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 PT. PLN (Persero) UP2D Kalselteng aims to provide reliable 

electricity supply, necessitating effective substation maintenance. This 

study proposes a predictive maintenance approach using K-Means 

clustering on electrical current performance data from eight 

components in the Amuntai main electrical substation. The data 

undergoes preprocessing, including mapping to absolute z-scores to 

address electricity fluctuations. The K-Means algorithm clusters 

performances, and models are evaluated using Silhouette scores. 

Results indicate the potential for predicting maintenance needs, as 

clusters align with real power outage data. The proposed method 

provides a proactive strategy for substation maintenance, enhancing 

system reliability. Feature combination experiments reveal that 

individual models for transformers and feeders are optimal. 

Hyperparameter tuning refines models, showcasing silhouette scores 

above 0.5, indicative of high-quality clusters. Comparisons with real-

world power outage data validate the model's capability to identify 

anomalies, reinforcing the feasibility of the predictive maintenance 

approach. While the study demonstrates promise, on-field 

implementation and additional experiments are crucial for 

comprehensive validation and refinement of the predictive 

maintenance models. 
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1. INTRODUCTION 

The need for electricity continues to increase along with population growth, which is very important 

for the success of regional development. In Indonesia, electricity is handled by PT PLN (Persero) to distribute 

eletrical energy to customers using a distribution network [7]. Specifically, PT PLN (Persero) Unit Pelaksana 

Pengatur Distribusi Kalimantan Selatan dan Tengah that referred to as PLN UP2D KSKT, has a task to provide 

electricity for public interest to provide a supply of electricity that can meet consumer needs. 

To maintain the accesibility of electricity, the reliability of electrical components and equipments is 

of a high priority. As of the time of writing, PLN UP2D KSKT focuses the component reliability by doing 

maintenance each time a problem occurs on the electrical substation. However, the electrical substation 

maintenance is still done on a case-by-case basis. The malfunction identification is still done manually, and 

after it is identified, only then mainetnance is done on the component [7]. This can lead to a problem due to 

the fact that the case of a malfunction on the electrical component is unable to be predicted. As, during both 
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the process of maintenance, the electrical component is shut off. This can lead to a decrease in accesibility to 

electricity. 

To this end, PLN UP2D KSKT feels an urgency to create a system that can analyze equipment pattern 

to avoid equipment breakdown. By collecting data from sensors, visual observation or other data sources, a 

predictive maintenance system can analyze equipment patterns over time. The implementation of predictive 

maintenance presents a change in substation maintenance strategy at PLN UP2D Kalselteng which can predict 

potential problems or previous damage, making it possible to carry out more timely maintenance actions. 

Predictive maintenance itself have been discussed in many literatures. The main idea is that predictive 

maintenance takes into accord historic data and domain knowledge to predict behaviors of machines [8]. 

Predictive maintenance also usually leverages machine learning models in order to make the prediction and 

analysis of patterns [14]. Although usually used in heavy machinery, it has also been shown that machine 

learning can also be used in analyzing electrical component patterns [15, 16]. Therefore, this paper also 

explores how machine learning algorihms is utilized to analyze historical electrical component data in order to 

help in a predictive maintenance capacity. 

Machine learning is also commonly divided into 2 categories: supervised and unsupervised based on 

the data labels. Supervised learning is usually used for labeled data and unsupervised learning for unlabeled 

data. As will be shown in this paper, a challenge is the availability of a label is, more often than not, not present 

in the dataset. Due to this, this paper also explores how unsupervised learning algorithms, in particular K-

Means, is utilized in order to segment electrical component performances data to help in predictive 

maintenance. K-Means itself have been used in the capacity of predicting electricity consumption behavior 

[17], electrical current measurement [18], fault detection [19]. Therefore, another challenge this paper explores 

is also how to adapt the algorithm to fit the requirements of PLN UP2D Kalselteng for predictive maintenance 

based on domain knowledge. 

