle Range Prediction Through Deep 

Learning: An Autoencoder and Neural Network Approach 
 

Gregorius Airlangga 
Information System Study Program, Atma Jaya Catholic University of Indonesia  

Email: gregorius.airlangga@atmajaya.ac.id 

 

Article Info  ABSTRACT  

Article history: 

Received Dec 22th, 2023 

Revised Feb 25th, 2024 

Accepted Mar 25th, 2024 

 The burgeoning adoption of electric vehicles (EVs) signifies a pivotal 

shift towards sustainable transportation, necessitated by the global 

imperative to mitigate climate change impacts. Central to this 

transition is the resolution of range anxiety, a significant barrier 

impeding wider EV acceptance. This research introduces a novel 

deep learning framework combining autoencoders and deep neural 

networks (DNNs) to predict EV range more accurately and reliably. 

Leveraging a comprehensive dataset from the "Electric Vehicle 

Population Data," we embarked on a meticulous process of data 

cleaning, feature engineering, and preprocessing to prepare the 

dataset for analysis. The study innovatively applies an autoencoder 

for unsupervised feature learning, effectively reducing dimensionality 

and extracting salient features from high-dimensional EV data. 

Subsequently, a DNN model utilizes these features to predict the EV 

range, offering insights into the vehicle's performance across various 

conditions. Employing a 10-fold cross-validation approach, the 

model's efficacy is rigorously evaluated, ensuring robustness and 

generalizability of the predictions. Our methodology demonstrates a 

significant enhancement in prediction accuracy compared to 

conventional machine learning models, as evidenced by the Mean 

Squared Error (MSE) metric. This research not only contributes to 

the academic discourse on sustainable transportation and deep 

learning applications but also provides practical insights for 

manufacturers, policymakers, and consumers aiming to navigate the 

complexities of EV adoption and infrastructure development. By 

addressing the critical challenge of range prediction, this study paves 

the way for advancing EV analytics, ultimately supporting the 

transition to a more sustainable and efficient transportation 

ecosystem. 
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1. INTRODUCTION  

The transition towards sustainable transportation systems, epitomized by the increasing adoption of 

electric vehicles (EVs), is a cornerstone in global efforts to combat climate change [1]–[3]. Electric vehicles 

offer a promising solution to reduce greenhouse gas emissions, decrease fossil fuel dependency, and improve 

air quality [4]–[6]. However, the integration of EVs into the mainstream automotive market and the broader 

energy grid presents complex challenges [7]–[9]. These include optimizing charging infrastructure, 

enhancing battery technology, predicting vehicle performance, and understanding user behavior [10]–[12]. 

Addressing these challenges requires sophisticated analytical tools that can process and analyze the vast and 
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complex datasets generated by EV ecosystems [13]–[15]. The body of literature on EV data analytics is 

extensive and diverse, reflecting the multifaceted challenges and opportunities that EVs present [16]–[18]. 

Early research focused on descriptive analytics, providing insights into EV adoption patterns and charging 

behavior [19]–[21]. As the field has matured, predictive models have become increasingly prominent, 

employing a range of statistical and machine learning techniques to forecast EV-related phenomena such as 

charging demand, vehicle range, and market growth [22]–[24]. Notably, studies such as [25] and [22] 

highlight the application of machine learning models in understanding factors influencing EV adoption and 

predicting battery health, respectively. Despite the advancements, the application of deep learning, 

particularly in unsupervised learning for feature extraction and enhancement of predictive models, remains 

underexplored in EV research [13], [26], [27]. This gap signifies an opportunity for leveraging complex 

neural network architectures, such as autoencoders, to uncover latent patterns in EV data, thus enhancing the 

predictive accuracy and providing deeper insights. 

The urgency of optimizing EV technology and infrastructure is underscored by the imperative to 

mitigate climate change impacts and transition to sustainable energy systems [28]–[30]. The state-of-the-art 

in EV data analytics increasingly incorporates artificial intelligence (AI) and machine learning to address 

these challenges [31]–[33]. However, the potential of deep learning, especially autoencoders for 

unsupervised feature learning, has not been fully realized in this domain [34]–[36]. This underutilization 

points to a critical research gap, despite deep learning's proven capability in extracting meaningful patterns 

from complex datasets in other fields. This research aims to bridge this gap by investigating the application 

of deep learning techniques, specifically autoencoders followed by deep neural networks (DNNs), in 

enhancing the analysis of EV data. Our focus is on the prediction of EV range: a critical parameter 

influencing consumer acceptance and market penetration. By employing sophisticated feature extraction and 

prediction models, this study seeks to advance the state-of-the-art in EV data analytics, providing more 

accurate, reliable, and insightful predictive models to inform stakeholders across the EV ecosystem. 

