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 This study explores the efficacy of various deep learning models in 

predicting urban happiness scores, a critical indicator of the quality of 

life in urban environments. Recognizing the complex interplay of 

factors contributing to urban happiness, we employed a suite of 

models, including Dense Neural Networks (DNN), Long Short-Term 

Memory networks (LSTM), Convolutional Neural Networks (CNN), 

Autoencoders, Multi-Layer Perceptron with Dropout (MLP Dropout), 

and Simple Recurrent Neural Networks (RNN), to analyze a 

comprehensive dataset encompassing environmental quality, socio-

economic factors, and urban infrastructure. Our methodology centered 

on rigorous data preprocessing to ensure integrity and usability, 

followed by a detailed comparative analysis of model performances 

based on Root Mean Squared Error (RMSE) metrics. The results 

revealed that the CNN model outperformed others in identifying 

spatial patterns crucial for urban happiness, indicating its superior 

capability in processing complex urban data. In contrast, the LSTM 

model showed less accuracy, suggesting a nuanced understanding of 

temporal data's role in predicting urban happiness. This research not 

only sheds light on the potential of deep learning in urban studies but 

also offers valuable insights for urban planners and policymakers 

aiming to enhance urban living conditions. Through this comparative 

analysis, our study contributes to the growing discourse on leveraging 

advanced data analytics for urban planning and opens avenues for 

future research into the integration of diverse data sources and model 

hybridization to refine urban happiness predictions. 
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1. INTRODUCTION  

In the quest to enhance urban living and make cities more livable, the subjective well-being or 

happiness of urban residents has gained prominence as a pivotal metric for urban planners and policymakers 

[1]–[3]. The pursuit of happiness, a fundamental human goal, is significantly influenced by one's living 

environment, making the study of urban happiness a critical area of research within urban studies, 

environmental psychology, and data science [4]–[6]. The integration of artificial intelligence (AI) and machine 

learning (ML) techniques in urban studies offers unprecedented opportunities to understand and predict 

patterns of happiness across urban landscapes [7]–[10]. This research leverages deep learning models to 

forecast happiness scores in cities, considering a wide array of factors including environmental quality, socio-

economic conditions, and urban infrastructure [11]–[13]. The academic exploration of happiness within urban 

contexts is multifaceted, examining how various factors such as green spaces, air and noise pollution, traffic 

conditions, and access to healthcare and other services contribute to well-being [14]–[16]. Studies have 
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historically utilized statistical models to evaluate these relationships, with recent advancements in 

computational power and data availability ushering in the era of machine learning and deep learning models 

[17]–[19]. These models offer nuanced insights into the complex, non-linear relationships between urban 

environments and resident happiness. Research has progressively embraced sophisticated neural network 

architectures, such as Dense Neural Networks (DNNs) [20], Long Short-Term Memory (LSTM) networks [21], 

Convolutional Neural Networks (CNNs) [22], and Autoencoders [23], to analyze urban data. However, there 

remains a significant gap in applying these advanced models comprehensively to predict urban happiness, 

particularly in combining multiple urban variables into a unified analysis framework. 

The urgency of this research is underscored by the global trend of rapid urbanization, with a growing 

proportion of the world's population residing in urban areas [24]–[26]. This demographic shift intensifies the 

challenges and complexities of urban living, making the pursuit of urban happiness more critical than ever. 

The current state-of-the-art in urban happiness research employs deep learning to unearth patterns and 

predictors of happiness with greater accuracy than traditional models [11], [27], [28]. These advanced models 

have demonstrated their potential in various domains, including emotion recognition, traffic prediction, and 

environmental monitoring, showcasing their versatility and power in handling complex datasets [29]–[31]. 

This study aims to fill the existing research gap by applying a comprehensive suite of deep learning models to 

predict urban happiness scores. While previous studies have explored individual aspects of urban living or 

applied machine learning models in isolation, there is a lack of comprehensive research that utilizes a wide 

array of deep learning architectures to analyze the multifaceted nature of urban happiness [32]–[34]. Our goal 

is to systematically compare the performance of various deep learning models, including but not limited to 

DNNs, LSTM, CNN, Autoencoders, MLP with Dropout, and Simple RNN, in predicting happiness scores 

based on diverse urban variables. 