 

2. MATERIALS AND METHODOLOGY 

2.1. Methods 

2.1.1. K-Means 

 K-Means is a widely-used clustering algorithm employed in machine learning and data analysis. Its 

primary objective is to categorize a set of data points into K clusters, with each point belonging to the cluster 

whose mean is closest to it. The algorithm operates through iterative steps, starting with the initialization of K 

cluster centroids. These centroids, representing the center of each cluster, can be chosen randomly or through 

more advanced methods. The algorithm aims to minimize the within-cluster sum of squares, which is the sum 

of the squared distances between each data point and the centroid of its assigned cluster. The objective function 

can be mathematically expressed as: 

 

[  𝐽 = ∑𝐾
𝑖=1 ∑𝑛𝑖

𝑗=1 |𝑥𝑗
(𝑖)

− 𝑐𝑖|2  ]                    (1) 

 

𝐽 is the within cluster sum of squares, 𝐾 is the number of clusters, 𝑛𝑖 is the number of data points in cluster i, 

𝑥𝑗
(𝑖)

is the j-th data point in cluster i, 𝑐𝑖 is the centroid of cluster i, and  |⋅|2 represents the Euclidean distance. 

 

2.1.2. Z-Score 

 The z-score, also known as standard score, is a measure that describes a value's relationship to the 

mean of a group of values. It is often used in statistics to quantify how many standard deviations a particular 

data point is from the mean of a dataset. The formula for calculating the z-score for a data point 𝑋 in a dataset 

with mean 𝜇 and standard deviation 𝜎 is given by:  

 

  [ 𝑍  =  
𝑋−𝜇

𝜎
]                (2) 

 

2.1.3. Silhouette Score 

The silhouette score is a metric used to calculate the goodness of a clustering technique. It measures 

how well-separated the clusters are in a given dataset. The silhouette score ranges from -1 to 1, where a high 

value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. 

The silhouette score for each data point is calculated using the following formula: 

 

  [𝑆(𝑖)  =  
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
]            (3) 
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Where S(i) is the silhouette score for data point i. a(i) is the average distance from the i-th data point to the 

other data points in the same cluster. b(i) is the smallest average distance from the i-th data point to data points 

in a different cluster, minimized over clusters. 

 

2.2. Related Works 

2.2.1. Supervised Learning for Predictive Maintenance 

Many other researches have been conducted in the realm of predictive maintenance. Some examples 

include research on predicting health factors on heavy machinery [1]. Another common term in predictive 

maintenance is predicting the remaining useful life (RUL) of machines [2]. Predictive maintenance is also 

associated with predicting when failures will occur in a component [3]. In [10], Random Forest Algorithm and 

Random Undersampling with AdaBoost (RUSBoost) algorithm are used for analyzing the distribution 

transformer to determine when a transformer will likely to fail or need to be replaced. 

 

2.2.2. Unsupervised Learning for Predictive Maintenance 

In contrast to supervised algorithms, unsupervised algorithms operate on datasets without labeled 

output or target variables, aiming to discover inherent patterns, structures, or relationships within the data on 

their own. Fortunately, other research has been done in the realm of implementing an unsupervised learning 

algorithm with the goal of a model that can help with predictive maintenance. 

In [4], a K-Means clustering algorithm is used to group key performance indicators into 5 clusters 

based on their degradation level, and the resulting clusters are used in a Hidden Markov Model (HMM) based 

classifier. In [5], an approach using the K-Means clustering algorithm is used to group time-series data using 

statistical information such as mean, and standard deviation of the time-series. In [6, 19], K-Means clustering 

is used for fault detection prior to implementing it as predictive maintenance. These researches show the 

potential of using unsupervised learning algorithms to group performance measurements of a machinery 

component in order to develop a data driven approach for predicting when maintenance will be necessary. In 

[11], in terms of classification accuracy, the implementation of K-Means clustering outperforms SVM on their 

dataset for implementing predictive maintenance for distribution system operators in increasing transformers’ 

reliability . In [12], K-Means clustering method’s advantages are the ease of its programming and the ability 

to provide a good trade-off result between achieved performance and computational complexity.  