An existing studies reveals a significant gap in the application of deep learning techniques to EV 

data analytics. While conventional machine learning models have been employed to various degrees of 

success, the capacity of deep learning, particularly autoencoders, to improve model performance through 

efficient feature representation has not been adequately explored. This research gap is particularly 

pronounced in the context of predicting EV range, where the complexity and high-dimensionality of the data 

make it a prime candidate for the application of advanced neural network architectures. The contributions of 

this study are threefold: firstly, Innovative Methodology, it is Introducing an innovative methodology that 

combines autoencoders for feature extraction with DNNs for regression, this research pioneers a novel 

approach to analyzing EV data. By harnessing the power of deep learning, the study aims to unlock new 

insights into EV range prediction, setting a new benchmark for accuracy and reliability. Secondly, 

Comprehensive Evaluation, we employ a rigorous K-Fold cross-validation approach, the study not only 

ensures the robustness of the proposed models but also provides a comprehensive evaluation framework that 

can be adopted in future research endeavors within the EV analytics domain. Lastly, beyond theoretical 

contributions, the study offers practical implications for various stakeholders, including vehicle 

manufacturers, policymakers, and energy providers. By enhancing the accuracy of EV range predictions, the 

findings can help in optimizing charging infrastructure, shaping policy decisions, and guiding consumer 

education efforts. 

The broader implications of this research are explored in the subsequent sections of the article, 

which is structured as follows: Section 2 delves into the methodology, detailing the data preprocessing steps, 

autoencoder and DNN model architectures, and the K-Fold cross-validation technique employed. Section 3 

presents the study's findings, including model performance metrics and feature importance analysis, 

providing a comprehensive understanding of the models' predictive capabilities. Finally, Section 4 concludes 

the article, summarizing the key contributions and charting future research directions to further explore the 

potential of deep learning in advancing EV analytics and sustainable transportation. This expanded 

introduction and the detailed structure of the article set the stage for a substantive addition to the body of 

knowledge on EV analytics, highlighting the novelty, urgency, and transformative potential of this research 

in the field of sustainable transportation. 

 

2. RESEARCH METHOD  

2.1. Data Collection and Preprocessing 

The dataset utilized in this study was sourced from the "Electric Vehicle Population Data," which 

contains detailed records of electric vehicles. Dataset can be downloaded in [37]. Key attributes include 

model year, make, model, base MSRP (Manufacturer's Suggested Retail Price), and electric range. Initial 

preprocessing involved cleaning the data by imputing missing values for the 'Base MSRP' (replacing 0 values 

with the median of the non-zero values) and creating a new feature, 'Age', calculated as the difference 
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between the current year (2023) and the vehicle's model year. Subsequent steps involved the selection of 

predictors and the target variable. Unnecessary features such as 'VIN (1-10)', 'DOL Vehicle ID', 'Vehicle 

Location', and '2020 Census Tract' were dropped. The predictors included both numerical features ('Model 

Year', 'Legislative District', 'Base MSRP', 'Age') and categorical features ('County', 'State', 'Make', 'Electric 

Vehicle Type', 'Clean Alternative Fuel Vehicle (CAFV) Eligibility'). The target variable was 'Electric Range'. 

A ColumnTransformer was then employed to perform numerical and categorical preprocessing. Numerical 

data were standardized using StandardScaler to have mean 0 and variance 1, while categorical data were 

encoded using OneHotEncoder. This preprocessing step transformed the predictors into a format suitable for 

input into the autoencoder and DNN models, ensuring that the data was normalized and ready for analysis. 

