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 PT. PLN (Persero), a State-Owned Enterprise (SOE), is mandated by 

Law No. 30/2007 on Energy and Law No. 30/2009 on Electricity to 

provide subsidy funds for the poor. The objective of this study is to 

analyze eligibility criteria for electricity subsidy recipients for 

customers using 450 VA and 900 VA power groups, to target the 

electricity subsidy program better. The data used is postpaid 

customer data from UP3 Bandung in September 2023. The variables 

used are the amount of electricity consumption, the number of bills, 

late fees, installment fees, and 50 other variables. The method used in 

this research is DBScan Clustering which is applied to each power 

group. Within each group, we analyzed two normalized versions of 

the dataset standard version and the minmax version. Furthermore, to 

assess the optimal clustering results, we integrated various metrics, 

including the Davies-Bouldin Index and Silhouette Score with visual 

assessment. After that, the best factor suggestions were sought 

through decision trees, by performing different decision tree 

classifiers for each power group, using normalized versions of cluster 

labels. The results showed that among the 50 features available in the 

raw dataset, it was successful in identifying key features, such as late 

fees, installment fees, electricity consumption, and bill charges to be 

important criteria. 
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1. INTRODUCTION 

PT. PLN (Persero), a State-Owned Enterprise (BUMN) in the electricity sector, is committed to 

delivering high-quality electricity services throughout the archipelago while adhering to international 

standards. In line with Indonesia’s law regulation on Electricity, the government allocates subsidy funds for 

electricity to assist the economically disadvantaged [1]. 

Electricity Subsidy is an assistance the Government provides to consumers through an Electricity 

Tariff that is lower than the economic tariff. With the same amount of electricity usage, consumers who get 

subsidized tariffs will pay lower electricity bills than consumers who do not get subsidies. The government 

bears the difference between the subsidized and the economic tariff, which is then paid to PLN. The subsidy, 

provided to customers with 450 VA and 900 VA power, aims to lower their electricity tariff compared to the 

economic tariff, with the government covering the difference [1]. Data on eligible households comes from 

the Integrated Data of the Poor Handling Program managed by the National Team for the Acceleration of 

Poverty Reduction (TNP2K) [2]. 
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However, the subsidy distribution faces challenges, with affluent households still receiving benefits. 

In 2015, approximately Rp 49.32 trillion (87%) of the total electricity subsidy was consumed by 450 VA and 

900 VA households, but only 4.1 million out of 23 million 900 VA households were truly eligible [2]. And in 

2015 - 2020, the inaccuracy of electricity subsidies was also shown by the gap in the proportion of subsidized 

consumption consumed by the rich group community where the household community was decal 5-10 

consumed 74% of electricity subsidies while the vulnerable community was vulnerable to the poor 1- 4 only 

consume 26% [3].  

The objective of this study is to analyze eligibility criteria for receiving electricity subsidies among 

450 VA and 900 VA customers, to ensure more accurate targeting. The scope of this study includes 

collecting and analyzing data on postpaid household customers in UP3 Bandung for 450 VA and 900 VA 

tariff groups in September 2023. The study aimed to establish and implement the revised criteria within a 

three-month timeframe using the grouping of evaluation metrics as benchmarks [4]. Our study holds 

significance as it provides an opportunity for PLN to utilize our findings for the refinement of eligibility 

criteria pertaining to the allocation of electrical subsidies, thereby contributing to the establishment of a more 

equitable regulatory framework for such subsidies. To date, our investigation has revealed no prior studies 

aligning with the specific focus of our research. Previous works by Widiawati [5] and Hutahaean et al. [6] 

employed pre-existing labels denoting household eligibility, falling short in addressing the persistent 

challenge of inequitable distribution of subsidies. 

Our study has some limitations due to a lack of detailed information about household customers in 

450 VA and 900 VA tariff groups and criteria for customers receiving electricity subsidies. The study targets 

two main outcomes: identifying relevant factors for subsidy determination based on electricity consumption 

data and developing a machine learning model for categorizing eligible and ineligible customer groups. 

We formulate our study into several sections. In section 1, we introduce the problem statement 

regarding the electricity subsidy. In section 2, we provide the discussion about the previous studies that are 

related to ours, the previous studies utilizing the existing dataset and eligibility criteria while our focus is on 

refining eligibility criteria based on past electricity usage activities. In section 3, we explain the research 

objectives and the comprehensive experimental design, model training, and evaluation. Lastly, in section 4 

we conclude to identify the relevant factors to consider when deciding which customers should receive 

electricity subsidies based on their electricity consumption data from model training that we used. 

