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 The Javanese script is now rarely used, and some people no longer 

recognize it. Constructing a Javanese script recognition system based 

on digital image processing is one of its preservation efforts. This study 

proposes a model that can detect Javanese script using Faster R-CNN 

to help people who are not familiar with Javanese script. Object 

detection is chosen because it is not only able to detect the object, but 

also able to get the position of the object, and it can predict multiple 

objects simultaneously. Faster R-CNN was chosen for its higher 

accuracy and ability to detect small objects. Although Faster R-CNN 

performs well in text detection, its use in Javanese script detection is 

still unexplored, making its performance in this area unknown. This 

study aims to investigate Faster R-CNN's effectiveness in Javanese 

script detection. In this study, Faster R-CNN was able to show good 

performance by obtaining mean average precision (mAP) values up to 

0.8381, accuracy up to 96.31%, precision up to 96.53%, recall up to 

96.38 %, and F1-Score up to 96.41%. These results indicate that Faster 

R-CNN can detect Javanese script letters well. 
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1. INTRODUCTION 

At present, Javanese script is not widely utilized and some individuals are not even familiar with it 

[1]. This could lead to the gradual disappearance of the Javanese script until it eventually becomes extinct. To 

contribute to the preservation of the Javanese script, this study proposes a model that can detect the letters of 

the Javanese script. An object detection approach is used in this study to identify objects and their localization. 

Moreover, this approach can simultaneously recognize multiple objects. The detection and recognition of 

letters are not a new thing; there is research that has been done using different methods, such as in the research 

[2], which uses the Projection Profile Segmentation and Nearest Centroid Classifier; research [3], which uses 

Nested Multi-Layer Perceptron network with Modified Direction Feature; and research [4], which uses 

Convolution Neural Network (CNN). 

However, additional processes, such as using segmentation [2], [3] or response map [4], are still 

required to obtain the position of the object. To overcome this issue, this study uses one state-of-the-art object 

detection method, Faster R-CNN [5]. Faster R-CNN eliminates the additional process required to obtain the 

object's position. Faster R-CNN was selected for its high accuracy and ability to detect small objects [6], [7]. 

Moreover, the feature extractor or backbone in Faster R-CNN, based on the CNN architecture, can be modified 

or customized as desired, as in the research [8]–[11], which uses a different CNN architecture. Faster R-CNN 

has shown good performance in letter or text detection, as in the research [8] with kanji handwriting objects, 

research [9] with alphanumeric handwriting objects, and research [10] with scene text objects from the ICDAR 

2013 and 2015 datasets. 

Although it shows good performance in research [8]–[11], until the time of this study, the 

implementation of Faster R-CNN in detecting Javanese script letters has not been found, so it is not yet known 

how its ability to detect Javanese script letters. So, this study aims to implement Faster R-CNN using different 
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CNN architectures, then analyze and compare the performance of the Faster R-CNN model in detecting 

Javanese script letters on image-based data. 

In short, the main contributions of this paper are as follows: 

1. Proposing Faster R-CNN-based modeling for Javanese script letter detection; 

2. Construct a dataset with multiple Javanese script letters in each single image; 

3. Showing experimental results on the Faster R-CNN model using various backbones; and 

4. Present the analysis results of Faster R-CNN’s reliability in detecting Javanese script letters. 

 

Additionally, this paper explains the dataset, the proposed model, and the experimental setup in 

section 2. The results and analysis of the experiments are discussed in section 3, while section 4 presents the 

conclusions. 

 

2. RESEARCH METHOD 

 

 

Figure 1. Overview of the research stages. 

 

As seen in Figure 1, the stages in this study were divided into three stages, namely the Dataset 

Preparation Stage, Modeling and Training Stage, and Evaluation Stage, which will be explained in more detail 

in sections 2.4 to 2.6. 

 

2.1. Dataset 

This study uses a dataset that was generated using a dataset that contains images of Javanese script. 

This study uses only the basic Javanese script known as the Carakan or Nglegena script, which has 20 classes. 