 

Table 1. Transformers and Feeders of Amuntai Main Substation 

Transformer Feeder 

Transformer-1 
Feeder-1 
Feeder-2 

Feeder-3 

Transformer-3 

Feeder-4 

Feeder-5 

Feeder-6 

 

2.2.3. AC Current on Transformers and Feeders on the Electrical Substation 

Transformers and feeders are vital components within electrical substations, playing essential roles in 

the transmission and distribution of electrical power. Transformers are key devices that efficiently adjust 

voltage levels, enabling the seamless transfer of electricity across the power grid. According to [7], these 

transformations are well-suited for AC (alternating current) systems, where the current undergoes periodic 

fluctuations, oscillating between positive and negative phases. This inherent characteristic of AC current aligns 

seamlessly with the operational needs of transformers and allows for the effective use of feeders circuitry that 

links transformers to various points in the power grid. The utilization of AC current, with its fluctuating nature, 

ensures the smooth compatibility and efficiency of transformers and feeders within electrical substations, 

contributing to the dependable and stable delivery of electricity to end-users. 

 

2.3. Data Collection & Preparation 

The data utilized in this study originates from the main substation in the Amuntai region, South 

Kalimantan. Acquired from this source, the dataset comprises performance measurements, specifically 

electrical currents (Ampere) generated by individual components at 30-minute intervals. The Amuntai Main 

Substation is composed of two transformers, with each transformer interconnecting to three feeders. Table 1. 

shows the encoded transformers with their respectively connected feeders. 

It's important to note that the data is received in XLSX (Excel) file format, necessitating further 

processing before it can be effectively utilized for subsequent analyses and interpretations. For further analysis 

and processing, the data undergoes a transformation to the CSV (comma separated values) format. More 

importantly, the transformed data is considered a type of time series data, as it captures the temporal dimension 
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of electrical currents over the designated intervals. This temporal aspect shows dynamic behavior of the 

electrical system, enabling patterns, trends, and anomalies that may not be apparent in static datasets. To make 

further processing easier, the data is divided into 2 distinct datasets: 1 for data relating to transformer 1, and 1 

for data relating to transformer 3. Table 2 shows some samples of the data and their columns. 

 

Table 2. Prepared Dataset Samples 

Index Date Time Trafo Value Feeder-1 Value Feeder-2 Value Feeder-3 Value 

0 01/06/2023 00:00:00 476 121 126 152 

2 01/06/2023 00:30:00 470 116 124 149 

4 01/06/2023 01:00:00 459 105 120 153 
6 01/06/2023 01:30:00 450 115 124 148 

 

The collected data ranges from recorded electrical current performance of components from June - August 

2023. In total, 8832 rows of data are used which is further divided into 2 for each transformer. 

 

2.4.  Proposed Solution 

As mentioned in [1], [2], and [3], a supervised learning predictive approach for classifying when 

maintenance is necessary have been successful. However, the challenge for these approaches is that supervised 

learning algorithms require labels / targets in order to be trained. The challenge faced when specifically 

requiring labels for training a model is, more often than not, the lack of available labels. Such is the case with 

the collected electrical current data for this research. When faced with the challenge of the lack of labels, a few 

options can be done: create pseudo-labels [13] which will require expert domain knowledge to know what and 

how to label, or use a machine learning algorithm that doesn’t require labels 

As mentioned, unsupervised learning algorithms, which don't require labels, have also been explored 

in developing a model for predictive maintenance [4, 5, 6, 11, 12]. A common approach is using K-Means 

clustering as the modeling algorithm. And, as shown in [11] and [12], the K-Means algorithm has significant 

advantages due to its simplicity and performance when compared to other models. Due to this, this research 

proposes the usage of K-Means clustering algorithm to cluster the electrical component’s performance. In this 

way, the resulting clusters can give insights on when maintenance will be necessary. In particular, with regards 

to outlier measured performances. 

