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 Clustering is one of the tasks performed during exploratory data 

analysis with an extensive and wealthy history in a variety of 

disciplines. Application of clustering in computational medicine is 

one such application of clustering that has proliferated in the recent 

past. K-means algorithms are the most popular because of their 

ability to adapt to new examples besides scaling up to large datasets. 

They are also easy to understand and implement. However, with k-

means algorithms, k-hyperparameter tuning is a long standing 

challenge. The sparse and redundant nature of the high-dimensional 

datasets makes the k-hyperparameter tuning in high-dimensional 

space clustering a more challenging task. A proper k-hyperparameter 

tuning has a significant effect on the clustering results. A number of 

state-of-the art k-hyperparameter tuning techniques in high-

dimensional space have been proposed.  However, these techniques 

perform differently in a variety of high-dimensional datasets and 

data-dimensionality reduction methods. This article uses a five-step 

methodology  to investigate the trends and advances on the state of 

the art k-hyperparameter tuning techniques in high-dimensional space 

clustering, data dimensionality reduction methods used with these 

techniques, their tuning strategies, nature of the datasets applied with 

them as well as the challenges associated with the cluster analysis in 

high-dimensional spaces. The metrics used in evaluating these 

techniques are also reviewed. The results of this review, elaborated in 

the discussion section, makes it efficient for data science researchers 

to undertake an empirical study among these techniques; a study that 

subsequently forms the basis for creating improved solutions to 

this k-hyperparameter tuning problem. 
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1. INTRODUCTION 

The clustering process aims at gaining a deeper insight into a set of unlabeled dataset, grouping 

similar features into a common cluster [1]. A plethora of clustering algorithms has since been proposed with 

the k- means clustering algorithm being one of most popular clustering algorithm[2] .K-means clustering 

algorithms are widely used in many areas because they are relatively easy to understand and implement [3]. 

However, the clustering results obtained from k-means clustering algorithm heavily depend on the k-

hyperparameter value [2], [4]. Tuning this k-value correctly goes along way with improving the quality of 
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clustering results[5]. With high-dimensional datasets, tuning this k-value correctly poses great challenges to 

the data scientists due to the sparse and redundant nature of such datasets, among other issues [[1],[6]]. The 

high-dimensional datasets, generated massively by the modern technology trends, has attracted immense 

interest from the world of scholars and data scientists, inspired by the need to find out the best mapping in 

low dimensional spaces while at the same time maintaining the nature of the original high-dimensional 

datsets [6]. For this reason, the adoption of the automated k-hyperparameter tunig techniques to aid in the 

optimal selection of this k-hyperparameter value is critical to the performance of the high-dimensional k-

means algorithms [4], [6], [7]. 

Although several k-hyperparameter tuning techniques have been proposed, identifying the optimal k-

hyperparameter in a specific high-dimensional space remains challenging, intractable and an open research 

issue [6]. For instance, the auto elbow k-hyperparameter tuning technique has the limitation of the fact that 

the auto-elbow graph may depict a smooth elbow with some imbalanced high-dimensional datasets; the sharp 

elbow point is normally used to identify the right k-hyperparameter value for a specific high-dimensional 

dataset [8]. 

The rest of this paper is organized as follows: in the second section, a succinct review on the 

existing k-hyperparameter tuning techniques in high-dimensional space clustering is done. In the third 

section, results and discussions based on the review analysis is done and finally, in section four, the 

conclusions and recommendations for future research, based on the results of the review process are stated. 

 

2. RELATED WORK 

2.1. K-Means Architecture 

K-means is a clustering method that divides n data points into k number of clusters with each data 

point getting into the cluster that posses the nearest mean [7]. A pseudo code for the k-means clustering 

algorithm can be represented as follows:  

Input: 

1. D = {d1, d2,. ,dn} // n data items’ set. 

2. K = number of desired clusters 

 

Output: A set of k clusters. 

The steps in this pseudo code are as follows: 

1. Whimsically choose k data-items from D as initial centroids; 

2. Repeat 

a. Assign each item di to the cluster which has the closest centroid k; 

b. Calculate the new mean for each cluster; 

c. Until convergence criteria is met [9]. 

K-means clustering algorithm has two separate phases i.e.  the first phase and the second phase [7] 

The first phase focuses on the definition of k-centroids, one for each cluster while the second phase focuses 

on taking each point belonging to the given dataset and associating it to the nearest centroid. In order to 

determine the distance between data points and the centroids, Euclidean distance is generally considered [10]. 

Once all the points are included in some clusters, the first step is finished and an early grouping is done [11].  

At this juncture, new centroids are recalculated because the inclusion of new points can lead to a change in 

the cluster centroids [12]. Once the new k centroids are found, a new binding is created between the same 

data points and the nearest new k centroid, generating a kink [9], [13]. The k centroids may change their 

position in a step by step manner, as a result of this k in k [13]. Finally, a situation is arrived at where the 

centroids do not move any further, an indication for the convergence criterion for clustering [14]. 

 

2.2. Description of A High-Dimensional Dataset and Its Cluster Analysis Challenges 

The modern technology trends have resulted to massive high-dimensional datasets [15].High 

dimensional statistics and the related study have attracted keen interest from a plethora of data scientists [15]. 

The dynamism in regards to sparsity and redundancy of the high-dimensional space pose great data mining 

challenges to data scientists [16]. High-dimensional datasets refer to those datasets whose number of features 

/ attributes, P, is greater, in one or several orders of magnitude, than the number of instances / observations, 

N, i.e. P>N [15]. Mathematically, “orders of magnitude” refers to a system of classification determined by 

size, typically in powers of ten [17]. According to [15], it is mostly common to find high dimensional 

datasets in the field of medicine [[15],[6]]. An example is where the number of attributes for a particular 

patient are many i.e. body-mass index, blood pressure values, diagnosis history, family history on illnesses, 

height, weight, status of immune system etc[15].In genomics and proteomic, each sample can be defined by 

multiple measurements up to a thousand [[15], [6], [18]].  
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Table 1. An example of a high-dimensional dataset comprised of three patients (N) 

and multuple features (P) [19] 

 
P 

N 

BP Height Weight Diagnosis … … 

Patient 1       

Patient 2       

Patient 3       

 

The process of unveiling meaningful and hidden patterns when clustering high-dimensional datsets, 

poses a number of challenges for the data scientists [18].Such challenges mainly include: curse of 

dimensionality, presence of noise, tuning for the optimal k-hyperparameter value, presence of outliers and 

redundant features in a dataset[18]. The curse of dimensionality as well as tuning for the optimal k-

hyperprameter value from a high-dimensional datasets makes most of the high-dimensional k-means 

algorithms sensitive to the clustering perfomance [14], [18]. Data dimensionality reduction has been greatly 

used to solve the challenges of curse of dimensionality during the high-dimensional cliuster analysis  [14]. 

Such data dimensionality reduction aim at efficiently representing a high-dimensional dataset in low-

dimensions but with as much minimal information loss, as possible [14] . Some k-means algorithms are 

sensitive to both the dimensionality redundancy and biasing and the need to invent algorithms that are 

independent of such limitations is critical to the success in this area[20]. Lastly, identification of the optimal 

k-hyperparameter from a high-dimensional space is still a challenging task and there is need for researchers 

to invent mechanisms that aid in automated and accurate methods of identifying this value [13]. Identification 

of this value, correctly, has a significant effect on the performance of the k-means models [18]. 

 

2.3.  Performance and Statistical Metrics for Evaluating Quality of Clusters from K-Means Clustering 

Algorithms 

In unsupervised clustering algorithms like the k-means, the ground truth about the k-hyperparameter 

value, the number of clusters on a specific dataset, relies on the prior knowledge of the problem [21] .In most 

cases, there is no prior knowledge or intuition about the clustering dataset, at hand, and at times, the domain 

knowledge is required [22]. For this reason, it is important to use the metrics that give some intuition about 

the best or the optimal value of k on any clustering high dimensional dataset [3],[23]. Such a standard cluster 

validation process and set of internal validation metrics, is highly critical to assessing the quality of the k 

clusters generated as the output from the high-dimensional k-means algorithms [24],  [25]. The optimal k-

value, in k-means, dictates the best clustering results [26]. At this optimal, the variance within a cluster is 

normally low, while the separation between clusters is normally high [27], [15]. Some of the most commonly 

applied metrics include: 

 

2.3.1. Internal Validation Indexes 

The choice of the internal validation metrics, as opposed to the external and relative validation 

metrics, is based on the fact that the internal validation metrics are purely based on the information intrinsic 

to the data alone with no clue on prior information about the dataset [11]. The Internal indexes are known to 

be better while applied in the determination of the quality of the clustering results because they are purely 

based on the information intrinsic to the data alone [11], [28]. The most commonly used internal validity 

metrics, in the clustering literature; include Dunn index, calinski harabsz index, Davies Bouldin index, 

Silhouette index, bayesian information criterion, point bi-serial and sum-of-squares. Comparing the scores of 

the different pairs of internal validation metrics, for one dataset, as  well as comparing their consistency using 

Kendall’s index, each at a time, would be computationally expensive [28]. For this reason, we propose to 

adopt an ensemble validation metric whose components exercise equal sensitivity to the varied conditions 

present in the high dimensional datasets. This type of ensemble could either be bootstrap aggregating or 

(bagging) or boosting [11]. The most commonly used internal validity metrics, in the clustering literature, 

include: 

 

1. Dunn Index (DI) 

Dunn index, an internal validity metric, indicates a high degree of compactness of the objects 

belonging to the same cluster and a high degree of separation between objects in different clusters 

[29]. Dunn index is defined mathematically as follows: 
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𝐷𝐼 =
𝑚1≤𝑖≤𝑗≤𝑚

𝑀𝑖𝑛𝛿(𝐶𝑖,𝐶𝑗)

max ∆𝑘
1≤𝑘≤𝑚

       (1) 

 

Where distance between clusters i and j be denoted by  (Ci , Cj) and the k is the size of cluster 

[30]. Higher values of the Dunn index indicate the minimum intra-cluster distances as well as the 

maximum inter cluster distance [31]. The k-means algorithms have successfully used the Dunn index 

to validate the clustering results that they generate [31].  

 

2. Calinski-Harabasz Index (CH) 

Calinski-Harabasz index (CH), an internal validity metric, is referred to as the ratio between the 

“sums of between-clusters dispersion” and “inter-cluster dispersion” for all clusters [32], [11]]. 

Calinski-Harabasz index, as follows, mathematically: 

 

 CH(K) = 
𝐵(𝐾)(𝑁−𝐾)

𝑊(𝐾)(𝐾−1)
               (2) 

 

 B(K) = (𝛴𝑘=1
𝑘   𝑎𝑘 ∥ �̅�𝑘 − �̅� ∥2)               (3) 

 

𝑊(𝐾) = (𝛴𝑘=1
𝑘 𝛴𝑐(𝑗)=𝑘∥𝑥𝑗 − 𝑥𝑘̅̅ ̅ ∥2)             (4)                    

 

Where k is the corresponding number of clusters, B(K) is the inter-cluster divergence, also called the 

inter-cluster covariance, W(K) is the intra-cluster divergence, also called the intra-cluster covariance, 

and N is the number of samples [31] The larger the B(K) is, the higher the degree of dispersion 

between clusters is [33]. The smaller the W(K) is, the closer the relationship in the cluster [1]. Higher 

CH values are better because they are an indication of a good quality clustering performance and 

results [32]. 