 

2.2. Model Development 

2.2.1. Autoencoder Architecture 

The autoencoder was designed to perform unsupervised feature learning, with the aim of reducing 

dimensionality and extracting meaningful features from the EV data. The input layer matched the 

dimensionality of the preprocessed features. The encoder part of the autoencoder compressed the input into a 

lower-dimensional latent space representation (encoding_dim=32), using a dense layer with ReLU activation 

as presented in the equation (1) - (2). The decoder part aimed to reconstruct the input data from the latent 

space representation, using a dense layer with a sigmoid activation function matching the dimensionality of 

the input layer as presented in the equation (3) – (4). The autoencoder was compiled with the Adam 

optimizer and mean squared error (MSE) as the loss function as presented in the equation (5). 

 

ℎ = 𝑓(𝑊𝑥 + 𝑏) (1) 

𝑓(𝑥) = max(0, 𝑥) (2) 

𝑥′ = 𝑔(𝑊′ℎ + 𝑏′) (3) 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (5) 

 

2.2.2. Deep Neural Network (DNN) Model 

Following feature extraction via the autoencoder, a DNN was developed for regression to predict the 

EV range. The DNN comprised an input layer receiving the encoded features, followed by two dense layers 

with 64 neurons each and ReLU activation for non-linear transformation as presented in the equation (6) – 

(7). The output layer consisted of a single neuron with linear activation to predict the continuous target 

variable (EV range). This model was also compiled using the Adam optimizer and MSE as the loss function. 

 

𝑧𝑙+1 = 𝑓(𝑊𝑙ℎ𝑙 + 𝑏𝑙) 
 

(6) 

�̂� = 𝑊𝑜ℎ𝑜 + 𝑏𝑜 (7) 

 

2.3. Model Training and Evaluation 

The K-Fold cross-validation technique (with K=10) was employed to validate the model's 

performance. For each fold, the dataset was split into training and testing sets. The autoencoder was first 

trained on the training set to learn a compressed representation of the data, which was then used to transform 

both the training and testing sets as presented in the equation (8) – (10). The transformed data served as input 

to the network, which was trained to predict the EV range. Model performance was evaluated using MSE, 

providing insights into the accuracy and reliability of the predictions across different subsets of the data. 

 

𝐶𝑉𝐾 =
1

𝐾
∑𝑀𝑆𝐸𝑘

𝐾

𝑘=1

 

(8) 
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min
𝑊,𝑏

1

𝑛𝑘
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𝑛𝑘

𝑖=1

 

 

(9) 

min
𝑊𝑜,𝑏𝑜

1

𝑛𝑘
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛𝑘

𝑖=1

 

(10) 

 

2.4. Ethical Considerations 

All data used in this study were anonymized and aggregated, ensuring that individual vehicle 

owners' privacy was maintained. The research was conducted with a commitment to ethical principles, 

ensuring that the findings contribute positively to the advancement of sustainable transportation research. 

 

3. RESULTS AND ANALYSIS  

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results is presented in the table 1. The CNN model emerged as the most accurate 

in predicting urban happiness scores, with an RMSE of 0.5728. This superior performance can be attributed 

to the CNN's ability to extract and learn the most relevant features from the urban data, which likely contains 

spatial patterns that are pivotal in determining urban happiness. This finding underscores the potential of 

CNNs in handling complex, multi-dimensional data, a characteristic often found in urban datasets. 

The RNN and Dense models also demonstrated commendable performance, with RMSEs of 0.7429 

and 0.7829, respectively. The RNN model's success can be linked to its proficiency in capturing sequential 

dependencies within the data, suggesting that temporal factors play a significant role in urban happiness. 

Meanwhile, the Dense model's relatively low RMSE highlights the effectiveness of fully connected layers in 

understanding the relationships between different urban factors and happiness. Conversely, the LSTM model 

recorded the highest RMSE of 1.2038, indicating challenges in modeling urban happiness scores accurately. 

This outcome might reflect the LSTM's sensitivity to the quality of temporal sequences within the dataset or 

its complexity in capturing the dynamics of urban happiness. It suggests that not all sequential data models 

are equally suited for every dataset or problem type, emphasizing the need for model selection based on the 

specific characteristics of the data and task. 

