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 This research proposed a novel approach using Stacked GRU (Gated 

Recurrent Unit) models to address the problem of weather prediction 

and aimed to improve forecasting accuracy in sectors like agriculture, 

transportation, and disaster management. The key idea involved 

leveraging the temporal dependencies and memory management 

capabilities of Stacked GRU to model complex weather patterns 

effectively. Comprehensive data preprocessing ensured data quality 

and fine-tuning of the model architecture and hyperparameters 

optimized performance. The research demonstrated the Stacked GRU 

model's effectiveness in accurately forecasting temperature, pressure, 

humidity, and wind speed, validated by low RMSE and MAE scores 

and high R2 coefficients. However, challenges in forecasting humidity 

and a percentage discrepancy in wind speed predictions were 

observed. Overfitting and computational complexity were identified as 

potential limitations. Despite these constraints, the study concluded 

that the Stacked GRU model showed promise in weather forecasting 

and warranted further refinement for broader applications in time-

series prediction tasks. 
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1. INTRODUCTION 

Weather prediction is important due to its broad impact on agriculture, transportation, and disaster 

management sectors [1]. Accurate forecasts contribute to economic improvements by facilitating planning and 

decision-making [2]. Various technological advancements are required for this intricate task, including 

innovations in computation and measurement systems [3]. Meteorologists have long faced the challenge of 

accurate weather predictions [4]. Recent years have seen increased efforts to develop unified models and 

frameworks for weather and climate predictions, emphasizing the need for consistency across time scales [5]. 

Forecasting specific weather phenomena like rainfall and windstorms is necessary for applications such as 

agriculture and building assessments [2], [6]. Researchers have explored advanced techniques like data mining, 

deep learning, and fuzzy logic to enhance weather prediction model accuracy and reliability [7], [8]. Integrating 

weather predictions into decision-making can optimize resource allocation and preventive actions [6]. 

Accurate weather prediction significantly impacts various sectors, such as agriculture, energy, and 

transportation. In agriculture, precise weather forecasts help farmers make informed decisions regarding 

planting, irrigation, and pest control, leading to improved crop yields and resource management [9]. For the 

energy sector, accurate weather prediction is crucial for optimizing the generation and distribution of renewable 

energy sources like solar and wind power, enabling efficient operations and planning [10]. In transportation, 
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weather forecasts aid in route planning, scheduling, and safety measures, reducing the risk of accidents and 

improving efficiency [11]. Additionally, accurate weather prediction is vital in disaster management, allowing 

for timely evacuation and preparation for extreme weather events [12]. Overall, accurate weather prediction 

enhances decision-making processes, minimizes risks, and optimizes resource allocation in these sectors, 

leading to economic and societal benefits [13]. 

Current methodologies used in weather prediction include ensemble prediction methods, machine 

learning models, deep learning models, and numerical weather prediction (NWP) models. Ensemble prediction 

methods generate multiple predictions using different parameter values or initial conditions to account for 

uncertainty [14]. Machine learning models, such as artificial neural networks (ANNs), have been used to 

improve the accuracy of weather forecasts [15], [16]. Deep learning models, such as long short-term memory 

(LSTM) networks, have shown promise in capturing temporal dependencies in weather data [15]. NWP models 

use mathematical equations to simulate atmospheric processes and predict weather conditions [17]. However, 

these methodologies have limitations. Terministic models have inherent uncertainty due to the complexity of 

weather systems. Ensemble methods can be computationally expensive and require large amounts of data [14]. 

Machine learning models may lack interpretability and struggle with extreme weather events [18]. Deep 

learning models require large amounts of training data and can be computationally intensive [19]. NWP models 

rely on accurate initial conditions and parameterizations, which can introduce errors [20]. Additionally, the 

temporal averaging of covariate data in niche modeling can limit predictive capacity for species affected by 

short-term environmental changes [20]. While these methodologies have advanced weather prediction, there 

are still challenges regarding accuracy, computational efficiency, interpretability, and handling extreme events. 