 

3. Davies Bouldin Index (DB) 

Davies-Bouldin index (DB), an internal validity metric, is used to identify cluster overlap by 

measuring the ratio of the sum of the “within-cluster scatters” to the “between-cluster separations” 

[34][35]. Davies-Bouldin index is defined as follows: 

 

DB = 
1

𝑘
∑ 𝑚𝑎𝑥

𝑗≠𝑖

𝑘

𝑖=1
(

𝑐�̅� + �̅�𝑗

∥𝑤𝑖−𝑊𝑗∥2
)    (5) 

 

A DB index that is close to zero (0) is an indication that the clusters are compact and far from each 

other [26]. The implementation of K-Medoids algorithm with Davies-Bouldin-Index evaluation for 

Clustering Postoperative Life Expectancy in Patients with Lung Cancer is an example of an algorithm 

that has applied Davies Bouldin index in its cluster analysis [32]. 

 

4. Silhouette Index (SI) 

Silhouette index, an internal validity metric, is referred to as the optimal clustering number derived 

from the difference between the average distance within the cluster and the minimum distance 

between the clusters [21] 51, 83,100]. Silhouette index is defined mathematically as follows: 

 

�̅� =
1

𝑛 
∑ (

𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}

𝑛
𝑖=1 )              (6)  

 

Where a(i) represents the average distance of sample i to other samples in the cluster, b(i) represents 

the minimum distance of the sample from the sample i to the other clusters . The Silhouette index for 

determining optimal k-means clustering on images in different color models is an example of an 

algorithm that has applied silhouette index in its cluster analysis [26], [36]. 

However, it is important to note that calinski harabsz index, silhouette index, Dunn index and Davies 

Boulldin index poses some challenges at the individual level. These challenges mainly include: 

Sensitivity to Cluster Density, dependency on cluster size, lack of ground truth labels, interpretation 

challenges and sensitivity to data scaling and data dimensionality [32].  For example, the calinski 

harabsz indexs tend to favor clusters with similar densities [11]. If the clusters have significantly 

different densities, the index may not accurately capture the clustering quality [32]. It may give higher 

scores to clusters that are denser, even if they are not necessarily well-separated. The index is 
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sensitive to the number of clusters and the size of the dataset. It tends to favor solutions with a larger 

number of clusters, which may lead to overfitting or over-segmentation of the data. This can result in 

inflated index values, making it challenging to determine the optimal number of clusters [11]. These 

indexes do not rely on ground truth labels [32]. They assess the clustering quality based on the 

internal structure of the data, without considering the true underlying classes [11]. Therefore, their 

effectiveness may be limited when compared to metrics that utilize ground truth information. Similar 

to the Dunn index, interpreting the absolute value of the Calinski-Harabasz index can be difficult 

[32]. It lacks a clear threshold or guideline to determine what constitutes a good or bad clustering 

result. It is often used comparatively, comparing different clustering solutions or tuning the number of 

clusters to find an optimal solution [32]. The Calinski-Harabasz index can be sensitive to the scaling 

of the data and the number of dimensions [11]. Inconsistent scaling or high-dimensional data can 

impact the distances used in the calculation and lead to biased results [11]. Proper data preprocessing 

and dimensionality reduction techniques may be necessary to address these issues.It is therefore 

important to consider these challenges when using the each of these internal validation indexes and 

complement them with other indexes inorder to gain a more comprehensive understanding of the 

clustering quality. 

 

5. Bayesian Information Criterion (BIC) 

Bayesian information criterion (BIC), an internal validity metric, is referred to as a strategy for model 

selection among a finite set of models [21]. The model with the lowest BIC value is the most 

preferred as it is an indication of good clustering results [21]. Bayesian information criterion index is 

calculated as follows: 

 

     𝐵𝐼𝐶 = 2log(𝐿) + 𝑞 log(𝑁)                          (7) 

 

L is the maximum likelihood function of the model and N is the number of data points in a dataset 

[26]. In evaluating clustering quality using the bayesian information criterion, some challenges crop 

up [26] These include: sensitivity to model complexity, limited consideration of cluster structure, 

dependency on initialization and algorithm choice and limited comparability across datasets [21]. 

BIC penalizes complex models to avoid overfitting, determining the appropriate number of clusters 

where it the BIC tends to favor more clusters as it penalizes model complexity, potentially leading to 

over-segmentation or identifying spurious clusters [21]. Interpreting the BIC values and identifying 

the appropriate number of clusters often requires domain knowledge and additional analysis. The 

BIC primarily focuses on the goodness of fit and model complexity but may not fully capture the 

underlying structure of the clusters [21]. It does not explicitly account for cluster separability, 

irregular cluster shapes, or overlapping clusters [26]. Therefore, the BIC alone may not provide a 

comprehensive assessment of clustering quality, and it is advisable to consider other metrics or 

visual inspections to validate the results [21]. The BIC can be sensitive to the initialization of 

clustering algorithms and the choice of algorithm itself [26]. Different initializations or algorithms 

may yield different BIC values and clustering results [21]. It is important to be aware of this 

dependency and perform multiple runs with different initializations or algorithms to obtain more 

robust results [26]. The BIC values may not be directly comparable across different datasets due to 

variations in data characteristics and underlying distributions [21]. It is more appropriate to compare 

BIC values within the same dataset or similar datasets rather than between different datasets [26]  

 

6. Point Bi-Serial 

This looks for the difference between the mean intra-cluster distance and the mean inter-cluster 

distance [21]. The point bi serial’s formula is formulated as follows: 

 

�̅�𝑠 − �̅�𝑐 ∗  
√(𝛼∗𝛽 /𝑥2

𝛼
         (8) 

 

dc is the distance from each data point and every other data point within the cluster while ds refer to 

the distance from each data point and every other data point that is not within its cluster [21]. The α 

refers to the intra-cluster distances while the β refers to the number of the inter-cluster distances [26]. 

The x refers to the actual number of the point-pairs within a clustering dataset [21]. The σ refers to the 

standard deviation of all the distances [21]. Point bi-serial internal validation metric resembles the 

popular silhouette metric, except the fact that it computes the separation from all the non-cluster 

sharing points, instead of only those that have the closest cluster [26]. When using point bi-serial to 



IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150  

 

Trends and Advances on The K-Hyperparameter Tuning… (Gikera et al) 

159 

assess quality of clusters, some challenges come up. These include: limited applicability to clustering, 

lack of ground truth labels, inadequate representation of cluster quality and difficulty in Interpretation 

[21]. Point bi-serial is primarily designed to evaluate relationships between binary and continuous 

variables [26]. It may not directly apply to assessing clustering results, which involve grouping 

similar data points together [21]. Clustering typically deals with unsupervised learning and does not 

involve predefined binary variables that it requires [26]. Point bi-serial requires a binary variable as a 

reference point to calculate the correlation coefficient [21]. However, in clustering, there are typically 

no ground truth labels available to construct such a binary variable [21]. Clustering is an unsupervised 

learning task, and the absence of ground truth labels makes it challenging to apply point bi-serial 

directly [26]. Point bi-serial assesses the strength and direction of the relationship between a binary 

variable and a continuous variable [21]. While this can be useful in certain analyses, it may not 

adequately capture the quality of clustering results [26]. Clustering quality evaluation often focuses 

on factors such as compactness, separation, or similarity within and between clusters, which are not 

directly addressed by it [21]. Lastly, the interpretation of the point-biserial can be challenging, as it 

measures the strength and direction of a relationship. In clustering, the goal is to assess the quality of 

clusters rather than the correlation between variables [21]. Therefore, the interpretation of point bi-

serial in the context of clustering may not provide meaningful insights. 

 

7. Sum of Squares 

This method adapts to the Calinski-Harabasz Index of the CH method: 

 
𝑡𝑟𝑎𝑐𝑒(𝑊𝐶𝑆𝑀)

𝑡𝑟𝑎𝑐𝑒(𝐵𝐶𝑆𝑀)
 * k     (9) 

 

Therefore, this metric is a reverse of the separation-compactness relationship [26]. For this reason, the 

change on the factor of normalization factor is drastic when the value of the k increases [21].  Just like 

the Davies Bouldin index, the sum of squares metric divides compactness by separation [26]. Lower 

values in this metric indicate better clustering on a particular dataset [37]. Challenges of suing the 

sum of squares to assess the cluster quality include: sensitivity to cluster size and dimensionality, lack 

of normalization, dependency on initialization as well as the insensitivity to cluster shape [26]. The 

sum of squares is influenced by the number of data points in each cluster and the dimensionality of 

the data. In k-means clustering, for instance, clusters with a larger number of data points tend to have 

higher sum of squares values [21] . Similarly, in high-dimensional data, the sum of squares can be 

inflated due to the curse of dimensionality [26]. As a result, the sum of squares may not accurately 

reflect the quality of clusters in scenarios where the number of points or the dimensionality varies 

significantly [21]. The sum of squares does not inherently account for the scale or variance of the data 

[26]. It treats each feature equally and does not consider differences in magnitude or variability 

between features [21]. Consequently, clusters may be biased towards variables with larger scales or 

higher variances, potentially leading to a misleading assessment of cluster quality [26]. In iterative 

clustering algorithms like k-means, the initialization of cluster centroids can significantly affect the 

resulting sum of squares [21]. Different initializations can yield different cluster assignments and, 

consequently, different sum of squares values [26]. Consequently, the choice of initialization can 

impact the interpretation of cluster quality based on the sum of squares [21]. The sum of squares 

primarily measures the dispersion of data points within clusters [26]. However, it does not explicitly 

capture the shape or structure of the clusters [26]. Clusters with different shapes, such as elongated or 

irregular clusters, may have similar sum of squares values despite their inherent structural differences 

[26]. Therefore, the sum of squares alone may not provide a comprehensive evaluation of cluster 

quality in terms of shape or compactness [26]. To address these challenges, it is often recommended 

to use the sum of squares in combination with other clustering evaluation metrics. 

 

2.3.2. Clustering Accuracy 

In machine learning, clustering algorithms are often evaluated using different metrics rather than a 

single accuracy score. Clustering is an unsupervised learning task, meaning that there are no ground truth 

labels available to directly calculate accuracy. Instead, various evaluation measures are used to assess the 

quality of clustering results. Here are some commonly used metrics: 

 

1. Adjusted Rand Index (ARI) 

Adjusted rand index measures the similarity between the true cluster assignments and the predicted 

clusters, considering all pairs of samples. ARI ranges from -1 to 1, where a higher value indicates 

better clustering quality. 
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𝐴𝑅𝐼 = (𝑅𝐼 − 𝐸) ∕ (max(𝑅𝐼) − 𝐸)    (10) 

 

2. Normalized Mutual Information (NMI) 

Normalized Mutual Information computes the mutual information between the true labels and the 

predicted clusters, normalized by entropy measures. NMI ranges from 0 to 1, with 1 indicating 

perfect clustering. 