This research makes several contributions to the fields of urban studies and data science. Firstly, it 

provides a comparative analysis of multiple deep learning models, offering insights into their predictive 

capabilities and applicability to urban happiness prediction. Secondly, by employing a rich dataset 

encompassing a broad spectrum of urban factors, this study unveils complex relationships between urban 

attributes and happiness, highlighting the potential of deep learning in uncovering subtle patterns within urban 

data. Thirdly, this work advances methodological approaches in urban studies, showcasing the integration of 

AI and ML techniques to address urban challenges. Finally, the findings of this study are poised to offer 

practical guidance for urban planners and policymakers, informing strategies to enhance urban living 

conditions and thereby improve the well-being of city dwellers. The structure of the journal article is 

meticulously designed to guide the reader through the comprehensive exploration of utilizing deep learning 

techniques to predict urban happiness. The article is organized into distinct sections, each serving a pivotal role 

in unfolding the research narrative and presenting the findings. 

In the section three, we explain a research methodology that lays the foundation of the research design, 

detailing the meticulous process of data collection, preprocessing, and the selection of deep learning models. 

This section is pivotal in elucidating the rigorous approach adopted to ensure the reliability and validity of the 

study. Each deep learning model employed is described with precision, shedding light on their architecture and 

the rationale behind their selection. Furthermore, this section discusses the metrics chosen for evaluating the 

performance of these models, providing a clear understanding of the criteria used to assess their effectiveness 

in predicting urban happiness. The methodology section is crucial for replicability and transparency, allowing 

readers to comprehend the thoroughness of the research process. 

On the next section, we explain Results and Discussion unveils the outcomes of the comparative 

analysis of deep learning models, marking a significant milestone in the research journey. This section is where 

the data comes to life, revealing the capabilities of each model in predicting urban happiness. The discussion 

extends beyond mere statistical outcomes to interpret the results within the broader context of urban planning 

and happiness. It critically examines the implications of the findings, contemplating how they can inform 

strategies to enhance urban environments and improve the well-being of city dwellers. This section is 

instrumental in bridging the gap between theoretical research and practical applications, offering insights that 

could potentially shape future urban policies and planning practices. Lastly, we explain conclusions, it serves 

as the culmination of the research endeavor, summarizing the key findings and reflecting on the study's 

limitations. This introspective section not only acknowledges the constraints of the research but also proposes 

avenues for future investigations, suggesting how subsequent studies could build upon the findings of the 

current study. Moreover, it considers the broader implications of applying deep learning in urban studies, 

pondering the potential of these advanced technologies to revolutionize urban planning and policy formulation. 

The conclusion underscores the significance of the research, reinforcing its contributions to the fields of urban 

studies and data science. 
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2. RESEARCH METHOD  

2.1. Data Collection 

The dataset central to this study was meticulously compiled from various urban indicators, focusing 

on factors identified in literature as influential to urban happiness. The data can be downloaded from [35]. 

These indicators include environmental quality (Air Quality Index, Green Space Area), socio-economic factors 

(Cost of Living Index, Healthcare Index), and urban living conditions (Traffic Density, Decibel Level). The 

data was sourced from publicly available urban datasets and aggregated for cities worldwide, ensuring a diverse 

and comprehensive dataset. This collection process aimed to gather a balanced representation of urban 

environments to generalize the findings across different urban settings. 

 

2.2. Data Preprocessing 

Given the heterogeneous nature of the collected data, a rigorous preprocessing routine was 

implemented. This process began with the integration of the training and test datasets, followed by the removal 

of duplicate entries to maintain data integrity. Subsequently, the dataset was filtered to include only records 

with a positive Happiness Score, ensuring the focus remained on meaningful urban happiness indicators. The 

preprocessing phase also involved the transformation of categorical variables into a machine-readable format. 

Notably, categorical columns identified during the initial analysis were encoded using OneHotEncoder, 

allowing the models to process non-numeric data effectively. This encoding step was crucial for incorporating 

qualitative indicators such as month and year into the analysis. Related to the categorical variables, such as 

month and year, identified during the initial analysis were encoded using the OneHotEncoder as presented in 

the equation (1). This encoding transformed categorical variables into a machine-readable format, allowing the 

models to process non-numeric data effectively. Additionally, data normalization was conducted using the 

StandardScaler as presented in the equation (2) to ensure that all features contributed equally to the model's 

learning process, mitigating the risk of bias towards variables with higher magnitude.  

 

𝑿𝒆𝒏𝒄𝒐𝒅𝒆𝒅 = OneHotEncoder(𝑿𝒄𝒂𝒕𝒆𝒈𝒐𝒓𝒊𝒄𝒂𝒍) (1) 

 

Where Xencoded represents the matrix of encoded features, and Xcategorical represents the matrix of categorical 

features before encoding. 