Each class has 55 images, with 53 handwritten images and 2 digital font images. When generating the dataset, 

it is possible that the Javanese script image is resized and/or rotated. For resizing, it is done by 32 pixels to 144 

pixels. Then, for rotation, it is up to 45 degrees. For illustration, the dataset construction can be seen in Figure 

2. The dataset has a size of 576×576 pixels with 250 images.  

 

 

Figure 2. Illustration of the dataset construction; The rightmost part is the resulting composite image. 

 

2.2. Faster R-CNN 

Various methods can be used in text detection or object detection in general; One of these methods is 

Faster R-CNN [5]. Faster R-CNN is one of the regional-based CNN architectures used in object detection, 

which is developed from Fast R-CNN by introducing a Region Proposal Network (RPN) to replace the 
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Selective Search mechanism [5]. The structure of the Faster R-CNN is divided into four parts [9], [11] namely 

feature extractor, RPN, RoI pooling, and fully connected as shown in Figure 3 with the following explanation: 

a. Feature extractor 

In this part, feature extraction is carried out in the input image using CNN, which produces a feature 

map [9]. This section is also known as the backbone. 

b. Region Proposal Network (RPN) 

In this part, RPN generates a proposal region contained in the input image, which determines the anchors 

in the background and foreground using SoftMax. Then get an accurate proposal with a bounding box 

regression [9], [11]. 

c. Region of Interest pooling (RoI pooling) 

In this part, RoI pooling performs pooling so that the scale and size ratio is fixed for all RoI obtained 

from the proposal region and feature map [9]. 

d. Fully-connected 

In this part, classify objects and determine the position of objects using bounding box regression on 

feature maps and candidate region proposals that have been processed by the RoI Pooling [9]. 

 

Figure 3. The architecture of the Faster R-CNN [5]. 

 

2.3. CNN Architecture 

As mentioned in section 2.2, Faster R-CNN uses CNN. Convolutional Neural Network (CNN) is an 

evolution of artificial neural networks widely used in computer vision. CNN uses convolution to extract 

features from digital images. CNN architecture has been developed a lot and has its uniqueness; For example, 

SqueezeNet has a special structure that allows reducing the computation but still maintaining the level of 

accuracy [12], and EfficientNet can perform and balance scaling on several factors uniformly [13], ResNet has 

a structure that allows stacking layers to a great depth [14], and VGG has a deep convolution layer [15]. The 

CNN architecture of [12]–[15] can be seen in Figure 5 and the special blocks can be seen in Figure 4. 

 

 

Figure 4. Structure of the special block options: (a) Fire Module used by SqueezeNet [12], (b) Residual 

Block used by ResNet [14], (c) MBConv used by EfficientNet [13], and (d) Squeeze-and-Excitation [16] 
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Figure 5. CNN architectures compared in this study: (a) SqueezeNet [12], (b) EfficientNet-B0 [13], 

(c) ResNet-34 [14], and (d) VGG-16 [15]. 

 

2.4. Dataset Preparation 

In this stage, there are two steps. Firstly, the image dataset needs to be divided randomly into a training 

dataset and a test dataset. The training dataset is used to train the model, while the test dataset is used to evaluate 

the model. The total number of images in the training dataset is 200, which makes up 80% of the total dataset. 

On the other hand, the test dataset consists of 50 images, which makes up 20% of the total dataset. Table 1 

shows the distribution of Javanese script letters in both the training and test datasets, with an average of 12 

letters per image in the training dataset and 11 letters per image in the test dataset. Additionally, the dataset 

loading process is carried out for each training and test dataset by converting the form into data that the model 

can process, while also including information about the image from the annotation data. Once finished, the 

training and test datasets can be used for either model training or model evaluation.  

 

Table 1. Distribution of Javanese script letters in the dataset used in this study. 