For several reasons, exploring new machine learning methodologies for weather prediction is vital. 

Firstly, traditional NWP models have limitations, and new approaches can help overcome these limitations 

[20]. Secondly, machine learning techniques have shown promise in improving weather prediction accuracy 

and capturing complex patterns in weather data [21], [22]. Thirdly, exploring new methodologies can lead to 

advancements in extreme weather event forecasting, which is crucial for disaster management and 

preparedness [23]. Machine learning models can also provide insights into underlying weather prediction and 

climate diagnosis mechanisms [21]. Finally, developing new methodologies can enhance the accuracy and 

effectiveness of weather forecasts, benefiting various sectors such as agriculture, transportation, and energy 

[24]. By exploring new machine learning methodologies, we can improve the accuracy, efficiency, and 

understanding of weather prediction, leading to better decision-making and societal benefits. 

A Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that was introduced as 

an alternative to the more complex LSTM units [25]. GRUs are designed to handle long-term dependencies in 

sequential data [26]. They operate by utilizing gating mechanisms, including an update gate and a reset gate, 

to control the flow of information within the network [27]. The update gate determines how much of the 

previous hidden state should be retained, while the reset gate controls how much of the previous hidden state 

should be forgotten [28]. This gating mechanism allows GRUs to selectively update and forget information 

and capture relevant patterns in the input sequence [27]. 

Compared to other RNN models, GRUs have a simpler architecture with fewer gating mechanisms, 

making them computationally efficient. GRUs have been found to perform comparably to LSTMs in various 

machine learning tasks, including sequence prediction tasks [27]. They have shown promise in applications 

such as speech recognition [26], splice site prediction [29], time series forecasting [30], and dynamic risk 

prediction in healthcare [31]. Additionally, GRUs have been explored with other models, such as convolutional 

neural networks (CNNs), to improve performance in tasks like electric load forecasting [32]. 

The GRU model was chosen over other models for this analysis due to its advantages in weather 

prediction. GRU models have been widely used in various domains, including electric load forecasting [33], 

solar irradiance forecasting [34], precision agriculture [35], carbon dioxide concentration prediction [36], 

traffic prediction [37], landslide displacement prediction [38], wind speed and temperature forecasting [39], 

wildfire detection [40], and solar radiation prediction [41]. The advantages of GRU models in weather 

prediction include their simplicity and ease of implementation [33], ability to capture long-term dependencies 

in sequential data [34], improved performance with attention mechanisms [33], and computational efficiency 

compared to other recurrent neural network models [37]. GRU models have shown promising results in 

accuracy, prediction performance, and efficiency in various weather prediction tasks, making them a suitable 

choice for this analysis. 

A GRU handles long-term dependencies in sequential data for weather forecasting through its gating 

mechanisms. The update and reset gates in a GRU control the flow of information, allowing the model to 

selectively update and forget information from the previous hidden state [34]. This enables the GRU to capture 

relevant patterns and dependencies in the input sequence, facilitating the modeling of long-term dependencies 

[26]. 
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Stacking multiple GRU layers improves model performance by allowing for the extraction of 

increasingly complex features from the input data. Each additional layer enables the model to learn higher-

level sequential data representations, improving prediction accuracy [42]. The stacked GRU architecture 

captures hierarchical patterns and dependencies in the data, enhancing the model's ability to capture long-term 

dependencies and make accurate predictions [43]. 

The advantages of GRUs in weather prediction include their ability to handle long-term dependencies 

[43], computational efficiency [26], and competitive performance in sequence prediction tasks [26]. GRUs 

have been successfully applied in various weather forecastings tasks, such as solar irradiance [34], wind speed 

and temperature forecasting, and long-term weather forecasting [44]. Their ability to capture complex patterns 

and handle long-term dependencies makes GRUs suitable for weather prediction tasks. 