 

2. RELATED WORKS 

 The prior research relevant to the current investigation includes two studies. First, Widiawati [5], the 

study aimed to classify household electrical subsidies customers based on their characteristics utilizing 

Support Vector Machine (SVM) and Naive Bayes Classifier methods. The comparison revealed that SVM 

yielded superior results with optimal parameters in the RBF kernel, specifically C = 10 and γ = 1. Notably, 

customers with a 450 VA category were correctly classified at 91.6%, with 8.4% predicted in the 900 VA 

category. Similarly, customers with a 900 VA category were classified at 81.9%, with 18.1% predicted in the 

900 VA category. Second, Hutahaean et al. [6], the research aimed to classify households receiving 

electricity subsidies using data mining methods, specifically K-Nearest Neighbor (KNN) and SVM. The 

variables considered included the status of electricity subsidy recipients and various explanatory variables. 

Results indicated that the KNN method exhibited superior accuracy at 98.07%, showcasing a significant 

difference in performance compared to SVM, where KNN outperformed SVM in classification. In contrast to 

the two preceding studies associated with our subject, our objective differs. Unlike the prior research, which 

utilized the given dataset and consequently overlooked the existence of erroneous recipients resulting from 

the inequitable distribution of electricity subsidies, our focus is directed towards addressing this issue. Our 

aim is to enhance the definition of eligibility criteria for individuals to receive electricity subsidies by 

refining it based on their past electricity usage activities. 

 

3. EXPERIMENT & METHODOLOGY 

3.1. Experiment Objectives 
Based on the problem statement in the preceding section, we identify our research objectives to 

produce the following solutions: 

1. Criteria for determining an individual's eligibility for receiving subsidies 

The criteria will consist of a set of rules that encompass features and their corresponding values, 

structured in the form of a decision tree. The decision-tree structure is chosen for its interpretability, 

as it is commonly acknowledged as a model characterized by high interpretability [7]. 

2. Machine learning model 

Expanding upon the preceding point, it is important to mention that the machine learning model, in 

this context, will adopt the configuration of a decision-tree classifier. This signifies that the 
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underlying algorithm employed for the task at hand will take the shape of a decision tree, a 

classification model known for its ability to make decisions based on a hierarchical set of rules and 

conditions. 

 

3.2. Experimental Design 

Our experiment will consist of four phases: data acquisition and preprocessing, DBSCAN 

clustering, clustering evaluation, and decision tree learning. As the dataset lacks an eligibility label, the 

cluster labels generated during the DBSCAN clustering phase will serve as the subsequent labels employed 

in the training process of decision tree learning. We assume that these cluster labels are indicative of an 

individual's eligibility for receiving subsidies. The experiment pipeline can be seen in Figure 1. 
 

 

Figure 1. Experiment pipeline 
 

3.2.1. Data Acquisition and Preprocessing 

During this experiment, we used an exclusive raw dataset sourced from PLN containing 83348 rows 

and 50 columns. This dataset specifically encapsulates data pertaining to postpaid household customers 

falling under the 450 VA and 900 VA tariff groups, who are recipients of subsidies from UP3 Bandung for 

September 2023. As part of the data preprocessing phase, a series of judicious steps were taken, including 

data cleaning and feature engineering. Initially, columns deemed irrelevant, based on insights garnered from 

interviews with domain experts from PLN's Customer Experience Division and the second author 

representing PLN, were systematically eliminated. These irrelevant columns typically contained personal 

information about PLN's customers. Furthermore, columns exhibiting a complete absence of meaningful 

information—comprising solely of zeros and null values—were also excluded, given their lack of relevance 

to the problem at hand. In addition, a strategic feature extraction process was undertaken to enhance the 

dataset's utility. For instance, three distinct columns (RPBK1, RPBK2, and RPBK3) denoting late fees were 

amalgamated into a single feature, namely RPBK. Each of the original columns indicated varying levels of 

late fees, and the new feature RPBK was designed to convey whether an individual had incurred a late fee 

(assigned the value 1) or not (assigned the value 0). This feature extraction process served the dual purpose 

of reducing the dimensionality of the dataset by omitting obsolete features and introducing more meaningful 

and consolidated representations. Consequently, the resultant dataset now comprises 83348 rows and 18 

columns, with 37700 rows attributed to the 450 VA power group and 45648 rows to the 900 VA power 

group. For a comprehensive understanding of each column or feature, refer to Table 1 for detailed 

descriptions. 
 