Dataset 
Letters 

Total 
Ha Na Ca Ra Ka Da Ta Sa Wa La Pa Dha Ja Ya Nya Ma Ga Ba The Nga 

Training  129 128 145 111 120 123 111 127 136 121 113 127 127 128 122 134 129 132 118 117 2,498 

Testing  28 32 35 27 27 32 36 29 30 30 33 24 25 34 35 27 23 28 32 29 596 

 

2.5. Modeling and Training 

 

 

Figure 6. Flowchart of the model training. 
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At this stage, there are several stages, as shown in Figure 6. The first stage is loading the CNN model, 

which will be used as the Faster R-CNN backbone, As mentioned in section 2.3, this study uses four CNN 

architectures, namely SqueezeNet [12], EfficientNet-B0 [13], ResNet -34 [14], and VGG-16 [15]. For each 

CNN architecture, there are two versions of the CNN model, namely the Plain model and the Fine-tune model, 

with the following description: 

a. Plain model is a model that has never been trained at all. 

b. Fine-tune model is a model that uses a pre-trained model or a model that has been trained which is 

then adjusted so that the model can train new data. 

The fine-tuning model uses pre-trained weights obtained from training on ImageNet [17]. The purpose 

of using a fine-tuned model is to improve model performance because the dataset used in this study is small 

[18]. After loading the CNN model, the next step is building the Faster R-CNN model. After the Faster R-CNN 

model is built, the model is trained using the prepared training data to make a trained model. 

 

2.6. Testing and Evaluation 

 

 

Figure 7. Flowchart of the model testing and evaluation. 

 

At this stage, there are three stages carried out as shown in Figure 7. In the first stage, the model 

predicted the test data that was trained. The next step selected predictions with confidence greater than the 

threshold (0.5 in this study) using a confidence score-based filtering process. Finally, the last stage determined 

the model's performance by calculating the measurement metrics using the filtered prediction results from the 

previous stage. 

 

2.7. Measurement Metrics 

As explained in section 2.6, measurement metrics are needed to determine the performance of a model. 

This study uses measurement metrics including accuracy, precision, recall, F1-Score, and mean average 

precision (mAP). 

In the mAP metric, the main threshold value used in this study is a threshold of 0.5 to 0.95 with a step 

of 0.05 which will be referred to as mAP@[0.5:0.95], this threshold is also used in measurement metrics on 

the Microsoft COCO dataset [19]. In addition, using other IoU thresholds such as a threshold of 0.5 which will 

be referred to as mAP@0.5, and a threshold of 0.75 which will be referred to as mAP@0.75. 

 

2.8. Experimental Setup 

In this study, the model was implemented using the Python programming language version 3.8.5 using 

the help of several Python libraries, one of these libraries is PyTorch [20] which was used to build the model 

used in this study. The models that have been built are trained using a computer with specifications, namely an 

Intel® Core™ i7-8750H processor, Nvidia GeForce GTX 1050 4GB GPU, and 16GB RAM. 

The models were trained using the same optimizer as the Faster R-CNN research [5], namely the SGD 

optimizer with a learning rate of 0.001; momentum of 0.9; and weight decay of 0.0005 [5]. The models were 

trained for 100 epochs. 
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3. RESULTS AND ANALYSIS 

 

 
Figure 8. The average loss performance of each backbone model during the training stage. 

 

Table 2. Comparison of measurement metric values across models. 

Backbone Model mAP@0.5 mAP@0.75 mAP@[0.5:0.95] Accuracy Precision Recall F1-Score 

SqueezeNet 
Plain 0.9330 0.9217 0.8061 0.9111 0.9203 0.9138 0.9157 
Fine-tune 0.9632 0.9563 0.8348 0.9631 0.9653 0.9638 0.9641 

EfficientNet 
Plain 0.6955 0.6862 0.6021 0.7097 0.7782 0.7190 0.7257 

Fine-tune 0.9241 0.9050 0.7841 0.9245 0.9441 0.9272 0.9338 

ResNet 
Plain 0.7471 0.7344 0.6294 0.7483 0.8012 0.7523 0.7699 

Fine-tune 0.9446 0.9369 0.8360 0.9413 0.9600 0.9423 0.9501 

VGG 
Plain 0.8655 0.8573 0.7470 0.8574 0.8836 0.8600 0.8696 

Fine-tune 0.9586 0.9560 0.8381 0.9547 0.9652 0.9557 0.9596 

 

Based on Figure 8 and Table 2, there is a faster decrease in the loss value in the fine-tuned model 

compared to the plain model. Not only that, but the fine-tuned model also performs better on all measurement 

metrics. This can happen because the fine-tuned model uses the weight of the pre-trained model as the initial 

training weight of the model so that the model can get faster loss reduction and better performance than the 

plain model. As shown in [18], this study also shows that the fine-tuning model can improve performance on 

a model with a small dataset that only has 250 images with 3,094 objects compared to ImageNet which has 

around 1.2 million images [17] and on MS COCO which has around 330 thousand images [19]. 
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Table 3. Complexity and attribute of the backbone model. 