 

𝑿𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 =
𝑿 − 𝜇

𝜎
 

 

(2) 

Where X represents the feature matrix before normalization, μ is the mean of each feature, and σ is the standard 

deviation of each feature. 

 

2.3. Model Development 

This research employed a suite of deep learning models to predict urban happiness scores, each chosen 

for their unique capabilities in handling sequential, spatial, or complex patterned data. The models developed 

include Dense Neural Network (DNN), Long Short-Term Memory (LSTM), Convolutional Neural Network 

(CNN), Autoencoder, Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). DNN is a 

sequential model comprising layers with 128, 64, and 1 neuron(s), respectively, each followed by a ReLU 

activation as presented in the equation (3), except for the output layer. This model was designed to capture the 

non-linear relationships between urban indicators and happiness scores. 

LSTM is tailored for sequential data processing, this model featured LSTM layers followed by dense 

layers, catering to the temporal aspects of the data, such as trends over months or years. Furthermore, we use 

CNN in order to identifying spatial patterns, this model was structured with convolutional and max-pooling 

layers, followed by a flattening layer and dense layers, aiming to detect patterns across different urban factors. 

Furthermore, Autoencoder is deployed for its ability to reduce dimensionality and capture the intrinsic structure 

of the data, the autoencoder model comprised an encoder to compress data and a decoder to reconstruct it, 

followed by a regression layer for prediction. In addition, we use MLP Dropout as presented in the equation 

(4) that have incorporated dropout layers to prevent overfitting, ensuring the model's generalizability across 

unseen data. Then, we use SimpleRNN layers, this model aimed to capture sequential dependencies and 

patterns within the data, pertinent for analyzing temporal urban data. Each model was compiled with the Adam 

optimizer as presented in the equation (5) – (9) and mean squared error loss function as presented in the 

equation (10), reflecting the regression nature of the task. 

 

ReLU(𝑥) = max(0, 𝑥) (3) 
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Dropout(𝑥) = 𝑥 ⋅ Bernoulli(𝑝) (4) 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (5) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (6) 

𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡 (7) 

𝑣�̂� =
𝑣𝑡

1 − 𝛽2
𝑡 (8) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂 ⋅ 𝑚�̂�

√𝑣�̂� + 𝜖
 (9) 

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (10) 

2.4. Model Evaluation 

Model performance was evaluated using the Root Mean Squared Error (RMSE) metric as presented 

in the equation (11), which quantifies the difference between the predicted happiness scores and the actual 

scores. This metric was chosen for its sensitivity to large errors, ensuring the models' accuracy in predicting 

urban happiness. The training process involved splitting the dataset into training and test sets, with 50% of the 

data allocated for testing to assess the models' performance on unseen data. This split, coupled with the 

evaluation metric, facilitated a comprehensive assessment of each model's predictive capability, laying the 

groundwork for identifying the most effective model(s) for predicting urban happiness. 

 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (11) 

 

3. RESULTS AND ANALYSIS  

In this section, it is explained the results of research and at the same time is given the comprehensive 

discussion. Results is presented in the table 1. The CNN model emerged as the most accurate in predicting 

urban happiness scores, with an RMSE of 0.5728. This superior performance can be attributed to the CNN's 

ability to extract and learn the most relevant features from the urban data, which likely contains spatial patterns 

that are pivotal in determining urban happiness. This finding underscores the potential of CNNs in handling 

complex, multi-dimensional data, a characteristic often found in urban datasets. 

The RNN and Dense models also demonstrated commendable performance, with RMSEs of 0.7429 

and 0.7829, respectively. The RNN model's success can be linked to its proficiency in capturing sequential 

dependencies within the data, suggesting that temporal factors play a significant role in urban happiness. 

Meanwhile, the Dense model's relatively low RMSE highlights the effectiveness of fully connected layers in 

understanding the relationships between different urban factors and happiness. Conversely, the LSTM model 

recorded the highest RMSE of 1.2038, indicating challenges in modeling urban happiness scores accurately. 

This outcome might reflect the LSTM's sensitivity to the quality of temporal sequences within the dataset or 

its complexity in capturing the dynamics of urban happiness. It suggests that not all sequential data models are 

equally suited for every dataset or problem type, emphasizing the need for model selection based on the specific 

characteristics of the data and task. 

The Autoencoder and MLP Dropout models yielded RMSE values of 0.9179 and 0.9364, respectively. 