Table 1. Details of dataset 

Feature Name Description 

JAMNYALA Hours of electricity (hours) 

KWHLWBP Kwh usage outside peak load time 
KWHWBP Kwh usage at peak load time 

BLOK3 Kwh usage each blok 

PEMKWH Kwh usage 
RPLWBP Outside peak load time fee 

RPWBP Peak load time fee 

RPBLOK3 Fee each blok 
RPBEBAN Subscription fee 

RPPTL Electricity usage fee 

RPBPJU Public street lighting fee 
RPPLN Pln infrastructure fee 

RPTAG Billing fee 

RPTAG_MAT Billing fee with stamp duty 
RPREDUKSI (Return/reduction) fee 

RPANGS Installment fee 

RPBK Late fee 

DAYA_450_900 POWER (1 for 900, 0 for 450) 
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3.2.2. DBSCAN Clustering 

Within the dataset, crucial information regarding the eligibility of individuals to receive subsidies is 

notably absent. This deficiency stems from the acknowledgment made in the introduction section, where it 

was highlighted that a significant number of individuals who do not meet the eligibility criteria still receive 

subsidies. Consequently, we contend that the inclusion of information regarding subsidy entitlement is not 

only unnecessary but also deemed invalid. Therefore, our dataset lacks labels, prompting the initiation of a 

clustering process. Selecting an appropriate clustering model poses a formidable challenge, as there is no 

universally acclaimed framework or method applicable to all types of problems. The intricate nature of this 

decision necessitates a thorough investigation tailored to the specifics of the problem at hand and the 

characteristics of the dataset [8]. To inform our choice of a clustering method, we adopt a multi-faceted 

approach. Initially, we endeavor to discern the underlying structure of the dataset by transforming the high-

dimensional data into a more manageable lower-dimensional space, employing Principal Component 

Analysis (PCA) [9]. The resulting features generated by PCA are then visualized in scatter plots, 

differentiating the power groups (450 and 900) and excluding the DAYA_450_900 column to facilitate 

individualized clustering analyses for each power group. Central to our criteria for clustering model selection 

is an evaluation of how well the clustering algorithm aligns with the shape of the dataset as visualized in the 

lower-dimensional space. Moreover, to enhance the comparability of feature values, we perform 

normalization using both standard normalization and minmax normalization. Comprehensive details of these 

visualizations are provided in Table 2. 

 

Table 2. Visualization result 

 Minmax Standard 

450 VA 

  

900 VA 

  

 

Upon scrutinizing the visual representation delineated in Table 2, it becomes evident that the data 

displays a non-convex nature. In the context of this discourse, an affine space across the real numbers, 

denoting the clusters, is deemed convex when, for any pair of points within the set, the entire line segment 

connecting them lies entirely within that set [10]. The non-convex nature observed in the dataset excludes 

several viable clustering methodologies, such as the density-based and hierarchical approaches. Both 

methods possess the capability to handle clusters with arbitrary shapes; however, the hierarchical approach 

tends to incur a relatively higher time complexity [11]. Consequently, our preference leans towards the 

density-based approach, specifically opting for DBSCAN (Density Based Spatial Clustering of Applications 

with Noise) as our clustering model. DBSCAN has demonstrated considerable efficacy in discerning clusters 

characterized by non-convex shapes. The DBSCAN algorithm hinges on two key hyperparameters, namely 

epsilon (ε) and minimum points. Here, epsilon defines the radius of the neighborhood, and minimum points 

dictates the minimum number of data points required within a neighborhood to form a cluster [12]. For a 

more in-depth understanding, please refer to Figure 2 for the pseudocode outlining the DBSCAN algorithm. 

  
 

function DBSCAN(Dataset, epsilon, minPoints): 

   C = 0 

  

   for each unvisited data point P in Dataset: 

      mark P as visited 

      neighborPts = regionQuery(P, epsilon) 

       

      if size(neighborPts) < minPoints: 

         mark P as Noise 

      else: 
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         C = nextCluster(C) 

         expandCluster(P, neighborPts, C, epsilon, minPoints) 

 

 

function expandCluster(P, neighborPts, C, epsilon, minPoints): 

   add P to cluster C 

  

   for each neighbor Q in neighborPts: 

      if Q is not visited: 

         mark Q as visited 

         neighborPts_Q = regionQuery(Q, epsilon) 

  

         if size(neighborPts_Q) >= minPoints: 

            neighborPts = neighborPts joined with neighborPts_Q 

      if Q is not yet member of any cluster 

         add Q to cluster C 

 

 

function regionQuery(P, epsilon): 

   return all data points within distance epsilon from point P 

 

Figure 2. DBSCAN pseudocode 

 

To determine the optimal values for the hyperparameters, we undertake a grid search process, 

systematically combining a range of values for both epsilon and minimum points. Subsequently, we execute 

the DBSCAN clustering algorithm for each unique combination of hyperparameters. We conduct clustering 

analysis utilizing the normalized version of the dataset, employing both standard and minmax normalization. 