    

𝑁𝑀𝐼 = 2 ∗
ℎ∗𝑐

ℎ+𝑐
            (11) 

 

3. Homogeneity, Completeness, and V-measure 

These three metrics provide a more detailed evaluation of clustering. Homogeneity measures the 

extent to which each cluster contains only samples from a single class. Completeness measures the 

extent to which all samples from a given class are assigned to the same cluster. V-measure is the 

harmonic mean of homogeneity and completeness. 

          

ℎ = 1 −
𝐻(𝐶∖𝐾

𝐻(𝐶)
                        (12)     

        

𝐻(𝐶 ∖ 𝐾) = − ∑
𝑛𝑐𝑘

𝑁𝑐,𝑘  log (
𝑛𝑐𝑘

𝑛𝑘
)                                             (13) 

 

It's important to note that the choice of metric depends on the specific problem and the nature of the 

data. Additionally, these metrics may not always capture all aspects of clustering quality, so it's 

often recommended to consider multiple metrics and interpret the results collectively. 

 

2.3.3. Jaccard Coefficient 

Jaccard coefficient is a cluster quality assessment metric that shows the degree of closeness between 

the clustered values and the actual values and evaluates the ability of the clustering algorithm [15]. Jaccard 

coefficient is used to investigate similarities between data points and the evaluation based on these 

similarities [8].  

 

Jaccard Index = (the number in both sets) / (the number in either set) * 100 

𝐽(𝑋, 𝑌) = |𝑋 ∩ 𝑌| ∕ |𝑋⋃𝑌|    (14) 

 

When using the Jaccard coefficient to assess cluster quality, some challenges prop up. These 

include: binary data requirement, sensitivity to set size, lack of ground truth labels, interpretation challenges 

and limited consideration of cluster structure [8]. The Jaccard coefficient assumes that the data is binary or 

can be converted into binary form. It calculates the similarity between sets by measuring the intersection over 

union [15]. If the data is not naturally binary or cannot be converted to binary representation, the Jaccard 

coefficient may not be applicable [8]. The Jaccard coefficient is sensitive to the size of the sets being 

compared [8] It tends to yield higher similarity values for smaller sets, even if they share a relatively small 

number of elements [8]. As a result, the Jaccard coefficient may bias towards smaller clusters or clusters with 

fewer data points [15]. The Jaccard coefficient, like other unsupervised clustering evaluation metrics, does 

not rely on ground truth labels [8]. It assesses the similarity between clusters without considering the true 

underlying classes [15]. This can limit its effectiveness as a standalone measure of clustering quality, as it 

does not account for the true clustering structure [8]. Interpreting the absolute value of the Jaccard coefficient 

can be challenging [15]. It measures the similarity between sets, ranging from 0 to 1, where 1 indicates 

identical sets [8]. However, determining an appropriate threshold or guideline to define good or bad 

clustering results based on the Jaccard coefficient alone can be subjective and context-dependent[15]. The 

Jaccard coefficient focuses on measuring the similarity between sets or clusters without considering the 

internal structure of the clusters [8]. It does not explicitly account for factors such as compactness, 

separation, or cluster shapes. Therefore, using the Jaccard coefficient alone may not provide a comprehensive 

assessment of clustering quality. 

 

2.3.4. F1-Score 

F1 score refers to the clustering metric that assesses the clustering algorithm’s accuracy on a dataset 

[20]. F1 score can be applied in the assessment of the systems used in binary classifications that cluster data 

points into two, for example, e.g. true / false or yes / no [38].  Larger F1 scores are better than lower F1 

scores, on a range of 0 and 1 [39]. The F1 score formula is as follows: 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙) ∕ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)   (15) 

 

Some of the challenges posed with the use of the F1-score in assessing the quality of clusters 

include: dependency on predefined metrics, sensitivity to imbalance, inability to capture cluster structure and 

difficulty in interpretation [38]. To calculate the F1 score for clustering, it is necessary to define criteria for 

true positives, false positives, and false negatives [20]. This requires specifying rules or thresholds to 

determine if two clusters should be considered as matching or not [38]. Selecting appropriate criteria can be 

subjective and may vary depending on the specific clustering task and the nature of the data [20]. The F1 

score is influenced by the balance or imbalance of cluster sizes [20]. If the clusters are imbalanced, with 

significantly different numbers of data points, it can affect the precision and recall values and consequently 

impact the F1 score [20]. Imbalanced clusters can lead to biased F1 score results, as the metric may be more 

influenced by the larger clusters [38]. The F1 score evaluates the agreement between the predicted and 

ground truth cluster assignments based on a flat comparison [20]. It does not explicitly consider the structure, 

shape, or relationships between clusters [38]. Consequently, the F1 score may not fully capture the quality of 

clustering in terms of compactness, separation, or cluster interdependencies [20]. Similar to other evaluation 

metrics, interpreting the absolute value of the F1 score can be challenging [20]. There is no universally 

defined threshold or guideline to determine what constitutes a good or bad clustering result based on the F1 

score alone [20]. The interpretation of the F1 score should be performed in conjunction with other metrics, 

domain knowledge, and visual inspection to gain a comprehensive understanding of clustering quality [38] 

 

2.3.5. Cochran’s Q Score 

Cochran's Q test is a non-parametric statistical test applied in heterogeneous meta-analyses [40]. 

Cochran’s Q score is based on the chi-square distribution [41]. It creates a probability that when maximized, 

it indicates high variation across the subjects of study as opposed to the variations of the subjects within a 

study [40]. In the evaluation process of clustering algorithms, Cochran’s Q score can be used to investigate if 

different algorithms lead to different quality of clusters on the same dataset [42]. Cochran;s Q statistic is 

computed as follows: 

 

𝑇 = 𝑘(𝑘 − 1)
∑ (𝑋ℓ𝑗−

𝑁

𝑘
𝑘
𝑗=1 )2

∑ 𝑋𝑖𝜊
𝑏
𝑖=1 (𝑘−𝑋𝑖𝜊)

     (16) 

 

Where: 

• k : number of treatments 

• x• j  : column total for the jth treatment 

• b  : number of blocks 

• Xi : row total for the ith block 

• N  : grand total 

 

When using Coshran’s Q score to assess the quality of clusters, some challenges crop up. These 

include: difficulty in interpreting significance, sensitivity to sample size and cluster imbalance and 

insensitivity to cluster structure: Cochran's Q test determines whether there are significant differences 

between groups [42]. However, it does not provide insights into the nature or magnitude of these differences. 

Interpreting the significance of the test results in the context of clustering quality can be challenging without 

additional information or domain knowledge. Cochran's Q test can be sensitive to the sample size and the 

distribution of data across clusters [40]. Unequal cluster sizes or imbalanced data can influence the test 

results and potentially bias the assessment of clustering quality [42]. Cochran's Q test primarily evaluates the 

differences between groups without explicitly considering the structure or internal characteristics of clusters 

[42]. It does not account for factors such as compactness, separation, or cluster shapes [40]. Therefore, 

relying solely on Cochran's Q score may not provide a comprehensive assessment of clustering quality in 

terms of these important cluster characteristics [42]. Given these challenges, Cochran's Q test may not be the 

most suitable method for assessing the quality of clusters. 

 

2.3.6. Chi-Square 

Chi-square is a non-parametric statistical metric used to measure of the variance between the 

observed and expected recurrence of the results of a variables set [43]. Chi-square is important in the analysis 

of such differences in categorical variables of nominal in nature [44]. A chi square is computed as follows: 
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𝑥𝑐
2 = ∑

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
     (17) 

Where: 

• The subscript “c” is the degrees of freedom 

• “O” is your observed value  

• E is your expected value 

 

2.3.7. T-test 

T-test refers to a statistical test applied in the comparison of two categories [28]. In clustering 

algorithms, t-tests are normally applied in hypothesis testing to find out if an algorithm actually has an effect 

on a dataset, or whether two clustering algorithms are dissimilar from each other in terms of the performance 

and evaluation metrics used to in the assessment process in clustering a specific dataset [42]. T-test is 

computed as follows: 

 

𝑡 = (𝑋− − 𝜇Ο) ∕ (𝑠 √𝑛⁄ )           (18) 

 

Where: 

• X‾ is the sample mean 

• μ0 represents the population mean 

• s is the standard deviation of the sample 

• n stands for the size of the sample 

 

When using the Chi squre and T-test metrics to assess thequality of clusters, some challenges come 

up. These include: interpretation challenges, sensitivity to sample size and cluster imbalance and limited 

consideration of cluster structure[44]. These tests assess the independence between categorical variables or 

groups [44]. While statistical significance can be determined, interpreting the practical significance and 

meaningfulness of the results in the context of clustering quality can be challenging [43]. The tests provide 

insights into the presence or absence of associations between variables but do not provide direct information 

about the quality of clustering [43]. These tests can be influenced by the sample size and the distribution of 

data across clusters [44]. Small sample sizes or imbalanced data may affect the test's power and potentially 

bias the assessment of clustering quality [43]. Moreover, unequal cluster sizes can impact the statistical 

significance of the the test results [44]. These tests focus on measuring associations between categorical 

variables but do not explicitly consider the structural characteristics of clusters [44]. They do not account for 

factors such as compactness, separation, or cluster shapes [43]. Therefore, relying solely on the chi-square or 

t-test may not provide a comprehensive evaluation of clustering quality in terms of these important clusters 

attributes. Considering these challenges, the chi-square test may not be the most appropriate method for 

assessing the quality of clusters. 

 

2.3.8. Sum of squared error 

The sum of squared error refers to the variation between the perceived values and the foreseen 

values [39]. Sum of squared error can also be referred difference of foreseen values from the actual values 

[40].In the evaluation of clustering algorithms, an example of the sum of squared error would be identifying 

the variation between the expected running time values of a clustering algorithms against the actual running 

time values of the same algorithm [45]. Sum of squared error is computed as follows: 

 

𝑆𝐸 = ∑ 𝑛𝑖 = O(𝑦𝑖 − 𝑓(𝑋𝑖))2     (19) 

 

Where: 

• yi is the ith value of the variable to be predicted  

• f(xi) is the predicted value 

• xi is the ith value of the explanatory variable 

 

When using the sum of squared error, some challenges come up. These include: sensitivity to cluster 

size and density, dependency on initialization, lack of normalization, Insensitivity to cluster shape and 

structure and lack of external validation [40]. The SSE is influenced by the number of data points in each 

cluster [45]. Clusters with larger numbers of data points tend to have higher SSE values, even if the 

clustering is of good quality [45]. Consequently, the SSE may bias towards larger clusters and may not 

accurately reflect the overall clustering performance, especially in scenarios with varying cluster sizes or 

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/degrees-of-freedom/
https://www.statisticshowto.com/observed-variables/
https://www.statisticshowto.com/probability-and-statistics/expected-value/
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densities [40]. The SSE is sensitive to the initialization of cluster centroids, particularly in iterative 

algorithms like k-means clustering [45]. Different initializations can lead to different SSE values and, 

consequently, different cluster assignments [45]. The choice of initialization can impact the interpretation of 

clustering quality based on the SSE, making it less reliable as a standalone metric [40]. The SSE does not 

inherently account for the scale or variance of the data [40]. It treats each feature equally and does not 

consider differences in magnitude or variability between features[45]. Therefore, the SSE may be biased 

towards variables with larger scales or higher variances, potentially leading to a distorted assessment of 

clustering quality [40]. The SSE measures the dispersion of data points within clusters but does not explicitly 

capture the shape, structure, or interrelationships between clusters [40]. Consequently, clusters with different 

shapes, densities, or structural complexities may have similar SSE values, even if they differ significantly in 

terms of their quality or characteristics [45]. The SSE is an internal evaluation metric that assesses the 

compactness of clusters based on the distances between data points and their assigned cluster centroids [40]. 

