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 The escalating growth of the internet has led to an increase in cyber 

threats, particularly malware, posing significant risks to computer 

systems and networks. This research addresses the challenge of 

developing sophisticated malware detection systems by optimizing the 

Back Propagation Neural Network (BPNN) with hyperparameter 

tuning. The specific focus is on fine-tuning essential hyperparameters, 

including dropout rate, number of neurons in hidden layers, and 

number of hidden layers, to enhance the accuracy of malware 

detection. A Back Propagation Neural Network (BPNN) with dropout 

regularization is trained on an extensive dataset as part of the research 

design. Hyperparameter optimization is conducted using 

GridSearchCV, with experiments varying learning rates and epochs. 

The best configuration achieves outstanding results, with 98% 

accuracy, precision, recall, and F1-score. The proposed approach 

presents an efficient and reliable solution to bolster cybersecurity 

systems against malware threats. 
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1. INTRODUCTION 

The rapid expansion of the internet has become an essential aspect of daily life worldwide. As of April 

2023, there were over five billion internet users, constituting approximately 64.6% of the global population 

[1]. This interconnected web of computers, networks, and interconnected devices has been made possible 

through continuous technological advancements in computer systems, networks, and mobile devices, leading 

to a significant surge in internet usage. However, this exponential growth in internet users has also escalated 

the vulnerability of computer systems and networks to cyberattacks [2]. Among the various cyber threats, one 

of the most significant risks to the security of computer systems and networks is malware, which stands for 

malicious software. Malicious programs are specifically designed to infiltrate, cause harm, or steal sensitive 

information from the targeted system. In the realm of cybersecurity, the detection of malware plays a crucial 

role in preventing potential data breaches and thwarting cyberattacks. Effectively identifying and combating 

malware is of utmost importance in safeguarding the integrity and confidentiality of sensitive data. 

To address these security challenges effectively, it is crucial to prioritize the development of a 

sophisticated malware detection system, leveraging the capabilities of machine learning (ML) and deep 

learning (DL) [3]. Cybersecurity experts firmly believe that ML/DL-based anti-malware software will 

significantly improve the detection of new malware types and enhance existing scanning engines. Machine 

learning and deep learning offer distinct advantages in malware detection and analysis tools. Traditional 

machine learning techniques rely on feature engineering and feature representation techniques, which demand 

domain knowledge [4]. Currently, deep learning, an enhanced neural network model, has outperformed 

traditional machine learning in various tasks such as speech recognition, pattern identification, image 
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classification, and many other classification tasks. Deep learning automatically extracts features at each layer, 

as it has the capability of learning high-level feature representations through layered training from the lowest 

to the highest levels [5]. 

In previous research, several studies on malware detection have been conducted using various 

techniques. For instance, Saxe and Berlin [6] proposed a malware classification system constructed using a 

neural network with two hidden layers. These hidden layers were composed of 1024 Parametric Rectified 

Linear Units (PReLu), while the output layer utilized a sigmoid neuron to classify instances as either malware 

or benign. They have achieved a 95% detection rate with a 0.1% false positive rate when running an experiment 

on a 400,000 samples dataset. Huda et al. [7] proposed multilayer perceptron artificial neural network trained 

with backpropagation algorithm to determine an Android application is malware or benign. The experimental 

results show that the proposed method is effective, with a relatively high accuracy in recognizing existing 

malware samples. Pan,et al. [8] proposed a malware classification approach based on dynamic analysis, using 

dynamic analysis to obtain behavior profiles which are then used to abstract malware features and input the 

Back Propagation (BP) Neural Network model. The experimental results show the technique is effective and 

accurate. The methodology has an average accuracy of up to 86%, with non-malware categories predicting 

accuracy up to 99%. This suggests that the methodology can be easily extended for malware detection.  