This choice is motivated by the utilization of Euclidean distance metrics to determine neighborhood 

relationships. The specific values assigned to each hyperparameter combination are detailed in Table 3. 

 

Table 3. Values of hyperparameter 

Hyperparameter Values 

Min Pts [3, 5, 7, 9, 11, 13, 15] 

ε [0.2, 0.5, 0.7, 1.0, 1.2, 1.5, 1.7, 2.0] 

 

3.2.3. Clustering Evaluation 

To assess the optimal clustering outcome, we integrate various metrics, including the Davies-

Bouldin Index [13] and Silhouette Score [14]. Additionally, we perform an evaluation based on visualization, 

leveraging the principal components generated by the PCA algorithm for low-dimensional representation. It's 

important to note that PCA is employed solely for visualization purposes, while the clustering process utilizes 

the original features. The rationale behind visualization-based assessment lies in the importance of human 

visual perception as the benchmark for evaluating clustering algorithms in clustering analysis [15]. The 

amalgamation of quantitative metrics and visual judgment forms the foundation for selecting the most 

favorable clustering result. Comprehensive information for each quantitative metric is available in Table 4. 

 

Table 4. Quantitative evaluation metrics details 

Davies-Bouldin Index 𝑅𝑖,𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖,𝑗

 0 to ∞ Lower is better 

Silhouette Score 𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑏(𝑖),  𝑎(𝑖))
 -1 to +1 Greater is better 

 

3.2.4. Decision Tree Learning 

Following the attainment of the optimal clustering outcome, we employ a supervised learning 

algorithm, specifically the decision tree learning algorithm. For every version of the normalized dataset, we 

execute an inverse transformation to obtain a meaningful criterion for splitting. For clarity, Figure 3 

illustrates the specifics of the data flow from the clustering phase to the decision tree learning phase. 

In the concluding step, a post-pruning process is conducted to enhance generalization and to map 

labels from the clustering results into binary categories (eligible and not eligible). The primary objective of 

pruning is twofold: to diminish the tree's complexity and to enhance generalization performance [7]. We 

prune the unnecessary node that does not satisfy the domain logic and also considering the impurity value 

(where lower impurity values are more likely to result in pruning). Additionally, we consolidate the pruned 

decision trees to create the final decision tree. 
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Figure 3. Data flow from clustering to decision tree learning 

 

4. RESULTS AND ANALYSIS 

In this section, we'll go over the outcomes from the experiment, covering both the DBSCAN 

clustering and decision tree learning stages. 

 

4.1. DBSCAN Clustering Result 

We obtain the clustering outcomes for two distinct tariff groups: the 450 VA power group and the 

900 VA power group. Within each group, we analyze two normalized versions of the dataset—namely, the 

standard version and the minmax version. We assess these different normalized versions independently due 

to potential variations in evaluation scores resulting from the different scales of values (standard and minmax 

versions having different value scales). Initially, we showcase the outcomes by highlighting the optimal 

clustering result determined solely based on evaluation metrics, excluding visual judgment. Subsequently, we 

reveal our preferred clustering result, considering both the evaluation metrics and visual judgment. In this 

study, we only show the best clustering result within each power group and normalization version, the rest 

can be seen in our repository. For the visualization can be seen in Table 5 and for the hyperparameters and 

scores can be seen in  

Table 6. 

 

Table 5. DBSCAN result visualization 

Power Group Normalization Visualization 

450 VA Minmax 
 

 
Standard 
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Power Group Normalization Visualization 

900 VA Minmax 

 
Standard 

 
 

 

Table 6. Hyperparameter and evaluation score 

Power Group Normalization 
Hyperparameter Evaluation Score 

Epsilon (ε) Min Pts DBI Silhouette 

450 VA 
Minmax 0.7 9 1.1859 0.4221 
Standard 0.7 11 1.0644 0.4973 

900 VA 
Minmax 0.7 3 1.1134 0.6993 

Standard 1.7 7 1.4092 0.6764 

 

1. 450-Minmax 

In the 450 VA power group, the minmax normalized version yielded a Silhouette Score that closely 

resembled our preferred result. However, an issue arises where certain data points, highlighted in 

pink at the upper left of the 2D visualization, are misclassified. Regarding the version determined as 

the best by the Davies-Bouldin Index, two stick-like data points are deemed as belonging to the 

same cluster, contrary to our judgment, which suggests they should be separate clusters. 