The expected benefits of using a Stacked GRU model for weather prediction using the Denpasar 

Weather Data include improved prediction accuracy, capturing long-term dependencies in weather patterns, 

and efficient computation. Stacked GRU models have been shown to outperform other models in various 

prediction tasks, such as uncertainty estimation [45], sentiment analysis [46], parking occupancy prediction 

[47], traffic prediction [37], precipitation forecasting [12], and disease prediction [48]. The advantages of using 

Stacked GRU models include their ability to handle long-term dependencies [26], capture complex patterns in 

sequential data [22], and improve prediction accuracy [42]. By leveraging the strengths of GRU models, the 

Stacked GRU model is expected to provide accurate and efficient weather predictions using the Denpasar 

Weather Data. 

 

2. RESEARCH METHOD 

2.1. Gated Recurrent Unit (GRU) 

The GRU is a recurrent neural network (RNN) architecture designed to address the vanishing gradient 

problem and capture long-term dependencies in sequential data. It achieves this through the use of gating 

mechanisms that control the flow of information within the network. 

Mathematically, the GRU layer consists of several equations to update and control its internal states. 

Let us denote the input to the GRU layer at timestep 𝑡 as 𝑥𝑡, the hidden state at the previous timestep as ℎ𝑡−1, 

and the updated hidden state at timestep 𝑡 as ℎ𝑡. 
The update gate 𝑧𝑡 determines how much of the previous hidden state to retain and how much of the 

new candidate activation ℎ�̃� to consider. It is computed in Equation 1. 

 

𝑧𝑡 = σ(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (1) 

 

where 𝑊𝑧 and 𝑈𝑧 are weight matrices associated with the update gate, and σ represents the sigmoid activation 

function. 

The reset gate 𝑟𝑡 determines how much of the previous hidden state to forget and how much of the 

new candidate activation to update the hidden state. It is calculated in Equation 2. 

 

𝑟𝑡 = σ(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (2) 

 

where 𝑊𝑟 and 𝑈𝑟  are weight matrices associated with the reset gate. 

The candidate activation ℎ�̃� is a new proposal for the hidden state, combining information from the 

input 𝑥𝑡 and the reset gate 𝑟𝑡. It is calculated in Equation 3. 

 

ℎ�̃� = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1)) (3) 

 

where 𝑊ℎ and 𝑈ℎ are weight matrices associated with the candidate activation, ⊙ denotes element-wise 

multiplication, and tanh represents the hyperbolic tangent activation function. 

The updated hidden state ℎ𝑡 is computed by combining the previous hidden state ℎ𝑡−1 and the 

candidate's activation ℎ�̃� using the update gate 𝑧𝑡, as shown in Equation 4. 

 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ�̃� (4) 

 

These equations allow the GRU to selectively update and control the flow of information, making it 

capable of capturing both short-term and long-term dependencies in sequential data. 
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2.2. Stacked GRU 

Assuming we have 𝑛 GRU units in each layer, Equations 5-7 for the Stacked GRU model can be 

summarized as follows: 

 

First GRU layer: 

 

𝐻1 = GRU(𝑋) = GRU(𝑋;𝑊1, 𝑈1) (5) 

 

Second GRU layer: 

 

𝐻2 = GRU(𝐷1) = GRU(𝐷1;𝑊2, 𝑈2) (6) 

 

Third GRU layer: 

 

𝑌 = GRU(𝐷2) = GRU(𝐷2;𝑊3, 𝑈3) (7) 

 

where 𝑋 is the input sequence, 𝐷1 and 𝐷2 represent the outputs of the dropout layers, 𝐻1, 𝐻2, and 𝑌 are the 

hidden states of the GRU layers, and 𝑊𝑖 and 𝑈𝑖 represent the weight matrices associated with the 𝑖-th GRU 

layer. 

The stacked GRU architecture can effectively capture intricate patterns and long-term dependencies 

within the input sequence by incorporating multiple layers of GRU units. This enhanced architecture can 

potentially improve the accuracy and performance of stock price prediction models. 

 

2.3. Dataset 

This research employs a dataset from the Denpasar Weather Data, accessible to anyone on Kaggle. 