Makandar and Patrot [9] explored the classification of malware samples by converting them into 

grayscale images and using texture features for analysis. They extracted a total of 512 feature vectors using 

Gabor Wavelet Transform (GWT) and the Generic Fourier Descriptor (GIST) to observe the malware behavior. 

From these feature vectors, they selected 320 two-dimensional features and applied an Artificial Neural 

Network (ANN) for classification. The choice of using a feed-forward artificial neural network was driven by 

its capability to identify hidden patterns within complex data, such as images, sounds, and signals, while also 

providing implementation flexibility. For the training process, the authors utilized the backpropagation 

algorithm. Despite their dedicated efforts, they encountered challenges in effectively handling high-

dimensional feature vectors, which resulted in a suboptimal accuracy of 96.35% for the malware classification 

task. Babak et al. [10] developed a neural network model for classifying PE files, employing the Gradient 

Descent algorithm with a decayed learning rate to update the weights during training. The model utilized the 

softmax activation function for the output neurons. With a dataset comprising 4,000 samples (3,000 malicious 

PE files and 1,000 benign), the implemented neural network achieved impressive performance metrics. The 

average accuracy attained was 97.8%, with a precision of 97.6% and a recall of 96.6%. These findings 

demonstrate the efficacy of their approach in accurately classifying PE files into malicious and benign 

categories. The utilization of the Gradient Descent algorithm and softmax activation function showcases the 

model's ability to handle complex data and effectively distinguish between potentially harmful and benign files. 

Previous research has demonstrated the promising efficacy of Back Propagation Neural Networks 

(BPNNs) in malware detection, owing to their ability to learn intricate patterns and relationships within data. 

Nonetheless, the performance of BPNNs is heavily dependent on hyperparameters, which dictate the network's 

architecture and learning process. In this study, our objective is to optimize the malware detection process by 

fine-tuning key hyperparameters of the Back Propagation Neural Network through Hyperparameter Tuning. 

Our focus centers on three critical hyperparameters: the dropout rate, the number of hidden units in each layer, 

and the number of hidden layers. Leveraging dropout regularization helps prevent overfitting and enhances the 

model's generalization capability. Systematically evaluating various combinations of these hyperparameters, 

we endeavor to identify the optimal settings that will yield improved accuracy in malware detection. 

To achieve this optimization, we propose a novel approach by utilizing a Back Propagation Neural 

Network (BPNN) with dropout regularization. The inherent capability of BPNN architecture in handling 

complex data makes it a suitable candidate for classifying malware. While the existing literature has explored 

the use of Artificial Neural Networks (ANNs) for malware classification, the specific application of BPNNs 

with dropout regularization to optimize malware detection using Back Propagation Neural Networks and 

Hyperparameter Tuning remains relatively underexplored. This study seeks to make a substantial contribution 

to the advancement of cybersecurity systems against malicious threats, ultimately culminating in an optimized 

and efficient malware detection solution. 

 

2. RESEARCH METHOD 

2.1. Research Design 

The research design for this study is structured to optimize malware detection using Back Propagation 

Neural Network (BPNN) in conjunction with Hyperparameter Tuning. The process follows a systematic and 

well-defined flow aimed at enhancing the accuracy and efficiency of malware detection. The first step involves 

acquiring the dataset containing malware detection data. For this purpose, publicly available data was collected, 

specifically utilizing the dataset for the classification of malware with PE Headers sourced from github.com 

[11]. This dataset serves as the foundation for classifying PE files into two categories: malware and benign 



                p-ISSN: 2614-3372 | e-ISSN: 2614-6150 

IJAIDM  Vol. 6, No. 2, September 2023:  220 – 230 

222 

(legitimate). The dataset used in the study is extensive, comprising over 138,000 instances. Among these, 

96,724 samples were identified as malware, while 41,323 samples were labeled as benign (legitimate).  