 

2. 450-Standard 

Our preferred clustering method for the 450 VA power group, employing the standard normalization 

version, aligns closely with the cluster identified as the best by the Davies-Bouldin Index. However, 

concerning the cluster identified as the best by the Silhouette Score, there is an abundance of small-

sized clusters in the upper part of the visualization. This outcome contradicts our judgment, which 

suggests that these data points should be considered as a single cluster. 

 

3. 900-Minmax 

Evaluating the clustering outcome for the 900 VA power group using the minmax normalized 

version proves challenging. The optimal result from quantitative evaluation metrics tends to yield a 

singular cluster with just one outlier. After a comprehensive examination of all clustering results, we 

conclude that our preferred clustering approach yields a superior outcome. In our assessment, the 

orange data points (cluster 1) are perceived as the ones immersed in the deep z-axis in the 3D 

visualization. 

 

4. 900-Standard 

In the case of the 900 VA power group utilizing the standard normalized dataset, the clustering 

outcome deemed best by the Silhouette Score closely resembles our preferred clustering approach. 

However, this top Silhouette Score result exhibits suboptimal clustering for the small, orange-

colored cluster (cluster 1). Conversely, the result identified as the best by the Davies-Bouldin Index 

introduces excessive noise and substantial overlap between data points belonging to different 

clusters. 
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4.2. Decision Tree Learning Result 

We generate four distinct decision tree classifiers for each power group, utilizing the normalized 

version of cluster labels. We illustrate the pruning process for each decision tree and subsequently combine 

all the pruned decision trees to construct the final tree. Figure 4 displays the decision trees prior to pruning 

for the 450 VA power group and Figure 6 for the 900 VA power group. The pruning steps are visually 

depicted in Figure 5 for the 450 VA power group and in Figure 7 for the 900 VA power group. The ultimate 

decision tree is showcased in Figure 8. 

 

  

Figure 4. Decision trees for the 450 VA power group  

(minmax cluster labels left, standard cluster labels right) 

 

 
 

Figure 5. Pruning process for the 450 VA power group’s decision trees  

(minmax cluster labels left, standard cluster labels right) 

 

  

Figure 6. Decision trees for the 900 VA power group,  

(minmax cluster labels left, standard cluster labels right) 
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Figure 7. Pruning process for the 900 VA power group’s decision trees  

(minmax cluster labels left, standard cluster labels right) 

 

Our primary focus during pruning is on internal nodes exhibiting extremely low impurity, measured 

by the Gini index. These low impurity nodes often contain imbalanced samples, such as 40000 vs 1 or 35000 

vs 13. Following the consideration of pruning low impurity internal nodes, we proceed to prune or eliminate 

internal nodes that do not align with domain logic. Notably, we observe similarities in the decision-making 

process among different trees generated from various normalized versions of cluster labels. For instance, in 

the 450 VA power group, both the minmax and standard versions of the decision tree begin by evaluating the 

value of RPBK and subsequently determine the RPANGS value. Ultimately, we consolidate the decision 

trees and remap the cluster labels to binary labels signifying eligibility. It's crucial to emphasize that nodes 

involving currency-related values like RPTAG should be adapted to the currency's value at the time of using 

the decision tree. Additionally, features such as PEMKWH (KWH USAGE) may need adjustments in the 

presence of inflation-like trends within the feature. 
 

 
Figure 8. Final decision tree 

 

5. CONCLUSION 

In conclusion, employing post-paid household customer data allows for the redefinition of criteria 

determining individual eligibility for electrical subsidies. Among the 50 features available in the raw dataset, 

we successfully identify key features—RPBK, RPANGS, PEMKWH, and RPTAG—to serve as crucial 

criteria. In addition to constructing a machine learning model based on the given dataset, we ascertain both 

the eligibility label and novel criteria through the clustering and decision tree learning procedures. 

Employing a straightforward model like the decision tree facilitates domain experts in reassessing prevailing 

criteria and contrasting them with our proposed ones. Nonetheless, considerable prospects for improvement 

persist, notably through the exploration of time series data to assess customer behavior for eligibility 

determination. Additionally, considering external features unrelated to post-paid household data, such as 

general household consumption and house type, presents avenues for improvement. 
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