Backbone Model Parameter Depth Special Block 

SqueezeNet [12] ~1.25 M 1+8 Fire module 

EfficientNet-B0 [13] ~5.29 M 1+16+1 MBConv 
ResNet-34 [14] ~21.8 M 1+16 Residual Block 

VGG-16 [15] ~138.36 M 13 - 

 

In addition, as seen in Table 2 and Table 3, even though SqueezeNet is a lighter model compared to 

other models, it can get better performance. Based on this, we assume that lighter models can get better 

performance on small datasets, as described in [18], which explains that choosing a CNN architecture that fits 

the dataset can affect the performance of a model. 

Unlike SqueezeNet, EfficientNet has lower performance compared to other models. This led us to 

assume that the dataset used in our study, which consisted of simple images of Javanese letters on a white 

background as shown in Figure 2, may not be suitable for the complex special blocks used in the construction 

of EfficientNet as shown in Figure 4. We assume that the performance of a model can be influenced by the 

characteristics of the dataset and that models with simpler architectures may perform better on datasets with 

simple characteristics. 
 

 

Figure 9. Some Javanese script pairs have considerably high similarities one each other. 

 

Even though it has good results, there are still several letters that have the lowest accuracy in each 

model. These letters are the letters "Ta", "La", "Ba", "Da", "Nya", and "Wa". As seen in Figure 9, Some letters 

in the Javanese script share similarities, which can result in inaccurate classification. This is because the model 

makes prediction errors between these similar letters and other letters. As a result, some letters have lower 

accuracy compared to others. 

Although Faster R-CNN has the advantage of better object detection accuracy, it has the disadvantage 

of slow speed [6]. In this study, the speed needed to predict each object for the SqueezeNet model is about 

0.083 seconds or 12 frames per second (FPS), for EfficientNet about 0.166 seconds or 6 FPS, for ResNet about 

0.125 or 8 FPS, and for VGG about 0.333 seconds or 3 FPS. 

An example of the output of the predictions in this study can be seen in Figure 10 with the green color 

as the correct prediction, the red color as the wrong prediction, and letters without boxes are letters that failed 

to predict. In the SqueezeNet model, the plain model has three prediction errors, but the fine-tuned model only 

has one prediction error. In the EfficientNet model, the plain model has four prediction errors and one 

prediction failure, but the fine-tuned model only has one prediction error. In the ResNet model, the plain model 

has three prediction errors, but the fine-tuned model has no prediction errors. In the VGG model, the plain 

model has three prediction errors, but the fine-tuned model has no prediction errors. Based on these results, it 

shows that the fine-tuned model has better results by having fewer errors and prediction failures than the plain 

model. 
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Figure 10. Some examples of script detection outputs from each model. 

 

4. CONCLUSION 

Based on the results of the evaluation and analysis of the model, it can be concluded that the Faster 

R-CNN can perform good detection and classification of Javanese script letters which are capable of obtaining 

mAP@[0.5:0.95] to 0.8381; mAP value@0.5 to 0.9632; mAP value@0.75 to 0.9563; precision up to 0.9653 

or 96.53%; recall up to 0.9638 or 96.38%; and accuracy up to 0.9631 or 96.31%. In addition, it can be concluded 

that the fine-tuned model can provide increased performance by having better performance and results 

compared to the plain model. Even though they were able to get good results, there were still letters that had a 

low accuracy of 41.67%. This can still be improved by increasing the number of letter variations which in this 

study only had 55 letter variations. 

There are some limitations to this study, specifically the use of a simple image dataset. Future studies 

should consider using more complex datasets, such as images or photos with Javanese script letters found in 

manuscripts or street signboards. In addition, despite having good accuracy, Faster R-CNN has a slow speed. 

To address this, further research could explore models with faster speed, such as the one-stage detector model. 
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