 

 

Figure 1. Class Distribution 

 

Once the dataset is obtained, preprocessing techniques are applied to cleanse the data and prepare it 

for further analysis. This involves handling missing values and normalizing the dataset. The normalization 

method employed is MinMaxScaler. This method transforms each value in the dataset to a range between 0 

and 1, where 0 represents the minimum value in the dataset, and 1 represents the maximum value. During the 

normalization process using MinMaxScaler, each value in the dataset is subtracted by the minimum value in 

the dataset, and the result is divided by the difference between the maximum and minimum values [12]. As a 

result, the range of values for all attributes in the dataset becomes uniform, allowing attributes with different 

value ranges to be treated fairly during analysis and modeling [12]. 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                      (1) 

 

The preprocessed dataset is divided into two subsets: the training set and the testing set. The training 

set is used for model training, allowing the Back Propagation Neural Network (BPNN) to learn from the data. 

The testing set, on the other hand, is used to evaluate the model's performance on new and independent data. 

The data is split in an 80-20 ratio, with 80% allocated to the training set and 20% to the testing set. This ensures 

that the model learns from a significant portion of the data and can effectively identify intricate patterns and 

relationships. The testing set provides an unbiased assessment of the model's ability to generalize to new and 

unseen data, reflecting its real-world performance. 

The core of the research design lies in the architecture of the BPNN model and the utilization of 

Dropout Regularization. The model consists of multiple layers, each comprising a certain number of neurons, 

with different activation functions. The input layer of the neural network is determined by the number of 

features present in the preprocessed dataset. In this study, the number of input neurons corresponds to the 

number of features, facilitating the extraction of relevant information from the data. Subsequently, the model 

includes multiple hidden layers, each containing a specified number of hidden units. These hidden layers play 

a vital role in learning intricate patterns and relationships within the data, enabling the model to detect and 

classify malware instances effectively. The number of hidden layers and hidden units are hyperparameters that 

undergo tuning during the optimization process. 

To mitigate the risk of overfitting, dropout regularization is applied after each hidden layer. Dropout 

refers to the process of dropping out units (both hidden and visible) in an artificial neural network. Dropping 

out units involves temporarily removing these units from the neural network along with all the connections that 

lead to and from the respective units [13]. The dropout rate, which is another hyperparameter, determines the 

proportion of neurons that are randomly deactivated during each training iteration. By using this regularization 

technique, the model becomes more robust and avoids excessive reliance on specific neurons, thereby 

enhancing its generalization capability. 

Furthermore, the activation function used in the input layer and hidden layers is Rectified Linear Unit 

(ReLU), which allows the model to handle non-linear relationships in the data effectively. The ReLU activation 

function, proposed by [14], is founded on robust biological and mathematical principles. Initially introduced 

in 2011, it demonstrated significant advancements in training deep neural networks. The function operates by 



IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150  

 

Optimizing Malware Detection using Back Propagation… (Siregar et al.) 

223 

setting values below 0 to 0, effectively using f(x) = max(0, x). In simpler terms, it outputs 0 when x < 0 and a 

linear function when x ≥ 0. 

 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)  =  {𝑥𝑖, 𝑖𝑓 𝑥𝑖 ≥ 0;  0, 𝑖𝑓 𝑥𝑖 < 0            (2) 

 

The output layer, which is responsible for handling the binary classification problem (distinguishing 

between malware and benign samples), uses the sigmoid activation function. The sigmoid function, also known 

as the logistic function, is a non-linear activation function that maps the output of a neuron to a range between 

0 and 1 [15] [16] [17]. This mapping allows the sigmoid activation function to interpret the output as a 

probability, indicating the likelihood of a particular class being present in the input data. Mathematically, the 

sigmoid activation function can be expressed as follows: 

 

𝑓(𝑥)  =  
1

1+𝑒−𝑥
                                (3) 

 

where 𝑥 is the input to the activation function, and 𝑓(𝑥) is the output in the range [0, 1]. When the 

input 𝑥 is positive, the output 𝑓(𝑥) tends to 1, and when 𝑥 is negative, the output 𝑓(𝑥) tends to 0. This property 

makes the sigmoid function suitable for binary classification problems, where the goal is to classify data into 

one of two distinct classes. 