However, it does not consider external validation or ground truth labels [40]. Without external validation, it 

is challenging to determine if the obtained clustering solution is meaningful or corresponds to the true 

underlying structure of the data [45]. To overcome these challenges, it is recommended to use the SSE in 

conjunction with other clustering evaluation metrics, such as silhouette coefficient, adjusted Rand index, or 

other suitable measures.  

 

3. METHODOLOGY 

The systematic review process of the k-hyperparameter tuning techniques followed the five-step 

methodology as proposed by Khan, Kunz, Kleijnen, and Antes for conducting critical review on the existing 

literature [6]. The five-step methodology involves: framing the questions for the review, identification of 

relevant literature, assessment of the quality of articles, critical review summary of the reviewed literature, 

and the interpretation of results [18]. Based on this five-step methodology, we first explain how the research 

questions for the review were framed, followed by the identification of the relevant literature [46]. Next, the 

criterion used to perform quality assessment of the articles is done [20]. Thirdly a critical review summary of 

the reviewed literature is done and discussion of the results is done as the culmination of the five-step 

methodology. After the review process, a number of recommendations for the future research directions, in 

the last section were proposed. This provides a guide /foundation for further work on solving the tuning 

problems faced with the k-hyperparameter of the k-means algorithms in high-dimensional space.  

 

3.1. Framing of The Review / Research Questions 

The research questions in this study were formulated as follows: 

1. RQ1: Which k-hyperparameter tuning techniques and data dimensionality reduction methods are 

used in high-dimensional spaces? 

2. RQ2: What is the nature and dimensionality of the input datasets used with the existing k-

hyperparameter tuning techniques in high-dimensional spaces? 

3. RQ3: What are the key algorithm performance and statistical metrics for evaluating the existing k-

hyperparameter tuning techniques in high-dimensional spaces? 

In the first research question, we conduct a succinct review of the existing k-hyperparameter tuning 

techniques, data dimensionality reduction methods used with these techniques as well as their tuning 

strategies and limitations. The results are then tabulated as shown in table 1. In the second research question, 

the analysis of the nature, description and dimensionality of the datasets used with the k-hyperparameter 

tuning techniques is done. The results are tabulated as shown in table 2. In the third research question, we 

investigate the key algorithm performance and statistical metrics for evaluating the existing k-hyperparameter 

tuning techniques in high-dimensional spaces. The results on these evaluation metrics are reported in table 3.  

 

3.2. Literature Identification 

The meta-search based strategy for identifying the relevant literature focused on the k- 

hyperparameter tuning techniques on the high-dimensional k-means clustering algorithms. The keywords 

used include “k in k-means”. “Optimize” AND “k-means” was also used. Optimize was also replaced with its 

synonyms like “efficient” and “improved” in order to generate more results that are relevant to the literature 

on the k-hyperparameter tuning techniques. The databases incorporated an in-depth search for articles from 

the Google Scholar, ACM, Research Gate, IEEE Xplore digital library, Springer, among others. We 

identified a total of 26 articles, published between 2013 and 2022. 

 

3.3. Assessment on Quality and Criteria for Selection 

The quality assessment and selection criteria took a narrow focus on the review of the abstracts of 

all the 26 papers. After assessment on criteria process, we identified 16 papers that were relevant to the k–
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hyperparameter tuning techniques on the k-means clustering algorithms. These papers were reviewed, 

analyzed and discussed under the section on the results.  

3.4. Inclusion Criteria 

The inclusion criterion that was used in obtaining the relevant papers for this study include; articles 

that addressed the k-hyperparameter tuning in high-dimensional spaces, those that described original work 

with the actual k-hyperparameter tuning tool having been developed and validated in high-dimensional 

spaces. The papers included in this research review article is within the last five years in order to give the 

most recent status on the research progress of the k-hyperparameter tuning as opposed to reference to the old 

literature on these techniques. Such information, based on the current status, is critical to the 

recommendations for future research in this area.  

 

3.5. Results 

The results section describes the various techniques used in the k-hyperparameter tuning in high-

dimensional spaces. Table 1 presented the summary results of the names of the state of the art k-

hyperparameter tuning techniques, and a brief description of each technique including its strengths and 

limitations. Table 2 presented the data dimensionality reduction methods for each and every k-

hyperparameter tuning technique. Table 3 presented the names and nature of the high-dimensional datasets 

used with the k-hyperparameter tuning techniques. The nature of the data set include: synthetic/real, number 

of features (P), number of records (N), categorical / numerical etc. Lastly, table 4 presented a summary of the 

algorithm’s performance and statistical metrics as well as the specific metrics ‘scores for each and every k 

hyperparameter tuning. 

In Table 1, the name of the state of the art k-hyperparameter tuning technique is given with a short 

description of how it achieves the tuning process, including the name of the dimensionality reduction method 

used with each technique. The strengths and weaknesses of individual technique are also stated with the 

proposal for the limitation given to act as the foundation for future research work in this tuning problem.  

In table 2, we present the name and the nature of the high-dimensional dataset used by each of the state of the 

art tuning techniques. The nature of the dataset encompasses the data type, the level of dimensionality, 

number of instances as well as the number of attributes / variables. The dimensionality of the dataset is the 

order of magnitude on the number of attributes on the dataset, usually measured in powers of ten. 

 In Table 3, we present the performance of each and every k-hyperparameter tuning technique based 

on the laid out statistical and performance metrics. It is however worth to note that these metrics scores are 

picked as reported by the authors. 

 

4. RESULTS AND DISCUSSIONS 

4.1. Results 

Each of the result findings was aligned to the research questions in this study.  

 

RQ1: Which k-hyperparameter tuning techniques and data dimensionality reduction methods are used in in 

high-dimensional spaces? 

 

Table 2. Description of the k-hyperparameter tuning techniques, data dimensionality reduction methods used 

with these techniques as well as their tuning strategies and limitations. 

Refe-

rence 

Author (s) & 

Year 

Name of the k-
tuning 

technique 

Description, tuning strategy and limitations 
Data dimensionality 

reduction method 

[8] Onumanyi et., 

al. (2022) 

AutoElbow Elbow graph is normalized using lowest and highest values 

along the coordinates of both the ordinate and abscissa. The 
estimated elbow, i.e. the k-hyperparameter, is the point that 

maximizes the distance between each point on the graph to the 

minimum, maximum reference points as well as the “heel” of 
the elbow graph. Although the technique relatively well, it has 

the limitation of the fact that the auto-elbow graph may not 

depict a sharp elbow with some imbalanced high-dimensional 
datasets 

Principal 

Component 
Analysis (PCA) 

[47] Yan et. al., 2019 Adaptive Multi-

view Subspace 
Clustering for 

High-

dimensional 
Data 

This technique is an extension of the canonical k-means 

algorithm where feature learning mechanism is integrated in 
order to handle the high-dimensional space. Although the 

experimental results with the with four different datasets 

shows that the technique is relatively effective, the limitation 
with this k-hyperparameter tuning technique is the fact that 

handling high-dimensional space with heterogeneous features 

is challenging. 

Principal 

Component 
Analysis (PCA) 
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Refe-
rence 

Author (s) & 
Year 

Name of the k-

tuning 

technique 

Description, tuning strategy and limitations 
Data dimensionality 

reduction method 

[15] Tao et. al, 2018 An Intelligent 
Clustering 

Algorithm for 

High-
Dimensional 

Multiview 

Data in Big 
Data 

Applications 

This technique uses intelligent weighting k-means clustering 
approach to deal with the challenges of having to consider all 

features of a high-dimensional dataset with equal relevance. At 

first, the coupling degree between clusters is presented in the 
clustering model in order to increase the level of dissimilarity 

among the clusters. Several features are applied in the 

computation of the weighting distance function used to 
identify the objects’ clusters. In the second step, swarm 

intelligence is used to minimize the sensitivity of the initial 

cluster centers and the weights of features via a global search. 
Clustering high-dimensional datasets with heterogeneous 

features is a draw back for this technique. 

Principal 
Component 

Analysis (PCA) 

[48] Xia et. al, 2020 Ball k-means The technique uses a ball to describe a cluster with the 
intention of minimizing the point-centroid distance 

calculation. Each cluster is separated into stable area and 

active area; active area is then subdivided into equal portions 
of annular area. This k-tuning technique uses the ball clusters 

and neighbor searching strategy along with a number of novel 

stratagems to lower the computations of the centroid distances. 
This technique’s iteration time complexity drops to sub linear 

levels as progress on the iterations is made. This makes it 

more efficient. However, the performance degradation on 
some datasets with high distance computations is a draw back 

with this k-hyperparameter tuning technique.  

Principal 
Component 

Analysis (PCA) 

[32] Wang et. al, 
2019 

Fast Adaptive 
K-Means 

Subspace 

Clustering 
for High-

Dimensional 

Data 

In this k-hyperparameter tuning technique, an adaptive loss is 
created to give an adjustable cluster indicator computation 

approach in order to handle high-dimensional datasets that 

possess different distributions. In this technique, the feature 
selection processes as well as the clustering process are done 

simultaneously. However, with this k-hyperparameter tuning 

technique, excessive feature reduction on the original high-
dimensional datasets degraded the quality of clustering results. 

 

Principal 
Component 

Analysis (PCA) 

[30] Lu, 2019 Improved K-
Means 

Clustering 

Algorithm for 
Big Data 

Mining under 

Hadoop Parallel 
Framework 

At first, the data points’ density is computed and each cluster 
contains center points whose density is not lower than the 

threshold and the supplied density range. The basic cluster is 

combined in relation to the distance between the two cluster 
centers while the points that are not divided into any clusters 

are divided into the clusters near to them.  However, the 

process of selecting the initial cluster centers is a draw back 
with this technique.  

Principal 
Component 

Analysis (PCA) 

[31] Xie et. al, 2019 Improving K-

means 
clustering with 

enhanced 

Firefly 

Algorithms 

In this k-tuning technique, two variants of firefly based 

algorithms are proposed. These include the inward intensified 
exploration firefly algorithm as well as the compound 

intensified exploration firefly algorithm. These variants are 

meant to solve the challenges of initialization sensitivity and 

trappings of the local optima on k-means. A matrix-based 

search parameters and dispersing strategies are used with the 
two firefly models in order to improve the capability of 

exploitation and exploration processes. The attractiveness 

coefficient with a randomized control matrix in the inward 
intensified exploration firefly algorithm model is first replaced 

in order to release it from the biological law constraints. The 

exploitation in the neighborhood is lifted from a one-
dimensional to multiple dimensional search strategy with 

improved diversification in terms of search scopes, scales, as 

well as directions. A dispersing strategy in the compound 
intensified exploration Firefly Algorithm is employed to 

generate similar fireflies to new positions out of the close 

neighborhood in order to execute the global exploration 
process. In order increase the efficiency in the search process, 

a sufficient variance between fireflies is created. The strength 

of the use of firefly algorithms in the k-hyperparameter tuning 
process is the fact that firefly algorithms possess attraction 

movements that help swarm to subdivide into smaller groups, 

automatically. In this case, each smaller group swarms around 
one mode or a local optimum solution. However, the presence 

of redundant, noisy, and irrelevant features in this technique 

severely affects the model’s performance. Future works must 
therefore address this. 