The data entails weather details from Denpasar, Indonesia, collected every hour from 1990 till the beginning 

of 2020, offering a substantial 20-year period of weather data. 

The subset of the data transferred into this study includes 264,924 instances. Each instance 

incorporates four fundamental features - temperature, pressure, humidity, and wind speed. Such features are 

primary determinants in comprehending and forecasting weather conditions, which explains their common 

usage in weather prediction models. Their inclusion facilitates an in-depth study of their influence on the 

precision of weather predictions. 

Further, the substantial quantity of the dataset and its hourly updates offer a solid backbone for 

creating and assessing weather prediction models. The goal of this dataset is to utilize the data within the 

Denpasar Weather Data to construct and gauge the effectiveness of stacked GRU models in accurate weather 

forecasting. 

Refer to Figures 1-4 for a display of the weather pattern during the most recent 1000 hours. 
 

 

Figure 1. Temperature 

 

 

Figure 2. Pressure 

 

Figure 3. Humidity 
 

Figure 4. Wind speed 
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2.4. Data Preprocessing 

Data processing is essential for preparing Denpasar Weather Data to be used in weather prediction 

models. Several crucial steps are taken to ensure the data is suitable and high-quality for analysis. The initial 

step is to manage missing values. This research removes instances containing missing values, preserving the 

dataset's integrity and ensuring accurate modeling and analysis. 

After addressing missing values, relevant features for weather prediction are chosen. This study 

focuses on four significant features: temperature, pressure, humidity, and wind speed. These features 

significantly impact weather patterns and are vital for precise weather prediction modeling. Normalization is 

applied to the chosen features to guarantee compatibility in the modeling process. The Max-Min scaler is used 

for normalization, converting each feature's values into a common range between 0 and 1. Equation 8 shows 

the normalization equation. 

 

𝑋normalized =
𝑋 − 𝑋min

𝑋max − 𝑋min

 (8) 

 

Here, 𝑋 represents the original feature values, 𝑋min denotes the minimum value of the feature, and 

𝑋max indicates the maximum value of the feature. Feature value normalization prevents biases caused by 

variations in scale or magnitude, enabling fair comparisons and accurate modeling. 

By executing these data processing steps – managing missing values, choosing pertinent features, and 

applying the Max-Min scaler for data normalization – Denpasar Weather Data is primed for further analysis 

and modeling. This allows for accurate weather prediction using stacked GRU models. 

 

2.5. Data Splitting 

The train-test split method is essential for assessing the performance and generalizability of a weather 

prediction model. This research creates a balanced division between training and evaluation by splitting the 

Denpasar Weather Data into three subsets: training, validation, and test. 

The dataset comprises 264,924 hourly data points, covering January 1, 1990, to January 7, 2020. The 

training set is formed by allocating 80% of the data, or 211,859 instances, for model training. This extensive 

training set helps the model learn from weather patterns across 20 years, fostering robust learning and capturing 

long-term dependencies in the data. 

The validation set comprises 20% of the data, or 52,965 instances. This set acts as an intermediate 

step between training and final testing and helps evaluate the model's performance during training. The 

validation set detects potential overfitting or underfitting issues and optimizes hyperparameters and model 

architecture. 

A separate test set of 240 instances is used for the final evaluation. This small test set gives an unbiased 

and independent measure of the model's prediction ability on unseen data. Its limited size allows fast evaluation 

and accurately reflects overall performance. 

By partitioning the data into training, validation, and test sets as described, the method ensures that 

the model is trained on a large portion of the data, validated for performance tuning, and evaluated on unseen 

data for generalizability assessment. This approach provides a balanced evaluation and allows for a thorough 

examination of the model's accuracy and performance in weather prediction tasks. 

 

2.6. Model Training Process 

The model training process includes key aspects: selecting hyperparameters, defining the model 

architecture, choosing an optimization algorithm, and determining a suitable loss function. 