The advantages of using the sigmoid activation function in the output layer for binary classification 

tasks are twofold. Firstly, the sigmoid function offers a natural interpretation of the output as a probability 

score, facilitating the establishment of a decision threshold, typically set at 0.5, for making class predictions. 

In our study, we implemented this by classifying input data as benign if the output probability is greater than 

0.5, and as malware if the probability is less than or equal to 0.5. This thresholding mechanism simplifies the 

decision-making process, promoting clarity and logical reasoning in binary classification tasks. 

Secondly, the sigmoid activation function's ability to compress the output in the range [0, 1] helps 

mitigate the issue of vanishing gradients during backpropagation [17]. Vanishing gradients occur when the 

gradient becomes too small as it propagates backward through the layers during training. This can hinder the 

learning process, especially in deep networks. The sigmoid function's derivative ranges from 0 to 0.25, which 

helps avoid extremely small gradients compared to other activation functions with larger derivative ranges.  

In order to optimize the performance of the neural network model, we employ the Adam optimizer, 

an adaptive learning rate algorithm widely used in training deep neural networks [18]. The Adam optimizer 

combines the advantages of both the Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square 

Propagation (RMSprop) [19]. By dynamically adjusting the learning rates for each parameter during training, 

Adam is particularly effective in handling sparse gradients and non-stationary objective functions [20] [21], 

leading to faster convergence and better generalization on unseen data. 

The key advantage of the Adam optimizer lies in its ability to maintain two moving average estimates: 

the first moment (mean) of the gradients and the second moment (uncentered variance) of the gradients [19]. 

These estimates are calculated using exponential moving averages and bias correction, effectively mitigating 

the impact of noisy gradients and improving optimization performance  [19]. Furthermore, Adam incorporates 

bias correction during the initial optimization steps, especially beneficial when dealing with parameters having 

large gradients. This correction ensures a smoother optimization process, preventing overshooting or 

oscillation during parameter updates. 

The Adam optimizer updates the model's parameters based on the gradients of the loss function with 

respect to those parameters. It combines the concepts of momentum and RMSprop to achieve adaptive learning 

rates for each parameter during training. The formulas for updating the parameters using the Adam optimizer 

are as follows [20]: 

1. Moving average of the first moment (mean) of the gradients (m): 

 

𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡           (4) 

 

2. Moving average of the second moment (uncentered variance) of the gradients (v): 

 

𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2           (5) 

 

3. Bias-corrected first moment estimate: 

 

�̂�𝑡  =  
𝑚𝑡

1−𝛽1
𝑡                          (6) 
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4. Bias-corrected second moment estimate: 

 

�̂�𝑡  =  
𝑣𝑡

1−𝛽2
𝑡            (7) 

 

5. Update rule for each parameter (θ): 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√�̂�𝑡+𝜖
. �̂�𝑡                (8) 

 

where: 

𝑚𝑡 represents the moving average of the gradients' first moment at time step t. 

𝑣𝑡  represents the moving average of the gradients' second moment at time step t. 

𝑔𝑡 represents the gradients of the loss function with respect to the parameters at time step t. 

𝛽1 and 𝛽2 are the exponential decay rates for the first and second moment estimates, respectively (typically set 

to 0.9 and 0.999). 

𝜂 is the learning rate, which controls the step size of the parameter updates. 

𝜖 is a small constant (usually 10−8) added to the denominator for numerical stability. 

 

The Adam optimizer is renowned for its adaptive learning rate capability, which efficiently optimizes 

deep neural networks by adjusting learning rates based on historical gradients [18]. This adaptability, coupled 

with the integration of momentum and RMSprop concepts, firmly establishes Adam as a powerful and widely 

employed algorithm in the field of deep learning. Notably, its effectiveness extends to large datasets and high-

dimensional feature spaces, rendering it a valuable asset for deep learning research [19]. 