Principal 

Component 
Analysis (PCA) 

[45] Rustam et. al, Kernel In this k-hyperparameter tuning technique, the popular Kernel Principal 
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Refe-

rence 

Author (s) & 

Year 

Name of the k-

tuning 
technique 

Description, tuning strategy and limitations 
Data dimensionality 

reduction method 

2019 Spherical K-

Means and 

Support Vector 
Machine for 

Acute Sinusitis 

Classification 

machine learning based Kernel Spherical K-Means as well as 

the Support Vector Machine have been utilized. The technique 

was improved through the modification of the inner product 
with the kernel function so as to make sure that the separation 

of the linear data in high dimensions is achieved and thereby 

enhance the performance of this technique. On the other hand, 
the support vector machine is a binary based classification 

strategy that assists in developing models that poses good 

generalization ability. The results, evaluated and compared on 
a number of datasets is a confirmation that this k-

hyperparameter tuning technique is superior as compared to 

the baseline models. Both the clustering accuracy and the 

running time were higher as compared to the baseline models. 

However, the tuning process of the kernel parameters using 

the grid search method is a challenging task when handling 
dataset of high-dimensionality. For such relatively high-

dimensional spaces, it would be important to apply more 

efficient search methods as opposed to the grid search. 

Component 

Analysis 

[6] Hussain & 

Haris, 2018 

K-means based 

Co-clustering 

Algorithm for 
Sparse, High 

Dimensional 

Data 

The uniqueness and significance of this k-hyperparameter 

tuning technique is that it embeds the higher order statistics as 

well as the co-clustering strategies in its tuning process as 
opposed to just using them as an external distance measure. 

This technique presents a unified framework referred to as  

“K-means based Co-clustering Algorithm for Sparse, High 
Dimensional Data”. The step for the initialization process is 

modified to incorporate several points representing cluster 

centers in a way that the within-cluster –points are near each 
other but far from the points in the other clusters. In an 

iterative process, the neighborhood based walk statistics is 

proposed as a semantic similarity technique for both the 
assignment as well as the re-estimation of the center. The 

results, on a number of standard datasets, demonstrate the 

effectiveness of this technique as compared to other baseline 
models and state-of-the-art improvements.  However, the 

running time is high in cases where the dataset has a large 

number of clusters. 
 

Principal 

Component 

Analysis (PCA) 

[49] Rezaee et. al, 

2020 

GBK-means 

clustering 
algorithm: An 

improvement to 

the K-means 
algorithm based 

on the 

bargaining 
game 

This k-hyperparameter tuning technique utilizes the strength of 

bargaining game modelling to cluster high-dimensional 
dataset. With this k-hyperparameter technique, the cluster 

centers (players) compete to attract as many objects as 

possible to their own cluster. The payoff for the players 
(cluster centers) is maximized after a successful bargaining 

with each other. For this reason, these centers keep moving 

from one position to another in such a way that they possess 
lower distances with the highest possible data as compared 

with other cluster centers. The evaluation process 
demonstrates that this k-hyperparameter tuning technique 

clusters a dataset with relatively higher accuracy as compared 

to the other baseline models or the state-of-the-art k-
hyperparameter tuning techniques. However, the continuous 

movement of the cluster centers (players) is an iterative 

process that could be computationally expensive for a dataset 
with extremely high dimensionality.  

Principal 

Component 
Analysis (PCA) 

[18] Chakraborty & 

Das 2020 

Lasso Weighted 

k-means 

The “Lasso Weighted k-means” is a k-hyperparameter tuning 

technique that applies L1 regularization term with feature 
weights that triggers feature selection within the framework of 

sparse clustering. A simple block-coordinate descent type 

algorithm is developed with a time-complexity that resembles 
Lloyd’s strategy with an aim of optimizing the proposed 

objective. At the same time, strong consistency of the LW-k-

means procedure is established. This technique, validated on 

several datasets via a rigorous experimentation process, shows 

that this k-tuning technique is extremely competitive in  

performing  high-dimensional clustering as compared to the 
other baseline models as well as the other state-of-the-art 

models. The scores of both the clustering accuracy and the 

computational time are relatively good as compared in the 
other techniques. However, deploying weights on datasets 

with extremely high dimensionality e.g. gene microarray 

t-distributed 

stochastic 
neighbour 

embedding (t-SNE) 

 



IJAIDM p-ISSN: 2614-3372 | e-ISSN: 2614-6150  

 

Trends and Advances on The K-Hyperparameter Tuning… (Gikera et al) 

167 

Refe-
rence 

Author (s) & 
Year 

Name of the k-

tuning 

technique 

Description, tuning strategy and limitations 
Data dimensionality 

reduction method 

datasets, is a challenge. Therefore, the use of a fuzzy system to 
help in assigning a probabilistic interpretation of the weights 

of features could be worth investigating in future research 

works.  
[20] Brodinová et. 

al, 2019 

Robust and 

sparse k-means 

clustering for 
high-

dimensional 

data 

This technique incorporates a weighting function that paves 

way to an automated assignment of weights on every 

observation. A high weight on an observation means that a 
data point belongs to a cluster while low weight means that a 

data point is a potential outlier. To cope with noisy variables, 

an objective function referred to as a lasso-type penalty is 
applied. A framework for determining both the number of 

clusters, k-hyperparameter and variables based on a modified 

gap statistic is introduced. However, the process of applying 
weighting functions as well as updating the variable weights is 

repeated iteratively until there is stabilization of the variable 

weights. This could be computationally expensive for a data 
set with relatively high dimensionality, for example, the 

proteomic and genes based datasets. A technique for pre-

processing such a high-dimensional dataset before being 
clustered could be a solution for this. At the same time, 

identifying outliers from the noisy variables is challenging as 

the noisy variables are assigned a weight of zero.  

Principal 

Component 

Analysis (PCA) 

[38] Orkphol & 

Yang, 2019 

Sentiment 

Analysis on 

Micro blogging 
with K-Means 

Clustering and 

Artificial Bee 
Colony 

This technique uses frequency–inverse document frequency 

strategy selecting the important features from a micro 

blogging high-dimensional dataset. The dimensionality 
reduction is performed using the singular value decomposition 

method. In order to search for a global optimum, the popular 

artificial bee colony is applied in the determination of the best 
initial centroids. Silhouette internal validation index is then 

used to determine the optimal value of k. However, in order to 

use silhouette in the determination of the optimal k-
hyperparameter, several k-values have to be supplied in order 

to compare the one that returns the best silhouette score. This 

makes the technique computationally expensive. At the same 
time, inconsistencies may occur where the silhouette generates 

the best score at an optimal k-value that is different from 

another internal validation index e.g. Dunn index or Davies 
Bouldin index. In this case, we recommend the use of an 

ensemble internal validation index, via boosting or bagging, 

whose components exercise equal sensitivity to the varied 
conditions present in the high dimensional datasets. The 

optimal k-hyperparameter value would then be reached at 

through the ensemble’s voting scheme i.e. the one that is 
returned by most of the internal validation indexes.  

Singular Value 

Decomposition 

(SVD) 

[41] Song et. al, 

2021 

A Fast Hybrid 

Feature 

Selection Based 

on Correlation-
Guided 

Clustering and 

Particle Swarm 
Tuning for 

High-

Dimensional 
Data 

This technique utilizes an integrated three-phase hybrid system 

using correlation-guided clustering and particle swarm tuning.  

During the first and second steps, a filter mechanism and a 

feature clustering-based method, both of low computational 
costs, are developed to minimize the search space. During the 

third step, it finds an optimal feature subset using an 

evolutionary algorithm with the global mechanism for 
searching. However, this technique faces the drawback of the 

fact that for data with a huge number of samples, it faces the 

challenge of extremely high computational cost. 

Hybrid 

[39] Dey et. al, 2020 The Sparse 

Min-Max k-
Means 

Algorithm for 

High-
Dimensional 

Clustering 

The sparse Min-Max k-Means Clustering strategy reformulates 

the objective function of the Min-Max k-Means algorithm into 
a new form of weighted between-cluster sum of squares. The 

sparse regularization is imposed on these weights to make it 

useful in the clustering of high-dimensional space. The 
technique, however, degrades in its performance when noisy 

variables are present in a high-dimensional dataset.  

Principal 

Component 
Analysis 

[40] Hozumi et. al, 
2021 

UMAP-assisted 
K-means 

clustering of 

large-scale 
SARS-CoV-2 

mutation 

datasets 

This technique utilizes the UMAP data dimensionality 
reduction method to convert the high-dimensional space into 

low dimensional space. UMAP is nonlinear and uses three 

assumptions i.e. a dataset has uniform distribution on 
Riemannian manifold, the Riemannian metric has a local 

constant, and the there is a local connection of the manifold. 

UMAP creates a graph representation of each of the original 
highdimensional space in form of a predefined k-dimensional 

weighted UMAP. This is accomplished in such a way as to 

Uniform Manifold 
Approximation and 

Projection (UMAP) 
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minimize the edge-wise cross-entropy between the weighted 

graph and the original data. Lastly, the UMAP graph’s k-

dimensional eigenvectors are used to represent each of the 
original data space. However, this technique does not perform 

well on a dataset that possess complex non-linear structure or 

on a dataset that possess non-uniform density. 

 

RQ2: What’s the nature of the input datasets used with the k-hyperparameter tuning techniques in high-

dimensional spaces? 

 

Table 3. Nature, description and dimensionality of the datasets used 

with the k-hyperparameter tuning techniques 

Refe-

rence 
Author (s) & Year 

Name of the k-tuning 

technique 
Dataset name and nature 

[8] Onumanyi et., al. 
(2022) 

AutoElbow Cleveland heart disease dataset, containing 13 features, 303 instances and the 
k-hyperparameter value is 5. This dataset is of the type text and dimensionality 

of 101.  

 
[47] Yan et. al, 2019 Adaptive Multi-view 

Subspace Clustering 

for High-dimensional 
Data 

Caltech, Jaffe, handwritten and Yale datasets were used with this technique. 

Caltech contains 8677 images from 101 categories, Jaffe contains 213 samples 

and 10 classes, handwritten dataset contains 2000 samples and 10 classes 
while the Yale contains 165 gray images of 15 individuals. These datasets are 

of the type text and images with a dimensionality of 101 and 102.  

[15] Tao et. al, 2018 An Intelligent 
Clustering Algorithm 

for High-Dimensional 

Multiview 

Data in Big Data 

Applications 

Multiple Features (Mfeat) dataset, Internet Advertisement data set, Spambase 
data set, Segmentation data set and Cardiotocography data set were used with 

this technique. Mfeat contains 2,000 objects and 649 features in 10 clusters. 

Internet advertisement dataset contains 2359 objects in 2 clusters and 1557 

features. Spam base dataset contains 4601 objects in 2 clusters and 57 

features. Image segmentation dataset contains 2310 objects in 7 clusters and 

57 features while the cardiotocography contains 2126 objects in 3 clusters and 
21 features. These datasets are of the type text and images with a 

dimensionality of 101, 102 and 103. 