1. Hyperparameters: This model has two main hyperparameters: the number of time steps (n_steps) and 

the number of features (n_features). In the code, n_steps is set to 240, meaning the model uses data 

from the past 240 hours to predict the next hour's weather. Since the dataset has a single feature 

(temperature, pressure, humidity, or wind speed), n_features is 1. 

 

2. Model Architecture: The model has stacked GRU layers. The first GRU layer has 150 units and uses 

the 'relu' activation function. It returns sequences because additional GRU layers follow it. The second 

GRU layer also consists of 150 units and returns sequences. The final GRU layer has 150 units but 

does not return sequences. The model includes a Dense layer with one unit for the final output. This 

structure allows the model to learn complex patterns and dependencies in the input data. 

 

3. Optimization Algorithm: The chosen optimization algorithm is 'adam', which stands for Adaptive 

Moment Estimation. Adam is widely used for training deep learning models efficiently. It merges 
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adaptive learning rates with momentum for faster convergence during training. Adam optimizer 

adjusts the model's weights and biases to minimize the loss function. 

 

4. Loss Function: Mean Squared Error (MSE) is the selected loss function for this model. MSE is often 

used in regression tasks, such as weather prediction. It computes the average squared difference 

between predicted and actual values. By reducing the MSE loss, the model aims to decrease prediction 

errors and enhance the accuracy of weather forecasts. 

 

The model is trained for ten epochs using the fixed architecture, optimizer, and loss function. It learns 

underlying patterns and relationships in the data to accurately predict the next hour's weather, utilizing the 

previous 240 hours' historical weather data. 

 

2.7. Evaluation Metrics 

The model's performance is assessed using common metrics such as RMSE, MAE, MAPE, and R2. 

Each metric offers insights into the model's prediction accuracy and fit. Equations 9-12 illustrate the 

calculations for these evaluation metrics. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

   (9) 

  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (10) 

  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

|

𝑛

𝑖=1

× 100% (11) 

  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (12) 

 

In these equations, n is the number of data points, 𝑦𝑖  signifies the actual values, 𝑦�̂� stands for the 

predicted values, and �̅� represents the mean of the actual values. 

These metrics deliver quantitative measures to evaluate the model's accuracy and performance in 

weather prediction. Lower RMSE and MAE values suggest better accuracy, and higher R2 values indicate an 

improved fit between predicted and actual values. MAPE shows the percentage difference between the 

predicted and actual values. By examining the model with these metrics, researchers can thoroughly determine 

its effectiveness in weather prediction tasks. 

 

3. RESULTS AND ANALYSIS 

3.1. Feature Correlation 

As shown in Figure 5, here is the analysis of the correlation table between weather features of 

temperature, pressure, humidity, and wind speed: 

1. Temperature and Pressure: A correlation coefficient of -0.399557 suggests a moderate negative 

correlation, which indicates that as temperature increases, the pressure typically decreases. 

2. Temperature and Humidity: A correlation coefficient of -0.679107 suggests a significant negative 

correlation. Here, an increase in temperature tends to be associated with a decrease in humidity. 

3. Temperature and Wind Speed: The correlation coefficient for these features is 0.205148, a low 

positive correlation. This indicates that temperature and wind speed only weakly increase together. 

4. Pressure and Humidity: The correlation here is 0.058880, almost negligible, meaning changes in 

pressure do not regularly coincide with changes in humidity. 

5. Pressure and Wind Speed: A correlation coefficient of 0.001580 suggests no significant relationship 

between pressure and wind speed. 

6. Humidity and Wind Speed: The coefficient of -0.350623 signifies a moderate negative correlation. 

An increase in humidity implies a decrease in wind speed and vice versa. 
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Figure 5. Feature Correlation 

 

Correlation is a measure of association, not causation. It merely indicates the degree to which two 

variables move in relation to each other. 

 

3.2. Performance Metrics 

This study utilized the Stacked GRU model to predict the weather for the next 240 hours. The model's 

performance was evaluated using key metrics, including RMSE, MAE, MAPE, and R2, as shown in Table 1. 