In this research, we employ the binary cross-entropy loss function as a vital element in training neural 

networks for binary classification tasks. The loss function, also known as a cost function or objective function 

in machine learning, quantifies the disparity between the model's predicted values and the true labels within 

the training data. The primary purpose of the loss function is to guide the optimization process by providing a 

measure of how well the model is performing on the task at hand [22]. 

Binary cross-entropy is a specific type of loss function well-suited for binary classification tasks, 

where the objective is to categorize data into one of two possible classes (e.g., malware or benign). The binary 

cross-entropy loss function computes the cross-entropy between the predicted probabilities and the true binary 

labels of the data samples. It assesses the dissimilarity between the model's predictions and the actual labels, 

taking into account both positive and negative samples. The formula for binary cross-entropy is given as: 

 

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑁
∑ (𝑦𝑖 . 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖). 𝑙𝑜𝑔(1 − 𝑝𝑖))𝑁

𝑖=1            (9) 

 

One of the advantages of using binary cross-entropy in the research being conducted is its suitability 

for binary classification tasks and its compatibility with the sigmoid activation function in the output layer. 

The sigmoid activation function restricts the model's output to a probability value between 0 and 1, allowing 

for the interpretation of predictions as class probabilities for binary classification. This aligns well with the 

binary cross-entropy loss, which measures the alignment between predicted probabilities and true binary labels, 

incentivizing the model to produce confident predictions for the correct class. 

Additionally, binary cross-entropy provides a clear and interpretable measure of the model's 

performance. Lower values of binary cross-entropy indicate better alignment of the model's predictions with 

the true binary labels, implying improved classification accuracy. Thus, the choice of binary cross-entropy as 

the loss function in the research supports effective training of the neural network and accurate classification of 

samples into the two classes, namely malware and benign, enabling reliable analysis and detection in the 

domain of malware detection. 

The model in this research undergoes training and hyperparameter tuning using a custom loop with 

GridSearchCV (Grid Search Cross-Validation), a powerful technique for hyperparameter optimization in 

machine learning [23]. GridSearchCV systematically explores a specified hyperparameter grid to identify the 

combination that yields the best model performance on the testing data. The hyperparameters being tuned in 

this research are the dropout rate, number of hidden units, and number of hidden layers. The dropout rate is a 

regularization technique that randomly drops out a fraction of neurons during training to prevent overfitting. 

The number of hidden units refers to the number of neurons in each hidden layer, and the number of hidden 

layers determines the depth and complexity of the neural network architecture. 

GridSearchCV exhaustively searches all possible hyperparameter combinations within the grid. Each 

combination is trained and evaluated through cross-validation, where the dataset is split into multiple folds, 
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and each fold acts as a validation set. This approach ensures a robust and unbiased evaluation of the model's 

performance [24]. The key advantage of using GridSearchCV in this research is its ability to automate 

hyperparameter tuning and explore a wide range of combinations, leading to the identification of optimal 

hyperparameters for improved testing data accuracy. GridSearchCV systematically compares various 

hyperparameter combinations, aiding researchers in making informed decisions regarding neural network 

architecture and configuration. Furthermore, GridSearchCV's evaluation on multiple folds of the dataset 

ensures the selection of hyperparameters that generalize well to new data and minimize overfitting risks. 

Once the best model has been selected, the training process proceeds with the epochs and learning 

rate specified for the experimentation. In this research journal, we conduct a series of experiments to explore 

the impact of different learning rates on the model's performance. Specifically, we test four learning rates: 0.1, 

0.05, 0.01, and 0.001. The learning rate plays a crucial role in the optimization process, determining the step 

size for updating the model's parameters during training. By examining various learning rates, we aim to 

identify the most suitable rate that maximizes the model's convergence and classification accuracy. 