 

[48] 
 
Xia et. al, 2020 

 
Ball k-means 

Four-class, svmguide1, codma, keg network, epileptic, birch and ijcnn are the 
datasets used in this technique. Four class dataset is of the size 862 with 

3dimensions. Svmguide1 dataset is of the size 7088 and 5dimensions. Codrna 

dataset is of the size 59535 with 8 dimensions. Kegg-Network dataset is of the 
size 65554 with 28dimensions.Epileptic is of the size 11500 and 179 

dimensions. Birch3 dataset is of the size 100000 and 2dimensions. Ijcnn 

dataset is of the size 141690 and 22 dimensions while RNA-Seq contains 
20531 dimensions. These datasets are of the type text and images with a 

dimensionality of 101, 102, 103and 104. 

[32] Wang et. al, 2019 Fast Adaptive K-
Means Subspace 

Clustering 

for High-Dimensional 
Data 

Glass, breast, vehicle, Umist, Yale, WebKB and TD2 are the datasets used in 
this technique. Glass contains 6 clusters, 214 instances and 9 features. Breast 

contains 2 clusters, 699 instances and 10 features. Vehicle contains 4 clusters, 

846 instances and 18 features. Umist contains 20 clusters, 575 instances and 
644 features. Yale contains 15 clusters, 165 instances and 1024 features. 

WebKB contains 7 clusters, 814 instances and 4029 features. TD2 contains 10 
clusters, 653 instances and 36771 features. These datasets are of the type text 

and images with a dimensionality of 101, 102, 103 and 104. 

[30] Lu, 2019 Improved K-Means 
Clustering Algorithm 

for Big Data Mining 

under Hadoop Parallel 
Framework 

HIGGS data set containing 11 million records and 28 features. This dataset is 
of the type signal images and with a dimensionality of 101. 

 

[31] Xie et. al, 2019 Improving K-means 

clustering with 
enhanced Firefly 

Algorithms 

Acute Lymphoblastic Leukaemia (ALL), Sonar, Ozone, Wisconsin breast 

cancer diagnostic data set (Wbc1), Wisconsin breast cancer original data set 
(Wbc2), Wine, Iris, Balance, Thyroid, E. coli, Drivface, Micromass, sensor, 

Human Activity, Skin Lesion, Mice Protein, and Libras are the datasets used 

with this technique. Sonar contains 60 features, 2 clusters, and 140 instances. 
Ozone contains 72 features, 2 clusters, and 196 instances. ALL contains 80 

features, 2 clusters, and 100 instances. WBC1 contains 30 features, 2 clusters, 

and 561 instances. WBC2 contains 9 features, 2 clusters, and 683 instances. 
Wine contains 13 features, 3 clusters, and 178 instances. Iris contains 4 

features, 3 clusters, and 150 instances. Balance contains 4 features, 2 clusters, 

and 576 instances. Thyroid contains 5 features, 3 clusters, and 90 instances. 
Ecoli contains 7 features, 3 clusters, and 150 instances. Drivface contains 

6400 features, 3 clusters, and 81 instances. Micromass contains 1300 features, 

5 clusters, and 180 instances. Sensor contains 128 features, 5 clusters, and 415 
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instances. Human Activity contains 560 features, 2 clusters, and 600 

instances, Skin Lesion contains 98 features, 2 clusters, and 660 instances, 

Mice Protein contains 77 features, 2 clusters, and 300 instances. Libras 
contains 90 features, 2 clusters, and 72 instances. These datasets are of the 

type text and images with a dimensionality of 101, 102, and 103. 

[45] Rustam et. al, 
2019 

Kernel Spherical K-
Means and Support 

Vector Machine for 

Acute Sinusitis 
Classification 

Acute Sinusitis Data which contains 4 features, 200 instances and 2 clusters of 
acute and non-acute sinusitis. 

[6] Hussain & Haris, 

2018 

K-means based Co-

clustering Algorithm 
for Sparse, High 

Dimensional Data 

M2, M5, M10, Cornell, Washington and Cora datasets have been used with 

this k-hyperparameter tuning technique. 
M2 – This dataset contains 20,000 news group documents from 20 different 

newspapers and has 2 clusters. 

M5 – This dataset is similar to M2 but with more number of categories and 
less number of documents as compared to those in M2. 

M10 – This dataset is similar to M5 but with more number of categories and 

less number of documents as compared to those in M5 and M2. 
Cornell – This dataset contains 195 documents containing 1703 words and in 

5 clusters. 

Cora – This dataset contains 2708 documents, 1433 words with each 
document belonging to one of 6 classes. 

Washington – This dataset contains 230 documents and has five classes. 
These datasets are of the type text and with a dimensionality of 103. 

[49] Rezaee et. al, 

2020 

GBK-means clustering 

algorithm: An 
improvement to the K-

means 

algorithm based on the 
bargaining game 

Australian Credit, Breast Cancer, Breast Wisconsin, Diabetes, Haberman’s 

Survival, Heart Disease, Hepatitis, Ionosphere, Japanese Credit and 
Mammographic are the datasets used with this k-hyperparameter tuning 

technique.  

Australian Credit dataset contains 690 instances and 14 attributes. Breast 
Cancer dataset contains 569 instances and 30 attributes.  Breast Wisconsin 

dataset contains 699 instances and 9 attributes.  Diabetes dataset contains 768 

instances and 8 attributes.  Haberman’s Survival dataset contains 306 
instances and 3 attributes.  Heart Disease dataset contains 303 instances and 

13 attributes.  Hepatitis dataset contains 155 instances and 20 attributes. 

Ionosphere dataset contains 351 instances and 34 attributes. Japanese Credit 
dataset contains 690 instances and 15 attributes. Mammographic dataset 

contains 961 instances. These datasets are of the type text with a 

dimensionality of 101. 
[18] Chakraborty & 

Das 2020 

Lasso Weighted k-

means 

Brain, Leukemia, Lung cancer, Lymphoma, Wine, Coil_5, ORL_5, YALE_5, 

ALLAML, Appendicitis, SuCancer, Iris, Glass, Tae, Zoo, Cleveland,  Leaf, 

Vowel, Ecoli, Hebaerman and the WDBC are the datasets used in this 
technique. 

Brain - Brain dataset has 5 clusters and contains 42 instances and 5,597 

features 
Leukemia - Leukemia dataset has 2 clusters and contains 72 instances and 

3,571 features 

Lung cancer – Lung cancer dataset has 2 clusters and contains 181 instances 
and 12,533 features 

Lymphoma - Lymphoma dataset has 3 clusters and contains 62 instances and 

4,026 features 
Wine - Wine contains 13 features, 3 clusters, and 178 instances 

Iris - Iris contains 4 features, 3 clusters, and 150 instances 

Cleveland - Cleveland heart disease dataset, containing 13 features, 303 
instances and the k-hyperparameter value is 5 

Ecoli - Ecoli contains 7 features, 3 clusters, and 150 instances 

These datasets are of the type text and images with a dimensionality of 101, 
103 and 104. 

[20] Brodinová et. al, 

2019 

Robust and sparse k-

means clustering for 
high-dimensional data 

Synthetic dataset was used in this technique. The synthetic dataset consists of 

40 observations, 50 features and 3 clusters. This dataset is of the type text with 
a dimensionality of 101. 

[38] Orkphol & Yang, 

2019 

Sentiment Analysis on 

Micro blogging with 
K-Means Clustering 

and Artificial Bee 

Colony 

Twitter dataset was used to evaluate this algorithm. This dataset contains 

1,000 non-redundant tweets and a polarity of 228 positive tweets, 104 
negative tweets, and 668 neutral tweets. This dataset is of the type text with a 

dimensionality of 103. 

 
[41] Song et. al, 2021 A Fast Hybrid Feature 

Selection Based on 

Correlation-Guided 
Clustering and Particle 

Swarm Tuning for 

High-Dimensional 
Data 

Arrhythmia, SCADI, GFE, Prostate, MFD, Coil 20, Yale_64, Colon, SRBCT, 

WrapAR10P, Leukemia_Small, DBWorld, DLBCL, Drv_face, 

Leukemia_Big, CNS, Lung and Ovarian were used as the datasets with this 
technique. Arrhythmia contains 195 features, 452 samples and 16 clusters. 

SCADI contains 205 features, 70 samples and 7 clusters. GFE contains 301 

features, 743 samples and 2 clusters. Prostate contains 339 features, 102 
samples and 2 clusters. MFD contains 649 features, 700 samples and 10 
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clusters. Coil 20 contains 1,024 features, 200 samples and 20 clusters. 

Yale_64 contains 1,024 features, 165 samples and 15 clusters. Colon contains 
2,000 features, 62 samples and 2 clusters. SRBCT contains 2,304 features, 83 

samples and 4 clusters. WrapAR10P contains 2,400 features, 130 samples and 

10 clusters. Leukemia_Small contains 3,571 features, 72 samples and 2 
clusters. DBWorld contains 4,703 features, 64 samples and 2 clusters. DLBCL 

contains 5,469 features, 77 samples and 2 clusters. Drv_face contains 6,400 

features, 606 samples and 3 clusters. Leukemia_Big contains 7,128 features, 
72 samples and 2 clusters. CNS contains 7,129 features, 60 samples and 2 

clusters. Lung contains features 12,600, 203 samples and 2 clusters. Ovarian 

contains 15,154 features, 253 samples and 2 clusters. These datasets are of the 
type text and images with a dimensionality of 102, 103 and 104. 

[39] Dey et. al, 2020 The Sparse MinMax k-

Means Algorithm for 
High-Dimensional 

Clustering 

Brain, breast cancer, colon cancer, leukemia, lung cancer 1, lung cancer 2, 

lymphoma, prostate cancer, SRBCT and suCancer datasets have been used in 
this technique. Brain dataset has 5 clusters and contains 42 instances and 

5,597 features.  Breast cancer dataset has 2 clusters and contains 276 instances 

and 22,215 features. Colon cancer dataset has 2 clusters and contains 62 
instances and 2,000 features. Leukemia dataset has 2 clusters and contains 72 

instances and 3,571 features. Lung cancer 1 dataset has 2 clusters and contains 

181 instances and 12,533 features. Lung cancer 2 dataset has 2 clusters and 
contains 203 instances and 12,600 features. Lymphoma dataset has 3 clusters 

and contains 62 instances and 4,026 features. Prostate cancer dataset has 2 
clusters and contains 102 instances and 6,033 features. SRBCT dataset has 4 

clusters and contains 63 instances and 2,308 features. SuCancer dataset has 2 

clusters and contains 174 instances and 7,909 features. These datasets are of 
the type text and images with a dimensionality of 103 and 104. 

[40] Hozumi et. al, 

2021 

UMAP-assisted k-

means clustering of 
large-scale SARS-

CoV-2 mutation 

datasets 

Global SARS-CoV-2 mutation dataset, Coil 20, Facebook network, original 

MNIST and Jaccard distance based MNIST were used as the datasets with the 
technique. Global SARS-CoV-2 mutation dataset contains 203,344 features, 

203,344 instances and 6 clusters. Coil 20 contains 1,440 grey images, 20 

different objects each with an orientation of 72. Each image is 128 x 128 with 
a total dimensionality of 16384.  Facebook network contains 22,470 nodes 

with a feature size of the same amount. Original MNIST contains a sample of 

70,000, 28 x 28 grey scale images with a dimensionality of 784. Jaccard 
distance based MNIST is similar to the original MNIST. These datasets are of 

the type text and images with a dimensionality of 103, 104. And 105. 