These metrics provide insights into the accuracy and reliability of the predictions. The results obtained from 

the model demonstrated promising performance, with low values of RMSE and MAE, indicating small errors 

between the actual and predicted values. The MAPE values showed a reasonable percentage of error in the 

predictions, while the R2 values indicated a high level of variance explained by the model. 

 

Table 1. Performance analysis of the Stacked GRU 

Feature  RMSE  MAE  MAPE  R2 

Temperature 0.03263 0.02770 0.04828 0.90975 
Pressure 0.02950 0.02448 0.06125 0.94575 

Humidity 0.04548 0.03554 0.05195 0.87628 

Wind Speed 0.03782 0.02954 0.19125 0.94959 
Average 0.03635 0.02932 0.08818 0.92034 

 

The figures were generated to illustrate the performance visually, showcasing the actual and predicted 

weather for the next 240 hours, as shown in Figures 6-9. This graphical representation compares the predicted 

(red line) and observed (blue line) weather, highlighting any significant trends or deviations. The figure 

provides a visual confirmation of the model's ability to capture the general patterns and movements in the 

weather, further supporting the effectiveness of the Stacked GRU model in predicting future weather trends. 

 

 

Figure 6. Temperature performance 

 

 

Figure 7. Pressure performance 
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Figure 8. Humidity performance 

 

Figure 9. Wind speed performance 

 

3.3. Performance Analysis 

The Stacked GRU model's performance in predicting weather features can be analyzed using RMSE, 

MAE, MAPE, and R2 metrics. Each feature has its characteristics and challenges, as discussed below. The 

model shows a relatively low error in predicting temperature, as evidenced by the low RMSE, MAE, and 

MAPE values. With an R2 score of 0.90975, the model has strong predictive power for temperature. This 

suggests that the model captures most of the variance in temperature data and can accurately forecast 

temperature changes. 

The pressure prediction performance is better than that of temperature, with lower RMSE, MAE, and 

MAPE values. The R2 score of 0.94575 indicates high reliability in predicting pressure. The model excels in 

understanding pressure data's underlying patterns and complexities, making it suitable for predicting pressure 

changes. 

Humidity prediction has a higher RMSE, MAE, and MAPE than temperature and pressure, indicating 

that the model has more difficulty accurately predicting humidity. The R2 score, at 0.87628, is the lowest 

among the features, suggesting that the model has room for improvement in capturing the variance in humidity 

data. The model's performance in humidity forecasting may be affected by factors such as the complex 

interactions between temperature, pressure, and other weather phenomena. 

Wind speed prediction has a lower RMSE and MAE than humidity but exhibits a notably higher 

MAPE value, indicating a larger percentage difference between predicted and actual values. Despite the high 

MAPE, the model has an impressive R2 score of 0.94959, suggesting that it explains a significant portion of 

the variance in wind speed data. The high MAPE value may be attributed to wind speed's inherent 

unpredictability and volatility due to various factors, such as geographical locations and complex atmospheric 

processes. 

The Stacked GRU model demonstrates reliable performance across temperature, pressure, humidity, 

and wind speed predictions. While improvements can be made, particularly in predicting humidity and wind 

speed, the model has proven its potential for accurate and efficient weather forecasting. 

 

3.4. Strengths and Limitations 

The Stacked GRU model's strengths and limitations can be assessed based on its performance in 

predicting different weather features such as temperature, pressure, humidity, and wind speed. 

The Stacked GRU model employed in this research possesses several strengths, as follows: 

1. Accurate Predictions: Overall, the model shows good accuracy in predicting temperature, pressure, 

and wind speed, as evidenced by low RMSE and MAE values. 

2. High R2 scores: The model displays high R2 scores for temperature, pressure, and wind speed 

predictions, indicating that it can effectively capture variance in these features' data. 

3. Use of Temporal Information: As a recurrent neural network variant, the GRU model is particularly 

suited for time series data, like weather patterns, where temporal dynamics are key. 