Additionally, we perform the training process for two different epoch values, namely 100 and 200. This 

variation in the number of epochs allows us to observe how the model's performance evolves over time and 

how additional training iterations affect its accuracy and other evaluation metrics. 

For the evaluation of the model's performance, we choose essential metrics, including accuracy, 

precision, recall, and F1-score. These metrics serve as comprehensive measures of the model's classification 

capabilities in distinguishing between malware and benign samples. Accuracy provides an overall assessment 

of the model's correctness, while precision evaluates its ability to correctly identify positive samples. Recall 

measures the model's capability to detect all positive instances in the dataset, and F1-score strikes a balance 

between precision and recall, providing a more nuanced understanding of the model's performance. 

By systematically analyzing the model's behavior and performance across different learning rate s and 

epochs using these evaluation metrics, our research aims to gain valuable insights into the optimal 

hyperparameter configurations that lead to superior malware detection accuracy. The findings from this study 

will contribute to advancing the field of cybersecurity and fostering the development of more robust and 

accurate malware detection systems. 

 

 

Figure 2. Research Design Flowchart 

 

2.2. Model Evaluation 

The model evaluation process is crucial to assess the effectiveness of the proposed method. It aims to 

measure the model's capability in accurately classifying malware and benign samples. The evaluation involves 

employing well-established performance metrics, namely accuracy, precision, recall, and F1-scores, to provide 

an objective and comprehensive analysis of the model's performance.  
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Accuracy assesses the overall correctness of the model's predictions by measuring the percentage of 

correctly classified samples. Precision evaluates the model's ability to correctly identify positive samples 

(benign) out of all predicted positive instances. Recall measures the model's capacity to detect all positive 

samples from the entire dataset of positive samples. F1-score strikes a balance between precision and recall, 

providing a harmonic mean that indicates the model's overall effectiveness in binary classification tasks. 

 

Table 1. Performance Metrics for Evaluation 

Metric Formula Description 

True Positive (TP) count() 
Number of samples correctly classified as 
benign 

False Positive (FP) 
count() Number of samples incorrectly classified as 

benign 

True Negative (TN) 
count() Number of samples correctly classified as 

malware 

False Negative (FN) 
count() Number of samples incorrectly classified as 

malware 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Proportion of correctly predicted samples 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

How well the model predicts benign samples as 

benign 

Recall/TPR 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

How well the model is able to find all benign 

samples 

F1-score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Harmonic mean of precision and recall, 
measures the balance between precision and 

recall 

 

By utilizing these performance metrics, the research ensures a rigorous and systematic evaluation of 

the model's classification capabilities. The results obtained from the evaluation process will play a significant 

role in validating the proposed approach and making informed decisions about its practical applicability in the 

field of malware detection. 

 

3. RESULTS AND ANALYSIS 

In this section, we present the outcomes and analysis of our research aimed at optimizing malware 

detection using the Back Propagation Neural Network (BPNN) in conjunction with hyperparameter tuning. 

Following the selection of the best model through GridSearchCV, we conducted multiple experiments by 

varying the learning rates and epochs. Specifically, we tested learning rates of 0.1, 0.05, 0.01, and 0.001, while 

setting epochs to 100 and 200. 

The experimental results from the various learning rates and epochs are presented in Table 2. The 

table provides a comprehensive analysis of the model's performance, presenting key metrics such as accuracy, 

precision, recall, and F1-score. These metrics play a crucial role in evaluating the model's capability to 

accurately detect and distinguish between malware and benign samples. Additionally, we meticulously 

recorded the computational time required for each experiment, allowing us to thoroughly assess the model's 

training efficiency. 