 

RQ3: What are the key algorithm performance and statistical metrics for evaluating the existing k-

hyperparameter tuning techniques in high-dimensional spaces? 

 

Table 4. Performance and statistical metrics and scores of the k-hyperparameter tuning techniques 

Refe-
rence 

Author (s) & 
Year 

Name of the k-tuning 
technique 

Algorithm’s performance & statistical metrics & scores 

[8] Onumanyi 

et. al, 

(2022) 

AutoElbow Clustering accuracy (100%). This has been computed as a percentage of the 

number of clusters generated to the number of actual clusters (ground truth) 

[47] Yan et. al, 

2019 

Adaptive Multi-view 

Subspace Clustering for 
High-dimensional Data 

Normal mutual information (98.31), accuracy (99.83) as well as the 

purity(98.83).  

[15] Tao et. al, 

2018 

An Intelligent Clustering 

Algorithm for High-
Dimensional Multiview 

Data in Big Data 

Applications 

The Jaccard Coefficient (JC), Rand Index (RI) and Folkes Russe (FS) were 

used to evaluate this algorithm.  
Mfeat dataset – RI = 0.9586, JC=0.6820 and FS = 0.8116 

Internet Advertisement data set- RI = 0.8179, JC= 0.7868and FS =0.8809  

Spambase data set- RI = 0..5225, JC=0.5222 and FS = 0.7225 
Segmentation data set  - RI = 0.2297, JC=0.8047 and FS = 0.3750 

Cardiotocography - RI = 0.3984, JC=0.5576 and FS = 0.5854 

[48] Xia et. al, 
2020 

Ball k-means Run-time was used to evaluate this technique. 
Four-class  dataset- 0.03 

Svmguide1 dataset - 0.24 

Codrna  dataset – 3.15 
Kegg Network dataset – 12.21 

Epileptic  dataset -15.58 

Birch3 dataset -1.18 
Ijcnn dataset –9.28 

RNA-seq dataset - 500 

[32] Wang et. al, 
2019 

Fast Adaptive K-Means 
Subspace Clustering 

for High-Dimensional 

Data 

Accuracy and NMI were used to evaluate this technique. 
Glass dataset – Accuracy 49.53% of and NMI of  33.81% 

Breast dataset- Accuracy 95.57% of and NMI of 71.92% 

Vehicle dataset- Accuracy of 44.13% and NMI of 17.87% 
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Umist dataset- Accuracy of 44.35% and NMI of 63.89% 

Yale dataset- Accuracy of 48.56% and NMI of 54.63% 

WebKB dataset- Accuracy 67.09% of and NMI of 16.72% 
TD2 dataset - Accuracy of 36.22% and NMI of 31.13% 

 

[30] Lu, 2019 Improved K-Means 
Clustering Algorithm for 

Big Data Mining under 

Hadoop Parallel 
Framework 

Clustering accuracy and running time are the metrics used to evaluate this 
technique.  

Clustering accuracy – 98% 

Running time – 22 seconds 
 

 

[31] 

 

Xie et. al, 
2019 

 

Improving K-means 
clustering with enhanced 

Firefly Algorithms 

 

Sum of intra-cluster distances, also called fitness scores, accuracy, sensitivity, 
specificity, and macro-average F-score are used as the performance metrics to 

evaluate the performance of this k-hyperparameter tuning technique. 

Fitness score- Acute Lymphoblastic Leukemia (293.53), Sonar (160.54), 
Ozone (514.11), Wisconsin breast cancer diagnostic data set Wbc1 (2280.8), 

Wisconsin breast cancer original data set Wbc2 (1092.1), Wine (456.78), Iris 

(130.24), Balance (1002.9), Thyroid (113.26), E. coli (257.63), Drivface 
(4849.4), Micromass (656.91), sensor (426,26), Human Activity (12785), 

Skin Lesion (5399.8), Mice Protein (2345.0), and Libras (466.05). 

Accuracy – Acute Lymphoblastic Leukemia (0.5137), Sonar, Ozone, 
Wisconsin breast cancer diagnostic data set Wbc1 (0.9147), Wisconsin breast 

cancer original data set Wbc2 (0.9693), Wine (0.9485), Iris (0.8818), Balance 
(0.8047), Thyroid (0.8235), E. coli (0.7739), Drivface (0.7687), Micromass 

(0.8582), sensor (0.8118), Human Activity (0.6436), Skin Lesion (0.7854), 

Mice Protein (0.7238), and Libras (0.7801). 
Sensitivity – Acute Lymphoblastic Leukemia (0.5187), Sonar, Ozone, 

Wisconsin breast cancer diagnostic data set Wbc1 (0.9056), Wisconsin breast 

cancer original data set Wbc2 (0.9667), Wine, Iris (0.8227), Balance (0.8038), 
Thyroid (0.8676), E. coli (0.6609), Human Activity (0.6303), Skin Lesion 

(0.7898), Mice Protein (0.6913), and Libras (0.8342). 

Specificity – Acute Lymphoblastic Leukemia (0.5087), Sonar, Ozone, 
Wisconsin breast cancer diagnostic data set Wbc1 (0.8990), Wisconsin breast 

cancer original data set Wbc2 (0.9667), Wine (0.9618), Iris (0.9113), Balance 

(0.8056), Thyroid (0.8676), E. coli (0.8304), Drivface, Micromass, sensor, 
Human Activity (0.6568), Skin Lesion (0.7800), Mice Protein (0.6913), and 

Libras (0.8342). 

Macro-average F-score – Acute Lymphoblastic Leukemia (0.5145), Sonar, 
Ozone, Wisconsin breast cancer diagnostic data set Wbc1(0.9092), Wisconsin 

breast cancer original data set (Wbc2), Wine, Iris (0.9295), Balance (0.8045), 

Thyroid (0.7539), E. coli (0.6992). 
Wilcoxon rank sum test  -Acute Lymphoblastic Leukemia (1.18E-04), Sonar 

(1.07E-08), Ozone (2.88E-11), Wisconsin breast cancer diagnostic data set  

WBc1 (5.01E-13), Wisconsin breast cancer original data set Wbc2(3.10E-10), 
Wine (3.49E-08), Iris (1.00E-00), Balance (2.89E-05), Thyroid (2.02E-06), E. 

coli (2.15E-02), Drivface (3.44E-03), Micromass(3.32E-04). 

[45] Rustam et. 
al, 2019 

Kernel Spherical K-
Means and Support 

Vector Machine for 

Acute Sinusitis 
Classification 

Clustering accuracy and running time are the two metrics used to evaluate this 
k-hyperparameter tuning technique. 

Clustering accuracy – 90% 

Running time – 0.03 seconds 

[6] Hussain & 

Haris, 2018 

K-means based Co-

clustering Algorithm for 
Sparse, High 

Dimensional Data 

Accuracy, NMI, Sum of squared error, running time and the popular statistical 

t-test were used to evaluate the effectiveness of this technique.  
Accuracy – M2 (0.92), M5 (0.95), M10 (0.73), Cora (0.48), Cornell (0.63), 

Washington (0.66). 

NMI - M2 (0.53), M5 (0.91), M10 (0.69), Cora (0.28), Cornell (0.43), 
Washington (0.48). 

Sum of squared error - M2 (385), M5 (368), M10 (370), Cora (1960), Cornell 

(78.5), Washington (93). 
Running time (seconds) - M2 (0.05), M5 (0.08), M10 (0.36), Cora (0.72), 

Cornell (0.01), Washington (0.04). 

T-test – The technique is statistically significant with a 0.05 significance level 
on M2, M5, M10, Cora , Cornell and Washington datasets. 

[49] Rezaee et. 

al, 2020 

GBK-means clustering 

algorithm: An 
improvement to the K-

means algorithm based 

on the bargaining game 

F-measure, Dunn index, Rand index, Jaccard index, Normalized Mutual 

Information, normalized variation of information, measure of concordance 
and  Wilcoxon signed rank test have been used to evaluate this algorithm. 

F-measure - Australian Credit (0.849), Breast Cancer (0.933), Breast 

Wisconsin (0.948), Diabetes (0.660), Haberman’s Survival (0.518), Heart 
Disease (0.78), Hepatitis (0.711), Ionosphere (0.759), Japanese Credit (0.839), 

Mammographic (0.764). 

Dunn index - Australian Credit (0.059), Breast Cancer (0.076), Breast 
Wisconsin (0.134), Diabetes (0.100), Haberman’s Survival (0.072), Heart 
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Disease (0.2), Hepatitis (0.443), Ionosphere (0.085), Japanese Credit (0.381), 

Mammographic (0.25). 
Rand index - Australian Credit (0.867), Breast Cancer (0.893), Breast 

Wisconsin (0.890), Diabetes (0.322), Haberman’s Survival (0.742), Heart 

Disease (0.779), Hepatitis (0.848), Ionosphere (0.641), Japanese Credit 
(0.864), Mammographic (0.757). 

Jaccard index - Australian Credit (0.863), Breast Cancer (0.996), Breast 

Wisconsin (1.000), Diabetes (0.974), Haberman’s Survival (0.962), Heart 
Disease (0.510), Hepatitis (0.971), Ionosphere (0.672), Japanese Credit 

(0.970), Mammographic (0.809). 

Normalized Mutual Information - Australian Credit (0.42), Breast Cancer 
(0.670), Breast Wisconsin (0.756), Diabetes (0.481), Haberman’s Survival 

(0.632), Heart Disease (0.24), Hepatitis (0.553), Ionosphere (0.097), Japanese 

Credit (0.45922), Mammographic (0.245). 
Normalized variation of information - Australian Credit (0.712), Breast 

Cancer (0.511), Breast Wisconsin (0.530), Diabetes (0.765), Haberman’s 

Survival (0.633), Heart Disease (0.850), Hepatitis (0.594), Ionosphere 
(0.951), Japanese Credit (0.702), Mammographic (0.872). 

Measure of concordance - Australian Credit (1), Breast Cancer (1), Breast 

Wisconsin (1), Diabetes (1), Haberman’s Survival (1), Heart Disease (1), 
Hepatitis (1), Ionosphere (1), Japanese Credit (1), Mammographic (1). 

Wilcoxon signed rank test - Australian Credit (), Breast Cancer (), Breast 
Wisconsin (), Diabetes (), Haberman’s Survival (), Heart Disease (), Hepatitis 

(), Ionosphere (), Japanese Credit (), Mammographic (). 

[18] Chakraborty 
& Das 2020 

Lasso Weighted k-means  Running time in seconds, clustering error rate, rand index and Normalized 
Mutual Information were used in the evaluation process.  

Running time in seconds - Brain (2.407632), Leukemia (1.008672), Lung 

cancer (1.542459), Lymphoma (1.542459), Wine (0.219742), Coil_5 
(4.165497), ORL_5 (0.609416), YALE_5 (0.704548), ALLAML (1.008672), 

Appendicitis (2.421305), SuCancer (Missing), Iris (Missing), Glass (Missing), 

Tae (Missing), Zoo (Missing), Cleveland (Missing),  Leaf (Missing), Vowel 
(Missing), Ecoli (Missing), Hebaerman (Missing) WDBC (0.510246). 