The challenge, for this research, then becomes how to adapt the techniques for electrical substation 

components. According to [7], and as seen from the dataset, the Amuntai main electrical substation processes 

and produces electricity under an alternating current (AC) based system. Given its nature of fluctuating between 

positive and negative values, accurately assessing its performance becomes a nuanced challenge. To tackle 

this, this paper proposes an approach which involves employing the absolute z-score of the measured current 

performance. This methodology proves particularly beneficial when seeking to cluster and analyze the overall 

performance of AC currents, providing a standardized metric that facilitates the comparison and classification 

of diverse electrical behaviors. 

Another challenge for this research is the combination of features to cluster the model. The collected 

data and the PLN documentation [7] informs an interconnection between the transformer component and the 

feeder components. However, correlation between the variables and their subsequent effects to the maintenance 

have not yet been explored. Therefore, This paper also proposes the analysis of combinations of features either 

between the transformer value and feeder value to find the best clustering performance. To that end, figure 1 

provides a flow-chart on how this research is conducted to find a solution for a best model for predictive 

maintenance. 

 

2.5.  Experimental Design 

2.5.1. Preprocessing Data 

The aim of this step is to clean and pre-process the data. The data is prepared to be used as an input 

for the K-Means clustering model. This step includes first loading the data, cleaning the null / empty values, 

and removing any duplicate data. Afterward, the attributes for absolute z score values are created. Before the 

data is used, normalization is done to the data. Normalization is necessary in machine learning to ensure that 

features with different scales do not disproportionately influence the model, allowing for more effective and 

stable training. 

 

2.5.2. Feature Combination Experiment 

The aim for this experiment is to find the best feature combination for clustering the performance of each 

electrical component. As seen, for both transformers 1 & 3, and accounting only the absolute z-score value for 

each measured electrical current, a total of 15 combinations of features that can be used for clustering for each 

of the components. This iterative approach to feature selection not only aims to enhance the accuracy of 
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clustering outcomes but also sheds light on the nuanced relationships within the electrical current data. The 

experiment is done by modeling a K-Means clustering model for each feature combination. The evaluation 

metric used to determine the quality of clustering in this experiment is the silhouette score. 

 

 

Figure 1. Flowchart of The Proposed Research Process  

 

2.5.3. Hyperparameter Tuning Experiment 

The aim for this experiment is to tune the K-Means model with the best parameters for the best 

clustering performance. The model that is fine-tuned in this experiment will also use the best feature 

combinations from the previous experiments.  K-Means relies on parameters such as the number of clusters 

(K) and the initialization method, which greatly influence the quality of clustering results. The process typically 

involves experimenting with different values for K to identify the optimal number of clusters that best captures 

the inherent structure of the data. Additionally, fine-tuning the initialization method, which affects the starting 

positions of centroids, plays a vital role in mitigating sensitivity to the initial configuration and achieving more 

stable results. The hyperparameters that need to be tuned for the K-Means model can also be found on the 

Scikit-learn documentation [11]. This experiment first implements an elbow method calculation using the 

silhouette score as a performance measure to find the best values for K. Afterward, a grid search method is 

used for the remaining other hyperparameters. The scoring criteria used for this experiment, same as the other 

experiments, is silhouette score. This results in a model that maximizes the silhouette score for clustering given 

said hyperparameters.  

 

3. RESULTS AND ANALYSIS 

3.1.   Preprocessing Result 

 For the pre-processing, the following steps are done to the data. All the steps are done in Python using 

common libraries for data processing such as Pandas, Matplotlib, and finally Scikit-learn for the modeling. All 

the recorded current values are loaded to a dataframe using the Pandas library. Null and duplicate data are then 

dropped from the dataset. From each of the data columns, corresponding to transformer value, and the 3 feeder 

values, 4 new columns are created denoting the absolute z score values of each of the data points. The columns 

are named as table 3. 