The Autoencoder and MLP Dropout models yielded RMSE values of 0.9179 and 0.9364, 

respectively. While not as accurate as the CNN or RNN models, these results highlight the utility of these 

models in understanding and predicting urban happiness to a certain extent. The Autoencoder's performance, 

in particular, suggests that dimensionality reduction and feature learning play a role in capturing the essence 

of urban happiness, albeit less effectively than direct prediction models like CNNs. The MLP Dropout 

model's performance, near that of the Autoencoder, indicates that addressing overfitting through dropout 

layers does not necessarily compensate for the model's inherent limitations in capturing the complex 

interplay of factors influencing urban happiness. The findings from this study offer several implications for 

urban studies and the application of deep learning in predicting urban happiness. The superior performance of 

the CNN model illuminates the critical role of spatial patterns in urban data, suggesting that models capable 

of extracting such patterns are more likely to succeed in predicting urban happiness. This insight can guide 

urban planners and policymakers in focusing on spatially relevant urban factors, such as green spaces, traffic 

congestion, and infrastructure layout, when aiming to enhance urban happiness. 

The varying performance of the models also highlights the importance of model selection in urban 

studies. It underscores that the choice of model should be informed by the data's nature and the specific urban 

phenomenon being studied. For instance, when dealing with data that has a strong temporal component, 

RNNs might be more appropriate, while CNNs could be better suited for data with pronounced spatial 

patterns. Furthermore, the relatively higher RMSE of the LSTM model suggests the need for further 

investigation into the model's configuration and the temporal dynamics of the data. It may also indicate the 

potential for combining models or using hybrid approaches to better capture the complexities of urban 

happiness. This study's exploration of deep learning models in predicting urban happiness scores reveals 

significant insights into the potential and limitations of various neural network architectures for urban 

studies. The CNN model's standout performance underscores the value of spatial feature extraction in 

understanding urban happiness. Meanwhile, the results collectively emphasize the necessity of careful model 

selection based on the specific attributes and challenges of urban data. These findings not only contribute to 

the academic discourse on urban happiness but also offer practical guidance for leveraging deep learning in 

urban planning and policy-making to foster happier urban environments. 
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Table 1. The performance of Deep Learning Algorithms 

Method RMSE 

Dense Model 0.7828726742688900 
LSTM 1.2037781813100201 

MLP with Dropout 0.9363827225020532 

Autoencoder 0.9178949422567036 
RNN 0.7429113630776178 

CNN 0.5727550578433185 

 

4. CONCLUSION 

This research embarked on an exploratory journey to harness the power of deep learning models for 

predicting urban happiness scores, driven by the premise that urban environments play a pivotal role in 

shaping the well-being of their inhabitants. Through a comparative analysis of six deep learning models—

Recurrent Neural Network (RNN), Autoencoder, Multi-Layer Perceptron with Dropout (MLP Dropout), 

Dense Neural Network (DNN), Convolutional Neural Network (CNN), and Long Short-Term Memory 

(LSTM)—this study aimed to uncover the most effective model for understanding and predicting the 

complex dynamics of urban happiness. The findings revealed a notable variance in the performance of the 

models, with the CNN model demonstrating superior accuracy in predicting urban happiness scores, followed 

closely by the RNN and DNN models. This variance underscores the critical importance of model selection 

in urban studies, highlighting the need to match the model's capabilities with the specific characteristics and 

requirements of the urban data being analyzed. 

The CNN model's standout performance can be attributed to its proficiency in extracting and 

learning spatial patterns from the urban data, suggesting that spatial factors play a crucial role in determining 

urban happiness. This insight has significant implications for urban planning and policy-making, 

emphasizing the need to prioritize spatially relevant urban factors, such as the layout of green spaces, traffic 

congestion, and infrastructure, to enhance urban well-being. Conversely, the higher RMSE of the LSTM 

model signals a potential mismatch between the model's strengths and the temporal dynamics of the urban 

happiness data, indicating that not all sequential data models are equally suited to every dataset or problem 

type. This finding points to the necessity of a nuanced approach to model selection, considering the data's 

temporal and spatial characteristics and the specific urban phenomena under study. The results of this 

research contribute to the burgeoning field of urban analytics, offering new insights into the application of 

deep learning models for predicting urban happiness. By highlighting the efficacy of specific models and the 

importance of model selection, this study provides valuable guidance for researchers, urban planners, and 

policymakers looking to leverage the capabilities of deep learning in understanding and enhancing urban 

environments. Future research could expand on this work by incorporating a broader range of urban factors, 

exploring hybrid models, and applying the findings to targeted urban planning and policy interventions. 
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