 

Table 2. Experimental Results of Malware Detection using BPNN with Hyperparameter Variations 

learning 
rate  

Epoch 

Best Hyperparameter 
according to GridSearchCV 

Acc 
(%) 

Prec 
(%) 

Recall 
(%) 

F1-

score 

(%) 

Computational 
Time (s) Dropout 

Rate 

Number of 

Neurons in the 
Hidden Layer 

Number of 

Hidden 
Layers 

0.1 50 0.2 20 1 97 97 97 97 1144.91 

0.05 50 0.2 20 1 97 97 97 96 1189.57 

0.01 50 0.1 10 2 97 97 97 97 734.31 
0.001 50 0.2 20 2 97 97 97 97 1290.57 

0.1 100 0.1 20 1 97 97 97 97 2292.28 

0.05 100 0.1 20 1 97 97 97 97 2346.54 
0.01 100 0.1 20 1 97 97 97 97 1421.77 

0.001 100 0.1 20 2 97 97 97 97 1581.69 

0.1 200 0.1 20 1 98 98 98 98 6325.65 

0.05 200 0.1 20 2 96 97 96 97 5414.67 

0.01 200 0.1 20 2 97 97 97 97 7464.18 
0.001 200 0.2 20 1 97 97 97 97 5459.82 

 

From the table, we observed that different hyperparameter values influence the model's performance 

in detecting malware. For instance, varying the learning rate and Epochs led to variations in the model's 
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accuracy, precision, recall, and F1-score. Notably, higher values for these metrics indicate a more accurate and 

reliable detection system. Furthermore, the Dropout Rate, Number of Neurons in Hidden Layer, and Number 

of Hidden Layers also played a crucial role in shaping the model's performance. By tuning these 

hyperparameters, the model achieved significant improvements in detecting both malware and benign samples. 

Upon analyzing the table, several noteworthy trends become evident. Firstly, the hyperparameter 

combination with a learning rate of 0.1, 200 epochs, and a dropout rate of 0.1, along with a single hidden layer 

containing 20 neurons, consistently produced the highest performance across all metrics, achieving an 

outstanding accuracy, precision, recall, and F1-score of 98%. Moreover, this configuration demonstrated a 

reasonable computational time of 6325.65 seconds, striking an effective balance between computational 

efficiency and model performance.  

Secondly, the combination with a learning rate of 0.01, 50 epochs, and a dropout rate of 0.2, along 

with a single hidden layer containing 20 neurons, also exhibited competitive results, achieving 97% accuracy, 

precision, recall, and F1-score. Additionally, this configuration demonstrated a relatively low computational 

time of 734.31 seconds, further highlighting its efficiency. 

Nevertheless, it is essential to consider other combinations as well. For instance, the hyperparameter 

combination with a learning rate of 0.05, 100 epochs, and a dropout rate of 0.1, along with a single hidden 

layer containing 20 neurons, achieved 97% performance across all metrics, while requiring a computational 

time of 2346.54 seconds. Although the computational time is higher compared to the previously mentioned 

configurations, it still offers acceptable performance.  

On the other hand, some configurations, such as a learning rate of 0.05 with 200 epochs and a dropout 

rate of 0.1, along with two hidden layers, each containing 20 neurons, resulted in slightly lower performance, 

with accuracy, precision, recall, and F1-score falling in the range of 96-97%. Although the computational time 

was moderate at 5414.67 seconds, this combination may not be the most optimal choice for achieving the 

highest recall and F1-score. 

The computational time varied significantly between experiments due to the influence of 

hyperparameter configurations. Longer training times were observed for configurations with more epochs and 

complex network structures. The increased number of epochs necessitates more iterations during the training 

process, consuming additional computational resources and time. Similarly, network structures with more 

hidden layers and neurons result in higher parameter counts, leading to increased computations during forward 

and backward passes. Consequently, configurations with more complex structures require longer training 

times. Conversely, configurations with fewer epochs and simpler network structures may offer shorter training 

times but could compromise optimal performance.  