Table 3. Newly Generated Columns 

Column Name Description 

absolute_z_score_trafo absolute z score of current transformer (1 & 3) value 
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Column Name Description 

absolute_z_score_feeder_1 
absolute z score of current feeder 1 (for transformer 1) and 

feeder 4 (for transformer 3) value 

absolute_z_score_feeder_2 
absolute z score of current feeder 2 (for transformer 1) and 

feeder 5 (for transformer 3) value 

absolute_z_score_feeder_3 
absolute z score of current feeder 3 (for transformer 1) and 

feeder 6 (for transformer 3) value 

 

The data is then scaled using Scikit-Learn MinMaxScaler. Because this is a clustering task for an unsupervised 

algorithm, all of the data is used for training the model. 

 

3.2.   Feature Combination Result 

For the feature selection, all combinations of the 4 attributes are used for clustering. The evaluation 

metric used to determine the clustering quality is silhouette score. This experiment works by using the feature 

combinations to create a K-Means model and then recording the clustering performance. An initial model is 

created with K=3, and the other parameters are the default settings from Scikit-learn documentation. The 

experiment results are shown in table 4 for transformer 1 data and table 5 for transformer 3 data.  

 

Table 4. Feature Selection Result for Transformer 1 Data 

Selected Features 

Silhouette Score absolute_z_sc
ore_trafo 

absolute_z_scor
e_feeder_1 

absolute_z_scor
e_feeder_2 

absolute_z_scor
e_feeder_3 

√       0.5699891994   
  √     0.6047394646  

    √   0.6014615249  

      √ 0.5939623744  

√ √     0.4812564749  

√   √   0.4634812881  

√     √ 0.4248591017  

  √ √   0.4855246771  

  √   √ 0.4558434172  

    √ √ 0.5407500046  

√ √ √   0.383864566  

√ √   √ 0.3783910422  

√   √ √ 0.4266100734  

  √ √ √ 0.5046587295  

√ √ √ √ 0.3367990746 
  
 

 

From the results in both table 4 and table 5, the highest silhouette score is achieved when only using 

singular attributes. This results in the analysis that even though the performance of the electrical components 

are interconnected, they are not necessarily correlated with each other. As, combination with other attributes 

for clustering results in the model’s performance degrading.  This leads to the belief that the maintenance of 

the components are supposed to be independent as well. The solution for this is then to build a separate model 

trained on each of the attributes representing the components. In total, 8 K-Means clustering models are trained. 

The next steps are then to tune this model in order to produce the best model for each of the electrical 

components in Amuntai main electrical substation. 

 

Table 5. Feature Selection Result for Transformer 3 Data 

Selected Features 

Silhouette Score absolute_z_sc
ore_trafo 

absolute_z_scor
e_feeder_1 

absolute_z_scor
e_feeder_2 

absolute_z_scor
e_feeder_3 

√       0.5910541623   
  √     0.7583164349  

    √   0.6049557159  

      √ 0.6206309254  

√ √     0.3991837866  

√   √   0.341657812  

√     √ 0.3928141464  

  √ √   0.4633187672  

  √   √ 0.546677281  

    √ √ 0.4317529127  

√ √ √   0.3373761362  

√ √   √ 0.3743768243  

√   √ √ 0.3197325048  
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Selected Features 

Silhouette Score absolute_z_sc

ore_trafo 

absolute_z_scor

e_feeder_1 

absolute_z_scor

e_feeder_2 

absolute_z_scor

e_feeder_3 

  √ √ √ 0.4407082764  

√ √ √ √ 0.3586691358 
  
 

 

3.3.  Hyperparameter Tuning Results 

 Because K-Means is most sensitive to the number of K, the elbow method is used to first determine 

the best number of clusters for each electrical component. Afterwards, to further broaden the results, the 

number of K+1 and K-1 from the elbow method is also tested to see the effects on the silhouette score. From 

the elbow method experiments, the best cluster numbers for all of the components are around 3, 4, and 5 

clusters. Therefore, this cluster number will be used in further hyperparameter tuning. The following 

hyperparameters, according to Scikit-learn K-Means model documentation is then used for hyperparameter 

tuning, 2 of the most sensitive parameter being the number of clusters and initiation method. 