 

Despite its strengths, the Stacked GRU model also has certain limitations that should be considered, 

as follows: 

1. Difficulty with Humidity Prediction: The model seems to struggle more with predicting humidity. The 

error rates for humidity (RMSE, MAE, and MAPE) are higher than those for other features. 

2. High MAPE values: Despite the lower RMSE and MAE values, the significantly high MAPE value 

for wind speed suggests that there can be large percentage differences between the predicted and actual 

values. This could mean that the model might sometimes give significantly off predictions. 

3. Potential Overfitting: The model's high accuracy may also indicate overfitting, where it has learned 

the training data too well but may not perform well on new, unseen data. 

4. Computational Expense: Stacked GRU can be computationally expensive and time-consuming to train 

due to the stacking of multiple layers of GRUs. 
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In summary, limitations exist while the Stacked GRU has demonstrated strengths, particularly where 

handling temporal dynamics is key. Considering these when deploying the model or interpreting its results will 

be essential. 

 

3.4. Implications of The Findings 

This research highlights the potential of the Stacked GRU model in improving weather prediction 

accuracy for various weather variables. The model's ability to accurately forecast temperature, pressure, 

humidity, and wind speed showcases its relevance and significance in critical sectors such as agriculture, 

transportation, and disaster preparedness. By leveraging deep learning techniques, this study contributes to 

advancements in weather forecasting, empowering decision-makers with precise information for informed 

planning, resource management, and risk mitigation. The findings underscore the importance of adopting 

sophisticated machine learning approaches to enhance weather prediction capabilities, facilitating more 

effective strategies for weather-related applications and improving overall societal resilience in changing 

weather patterns. 

 

3.5. Practical Recommendations 

For researchers and practitioners looking to leverage Stacked GRU for weather prediction, practical 

recommendations include: (1) Conducting comprehensive data preprocessing to ensure high data quality and 

consistency, addressing missing values, outliers, and scaling data appropriately. (2) Fine-tuning the model 

architecture and hyperparameters through systematic experimentation to optimize performance and avoid 

overfitting. (3) Using ensembles to combine predictions from multiple Stacked GRU models enhances 

robustness and prediction accuracy. (4) Exploring transfer learning techniques by pretraining the model on 

related weather datasets to leverage existing knowledge and improve performance on specific regions or 

weather patterns. (5) Focusing on model interpretability by incorporating attention mechanisms or other 

explainable AI techniques to gain insights into the model's predictions and foster trust in the results. By 

following these recommendations, researchers and practitioners can effectively harness the power of Stacked 

GRU for improved weather prediction outcomes and advance the application of deep learning in weather 

forecasting. 

 

4. CONCLUSION 

The Stacked Gated Recurrent Unit (GRU) model demonstrates notable capability in weather 

forecasting. It has achieved high accuracy in predicting temperature, pressure, humidity, and wind speed, 

verified by low RMSE and MAE values, alongside high R2 scores. These results suggest the model's predictive 

strength, displaying its aptitude for handling time series weather data. However, the model faces challenges in 

predicting humidity, as seen from higher error rates in this area, and there are concerns about significant 

discrepancies in percentage errors within wind speed forecasting. These areas represent potential boundaries 

of the model that need to be addressed in future research. 

As we look ahead, these results provide a foundation for future study. The possibility of improving 

humidity prediction and addressing the discrepancy in wind speed forecasting offers avenues for further 

development. Potential overfitting and computational expense also present opportunities for exploration and 

optimization to enhance model efficiency and scalability. Optimized versions of this model bear potential for 

applications beyond weather forecasting. Numerous fields involving time-series data predictions, including 

stock market forecasting, energy demand prediction, and traffic flow prediction, may benefit from similar 

advancements. Ultimately, this research has highlighted the power of the Stacked GRU model for weather 

forecasting but also established areas that need refinement for optimal performance. The future holds promising 

opportunities for both the enhancement of this model and the extension of similar models to other applications. 
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