In summary, the best hyperparameter combination should be determined by a careful trade-off 

between performance metrics (accuracy, precision, recall, F1-score) and computational time. The configuration 

with a learning rate of 0.1 and epochs of 200 stands out as the most promising choice, offering the highest 

overall performance and computational efficiency. Nevertheless, other combinations should also be 

considered, as they may provide viable alternatives depending on the specific requirements and constraints of 

the malware detection system. 
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Figure 3. Comparison graph of accuracy for two different experimental settings.  

In condition (a), a learning rate of 0.1 was used in combination with 200 epochs,  

while in condition (b), a learning rate of 0.05 was employed with 200 epochs. 

 

The implications of this finding are significant for malware detection using neural network models. 

The hyperparameter combination with a learning rate of 0.1 and 200 epochs demonstrates superior performance 

and computational efficiency. To comprehensively validate the advantages of this configuration, further 

research is warranted, utilizing a dataset with a greater diversity of features. Evaluating the model's 

performance on a more varied dataset will enhance the reliability and applicability of the findings to real-world 

scenarios. By conducting this additional research, the study can provide stronger support for the proposed 

hyperparameter configuration, leading to more confident decisions in developing high-performing and efficient 

malware detection systems. 

 

4. CONCLUSION 

In this research, we addressed the critical challenge of optimizing malware detection using the Back 

Propagation Neural Network (BPNN) in conjunction with hyperparameter tuning. With the rapid expansion of 

the internet and the consequent rise in cyber threats, developing a sophisticated malware detection system 

leveraging machine learning (ML) and deep learning (DL) techniques has become a priority to safeguard 

computer systems and networks. 

Our study focused on fine-tuning key hyperparameters of the BPNN model, namely the dropout rate, 

the number of neurons in hidden layers, and the number of hidden layers, to enhance the accuracy of malware 

detection. To achieve this, we employed a Back Propagation Neural Network (BPNN) with dropout 

regularization, as it showed promise in handling complex data and classification tasks. The core of the research 

focused on hyperparameter optimization using GridSearchCV, a powerful technique for systematically 

exploring various combinations of hyperparameters to identify the optimal configuration. The experiments 

involved varying learning rates and epochs to understand their impact on the model's performance. 

Through rigorous experimentation and analysis, we identified the hyperparameter combination with 

a learning rate of 0.1 and 200 epochs as the most promising choice. This configuration consistently 

demonstrated outstanding performance, achieving an accuracy, precision, recall, and F1-score of 98% across 

all metrics. Moreover, it exhibited reasonable computational efficiency, striking an effective balance between 

model performance and training time. The implications of our findings are significant for the field of malware 

detection using neural network models. The proposed hyperparameter configuration with a learning rate of 0.1 

and 200 epochs exhibits superior performance and computational efficiency, making it a valuable asset in 

developing effective malware detection systems. 

However, further research and validation on datasets with greater feature diversity are warranted to 

strengthen the reliability and applicability of the results in real-world scenarios. In conclusion, our research 

successfully optimized malware detection using the BPNN with hyperparameter tuning. By leveraging deep 

learning techniques and systematically fine-tuning key hyperparameters, we developed a more robust and 

accurate malware detection solution. The proposed hyperparameter configuration demonstrates outstanding 

performance while maintaining computational efficiency, contributing to the field of cybersecurity and 

fortifying the security of computer systems and networks against malicious threats. 

Future research in this area should focus on validating the proposed hyperparameter configuration on 

diverse datasets and exploring the integration of other advanced ML and DL techniques to further enhance the 

model's capabilities. Despite the promising results, our research acknowledges the limitations inherent in the 
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dataset used for experimentation. To address this concern, utilizing more diverse and comprehensive datasets 

can ensure the model's robustness. Additionally, other hyperparameter optimization techniques beyond 

GridSearchCV should be explored to fine-tune the model's performance even further. 

By adopting the insights from this study, the field of cybersecurity can benefit from more reliable and 

efficient malware detection systems, ultimately fortifying the security of computer systems and networks 

against the ever-evolving landscape of cyber threats. 
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