 

Table 6. List of Hyperparameters 

Hyperparameter Values 

n_clusters 3, 4, 5 

init K-Means++, random 
n_init 10, 15, 20 

max_iter 300, 400, 500 

 

From the hyperparameter tuning experiment, 8 best K-Means models representing clustering for electrical 

components evaluated by silhouette score are created. Table 7 shows the hyperparameters of these models. 

 

Table 7. List of Hyperparameters 

Electrical Component Hyperparameter Silhouette Score 

Transformer 1 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 4, 'n_init': 10} 0.5761 
Transformer 3 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 3, 'n_init': 15} 0.6182 

Feeder 1 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 3, 'n_init': 10} 0.6104 

Feeder 4 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 5, 'n_init': 10} 0.9203 

Feeder 2 {'init': 'random', 'max_iter': 400, 'n_clusters': 4, 'n_init': 10} 0.6039 

Feeder 5 {'init': 'K-Means++', 'max_iter': 400, 'n_clusters': 3, 'n_init': 15} 0.6050 

Feeder 3 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 4, 'n_init': 10} 0.5924 
Feeder 6 {'init': 'K-Means++', 'max_iter': 300, 'n_clusters': 4, 'n_init': 15} 0.5880 

 

The clustering results for each of the models is shown in figure 2 using a scatter plot. The figure plots the 

electrical current against the datetime with hue representing the clusters. 

 

Figure 2. Clustering Results in Scatter Plot for Transformer 1&3 (top left), Feeder 1&4 (top right),  

Feeder 2 & 5 (bottom left), and Feeder 3 & 6 (bottom right) 
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From the clustering result, distinct clusters of performances can be observed. In particular, each electrical 

component is represented by a different model, and some even have different numbers of clusters relating to 

their performance. This clustering result can be helpful when determining anomalies of electrical components. 

This way, the cluster serves as a warning when anomalies are detected leading to predicting when maintenance 

should occur. 

 

 
Figure 3. Comparison of the Model Prediction for Feeder-3 (left) and Feeder-6 (right) and  

the Power Outage Data 

 

3.4.   Comparisons with Actual Power Outage Data 

In this section, we will present the comparison between our model prediction and the real-world data. 

As the research progresses, we collect a collection of data of reports regarding actual maintenance that occurs 

on a component. The comparison of our model prediction and the real-world case can be seen in Figure 3. 

Based on the reports, there are several power outages that happened in June 2023 until August 2023 

and each of the power outages has an effect on Feeder-3 and Feeder-6 performance. As seen on Figure 3, there 

is the visualization of our model for Feeder-3 and Feeder-6 and there are red boxes that represent the actual 

power outage. With the figure showing the comparison between our model’s prediction and the power outage 

data, the model has successfully represented the status of the electrical substation component and predicted the 

problems occurring with the components. 

 

4. CONCLUSION 

This research’s focus is to do a predictive maintenance to evaluate the performance of the transformers 

and the performance of the feeders. There are steps to achieve the research focus: (1) Preprocess the Electrical 

Components’ Data, (2) Finding the best Feature Combination for Modelling, and (3) Hyperparameter Tuning 

on each Model . 

The conclusion obtained from the results of the research that has been carried out is that from the 

feature selection we can claim that the performance of every feeder is not related to the performance of the 

connected transformer. With that result, we need to build 1 model for each 2 transformers and 6 feeders, which 

totals 8 models, to evaluate each of their performance. Afterwards, we do a hyperparameter tuning towards 

each model using the elbow method to obtain the optimal number of clusters for each model. The results of the 

hyperparameters vary in the range of 3 until 5 clusters. Subsequently, we choose silhouette score as the metric 

evaluation of each model. Generally, each model already has a silhouette score above 0.5, coming near to 1 

which represents that the resulting cluster is already of good quality. 

Finally, when comparing the clustering results with real world data, it can be concluded that the 

clusters are able to identify anomalies in the component’s performance. This can lead to the usage of the 

clustering models of each component as an early prediction system before power outage occurs. Therefore 

achieving predictive maintenance. However, it is important to note that further experiments and actual on-field 

implementation are also required in order to further test the model’s capabilities.  
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