While not as accurate as the CNN or RNN models, these results highlight the utility of these models in 

understanding and predicting urban happiness to a certain extent. The Autoencoder's performance, in particular, 

suggests that dimensionality reduction and feature learning play a role in capturing the essence of urban 

happiness, albeit less effectively than direct prediction models like CNNs. The MLP Dropout model's 

performance, near that of the Autoencoder, indicates that addressing overfitting through dropout layers does 

not necessarily compensate for the model's inherent limitations in capturing the complex interplay of factors 

influencing urban happiness. The findings from this study offer several implications for urban studies and the 
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application of deep learning in predicting urban happiness. The superior performance of the CNN model 

illuminates the critical role of spatial patterns in urban data, suggesting that models capable of extracting such 

patterns are more likely to succeed in predicting urban happiness. This insight can guide urban planners and 

policymakers in focusing on spatially relevant urban factors, such as green spaces, traffic congestion, and 

infrastructure layout, when aiming to enhance urban happiness. 

The varying performance of the models also highlights the importance of model selection in urban 

studies. It underscores that the choice of model should be informed by the data's nature and the specific urban 

phenomenon being studied. For instance, when dealing with data that has a strong temporal component, RNNs 

might be more appropriate, while CNNs could be better suited for data with pronounced spatial patterns. 

Furthermore, the relatively higher RMSE of the LSTM model suggests the need for further investigation into 

the model's configuration and the temporal dynamics of the data. It may also indicate the potential for 

combining models or using hybrid approaches to better capture the complexities of urban happiness. This 

study's exploration of deep learning models in predicting urban happiness scores reveals significant insights 

into the potential and limitations of various neural network architectures for urban studies. The CNN model's 

standout performance underscores the value of spatial feature extraction in understanding urban happiness. 

Meanwhile, the results collectively emphasize the necessity of careful model selection based on the specific 

attributes and challenges of urban data. These findings not only contribute to the academic discourse on urban 

happiness but also offer practical guidance for leveraging deep learning in urban planning and policy-making 

to foster happier urban environments. 

 

Table 1. The performance of Deep Learning Algorithms 

Method RMSE 

Dense Model 0.7828726742688900 
LSTM 1.2037781813100201 

MLP with Dropout 0.9363827225020532 

Autoencoder 0.9178949422567036 
RNN 0.7429113630776178 

CNN 0.5727550578433185 

 

4. CONCLUSION 

This research embarked on an exploratory journey with the primary objective of harnessing the power 

of deep learning models to predict urban happiness scores. Motivated by the critical role urban environments 

play in influencing the well-being of their inhabitants, our study sought to identify the most effective deep 

learning model for capturing the complex dynamics that contribute to urban happiness. By conducting a 

comparative analysis of six models—Recurrent Neural Network (RNN), Autoencoder, Multi-Layer Perceptron 

with Dropout (MLP Dropout), Dense Neural Network (DNN), Convolutional Neural Network (CNN), and 

Long Short-Term Memory (LSTM)—we aimed to bridge the gap between the theoretical potential of deep 

learning and its practical application in urban studies. Reflecting on our objectives, this study not only adhered 

to its aim of evaluating multiple deep learning models but also illuminated the nuanced importance of model 

selection based on the characteristics of urban data. The analysis revealed a notable variance in model 

performance, with the CNN model emerging as the most adept, particularly in extracting spatial patterns critical 

for predicting urban happiness. This outcome underscores the significance of spatial considerations in urban 

happiness and supports the initial premise that understanding and leveraging these spatial factors are paramount 

for enhancing urban well-being. 

The superior performance of the CNN model, followed by the RNN and DNN models, validates our 

approach and methodology, demonstrating that certain models, due to their intrinsic capabilities, are more 

suited for analyzing specific types of data. This finding directly contributes to our objective of identifying 

effective models for urban happiness prediction and highlights the critical role of spatial patterns. Conversely, 

the higher RMSE associated with the LSTM model suggests a misalignment with the temporal aspects of the 

urban happiness data, providing a valuable lesson on the importance of aligning model strengths with data 

characteristics—a core consideration of our research objectives. This research's contribution extends beyond 

model comparison, offering practical insights for urban planners and policymakers on the importance of spatial 

factors in urban design. By reaffirming the necessity for careful model selection tailored to the data's unique 

attributes, our study enriches the field of urban analytics, paving the way for more nuanced and effective 

applications of deep learning in urban planning and policy-making. Looking forward, the research opens 

avenues for further exploration, including the integration of a wider array of urban factors, the examination of 

hybrid models, and the direct application of these insights to targeted urban interventions. Through this work, 

we have laid a foundational step towards realizing the full potential of deep learning in deciphering the 

complexities of urban happiness, aligning with our initial objectives and setting the stage for future 

advancements in urban analytics. 
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