Clustering error rate - Brain (0.2254), Leukemia (0.0250), Lung cancer 

(0.2196), Lymphoma (0.0161), Wine (0.0549), Coil_5 (0.4031), ORL_5 
(0.2800), YALE_5 (0.3455), ALLAML (0.2492), Appendicitis (0.1917), 

SuCancer (0.4770), Iris (Missing), Glass (Missing), Tae (Missing), Zoo 

(Missing), Cleveland (Missing),  Leaf (Missing), Vowel (Missing), Ecoli 
(Missing), Hebaerman (Missing) WDBC (0.0748). 

Rand index - Brain (Missing), Leukemia (Missing), Lung cancer (Missing), 

Lymphoma (Missing), Wine (0.9339), Coil_5 (Missing), ORL_5 (Missing), 
YALE_5 (Missing), ALLAML (Missing), Appendicitis (Missing), SuCancer 

(Missing), Iris (0.9495), Glass (0.6983), Tae (0.6181), Zoo (0.8886), 

Cleveland (0.6677),  Leaf (0.9477), Vowel (0.8598), Ecoli (0.7984), 
Hebaerman (0.6220) WDBC (Missing). 

Normalized Mutual Information – Brain (0.6263), Leukemia (0.8056), Lung 

cancer (0.3078), Lymphoma (0.9255), Wine (0.8267), Coil_5 (0.4092), 

ORL_5 (0.7610), YALE_5 (0.5828), ALLAML (0.4298), Appendicitis 

(0.2502), SuCancer (Missing), Iris (Missing), Glass (Missing), Tae (Missing), 

Zoo (Missing), Cleveland (Missing),  Leaf (Missing), Vowel (Missing), Ecoli 
(Missing), Hebaerman () WDBC (0.6215). 

[20] Brodinová 

et. al, 2019 

Robust and sparse k-

means clustering for 
high-dimensional data 

Clustering error rate (CER), TPR (True Positive rate) and FPR (False positive 

rate) were the three metrics that were used to evaluate the performance of this 
technique. 

When k=3, 

CER = 0.01 
TPR = 1 

FPR = 0 

When k=4, 
CER = 0.03 

TPR = 0.85 

FPR = 0.15 
When k=5, 

CER = 0.05 

TPR = 0.95 
FPR = 0.05 

 

[38] Orkphol & 
Yang, 2019 

Sentiment Analysis on 
Micro blogging with K-

Means Clustering and 

Artificial Bee Colony 

Clustering error rate was used to evaluate this algorithm. 
CER – 0.191 

[41] Song et. al, A Fast Hybrid Feature Clustering accuracy in % and run-time in seconds are the two metrics used to 
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Refe-
rence 

Author (s) & 
Year 

Name of the k-tuning 
technique 

Algorithm’s performance & statistical metrics & scores 

2021 Selection Based on 

Correlation-Guided 

Clustering and Particle 
Swarm Tuning for High-

Dimensional Data 

evaluate this algorithm. 

Arrhythmia- Clustering accuracy (67.68), Run time (31.723 seconds) 

SCADI- Clustering accuracy (89.68), Run time (3.314 seconds) 
GFE- Clustering accuracy (85.13), Run time (43.571 seconds) 

Prostate- Clustering accuracy (97.49), Run time (3.550 seconds) 

MFD- Clustering accuracy (99.40), Run time (94.522 seconds) 
Coil 20- Clustering accuracy (100), Run time (237.147 seconds) 

Yale_64- Clustering accuracy (79.52), Run time (35.169 seconds) 

Colon- Clustering accuracy (92.47), Run time (5.974 seconds) 
SRBCT- Clustering accuracy (100), Run time (8.716 seconds) 

WrapAR10P- Clustering accuracy (100), Run time (13.104 seconds) 

Leukemia_Small- Clustering accuracy (100), Run time (5.274 seconds) 
DBWorld- Clustering accuracy (9.757), Run time (4.571 seconds) 

DLBCL- Clustering accuracy (100), Run time (5.821 seconds) 

Drv_face- Clustering accuracy (98.23), Run time (72.400 seconds) 
Leukemia_Big- Clustering accuracy (100), Run time (6.119) 

CNS- Clustering accuracy (8.591), Run time (7.400 seconds) 

Lung - Clustering accuracy (98.01), Run time (26.316) 
Ovarian- Clustering accuracy (100), Run time (9.826 seconds) 

[39] Dey et. al, 

2020 

The Sparse MinMax k-

Means Algorithm for 
High-Dimensional 

Clustering 

Retained features, run-time and Dunn index have been used in the evaluation 

of this technique. 
Retained features – Brain (1,810), breast cancer (79), colon cancer (76), 

leukemia (148), lung cancer 1 (16), lung cancer 2 (5), lymphoma (717), 
prostate cancer (5,650), SRBCT  (1,019) and suCancer (1,370). 

Dunn index - Brain (0.647), breast cancer (0.197), colon cancer (0.435), 

leukemia (0.621), lung cancer 1 (0.245), lung cancer 2 (0.548), lymphoma 
(0.616), prostate cancer (0.393), SRBCT  (0.544) and suCancer (0.505). 

Runtime - Brain (1.386 seconds), breast cancer (7.712 seconds), colon cancer 

(0.341 seconds), leukemia (0.784 seconds), lung cancer 1 (5.305 seconds), 
lung cancer 2 (5.137 seconds), lymphoma (1.857 seconds), prostate cancer 

(4.293 seconds), SRBCT  (1.126 seconds) and suCancer (2.918 seconds) 

[40] Hozumi et. 
al, 2021 

UMAP-assisted K-
means clustering of 

large-scale SARS-CoV-2 

mutation datasets 

Clustering accuracy and run-time are the three evaluation metrics used with 
this k-hyperparameter tuning technique. 

Clustering accuracy - Coil20 (0.853), Facebook network (0.786), original 

MNIST(0.919), Jaccard distanced-based MNIST (0.960), Global SARS-CoV-
2 mutation dataset (0.617). 

Run-time - Coil20 (500 seconds), Facebook network (22,000 seconds), 

original MNIST(8,000 seconds), Jaccard distanced-based MNIST (25,000 
seconds), Global SARS-CoV-2 mutation dataset (45,000 seconds) 

 

4.2. Discussions 

From the results, internal validation indexes, external validation indexes, clustering accuracy and the 

run times are the commonly used metrics for evaluating the existing k-hyperparameter tuning techniques. 

However, in unsupervised clustering, we note that internal validation indexes, as opposed to external 

validation indexes are the best metrics for use in assessing the quality of clusters of the high-dimensional 

datasets with unknown number of clusters. Internal validation indexes are based on the previous knowledge 

about a dataset while the internal validation indexes are based on the information intrinsic to the data alone 

[50]. Among the internal validation indexes, Silhouette Index, Davies Bouldin index, Calinski Harabsz index 

as well as the Dunn Index are the most commonly used metrics for evaluating the quality of clusters. This 

relates to the research done by that explains why the four are the most common internal validation metrics 

used in evaluation of clusters [50]. 

Chi-square and T-test are on the other hand the most commonly used statistical tests for hypothesis 

significance testing with the existing k-hyperparameter tuning techniques. In future empirical studies on the 

evaluation of the state-of-the-art k-hyperparameter tuning techniques, it is important to adopt a standard set of 

the performance and statistical metrics, highdimensional datasets as well as standard set of data dimensionality 

reduction methods.  The datasets used with the existing k-tuning techniques are mainly of text and images data 

types of varying dimensionality levels while the principal component analysis is the popular data 

dimensionality reduction method applied across a number of the reviewed k-hyperparameter tuning 

techniques. In order to ensure fairness in the evaluation of the different k-hyperparameter tuning methods, it is 

important for the data scientists to use a common set of benchmark high-dimensional datasets during an 

empirical study. Such future empirical study on this work needs to focus on tuning the k-hyperparameter value 

from popular texts and images datasets of varying dimensionality via different unsupervised data 

dimensionality reduction methods, and analyze the results. This will inform the data scientists on the most 

suitable set of the k-hyperparameter tuning technique and the data dimensionality reduction method for a 

specific variety of a high-dimensional dataset. Such a tool box would be beneficial. 
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The results on the nature, description and dimensionality of the datasets used with the k-

hyperparameter tuning techniques shows that text and images are the most popular type of the high 

dimensional datasets used with these techniques. The dimensionality of these high dimensional datasets 

ranges between 101 and 105 orders of magnitude, with 103 and 104 orders of magnitude being the most 

common. Genomics and proteomics datasets have their order dimensionality of 105 and above.  Datasets with 

higher dimensionality showed increased run times. This was evident in the ball k-means algorithm when 

comparing the epileptic dataset and the RNA seq dataset where the latter’s run time was higher. This can be 

alluded to the fact that the number of object to centroid point computations increases proportionally with the 

increasing dimensionality of a high dimensional dataset. The “Adaptive Multi-view Subspace Clustering for 

High-dimensional Data” technique performs relatively fast when handling Jaffe and Yale dataset. This is 

because the technique iteratively updates each cluster centroids in the embedded space as opposed to on the 

original high dimensional space. When the “Fast Adaptive K-Means Subspace Clustering for High-

Dimensional Data” technique is handling dataset with extremely high dimensionality, i.e. TDT2 and WebKB, 

it has demonstrated relatively faster speed because it performs in the reduced feature space as opposed to in the 

original feature space. Exploring strategies for reducing the dimensionality of a high dimensional dataset 

before clustering it is therefore of paramount importance when dealing with high dimensional statistics. 

However, too much reduction on the number of features degrades the quality of clustering when a few features 

on the original dataset are preserved. 

The superiority of the firefly algorithms, demonstrated in its accuracy, sensitivity, specifity and F-

score is ascribed to its strong capability of exploration and exploitation through its search strategies. At the 

same time, the automated subdivision coupled with global exploration and intensified neighboring lowers the 

probability of trapping at the local Optima. Any proposed solution for solving k-hyperparameter tuning 

problems should therefore adopt this as a critical success factor. The Wilcoxon rank sum statistical test result 

of higher than 0.05 for the firefly based algorithm with the IRIS dataset is a demonstration that firefly 

algorithms are more effective in the k-hyperparameter tuning problems in higher dimensional space as 

opposed to low dimensional space, compared to other baseline models. Across all the datasets used with the 

firefly algorithm, the fitness scores, accuracy, Fscore, sensitivity and specifity have a significant improvement 

when the numbers of features in the original dataset are reduced to a lower number, but with minimal 

information loss. If this reduction has a significant information loss in the original dataset, then these scores 

degrades due to the degradation of the clustering results. 

In the “UMAP assisted k means” technique, the superior scores in the clustering accuracy and run 

time across a number of datasets are an evidence of high efficiency and stability of the uniform manifold 

approximation and projection data dimensionality reduction method as opposed to the principal component 

analysis and the t- distributed stochastic neighbour embedding (t-SNE). This is ascribed to the fact that 

uniform manifold approximation and projection possess the capability of preserving the global structure of a 

dataset including its between-points structure and distances. This makes it one of the best options in 

visualization and exploration and future models geared towards solving the k-hyperparameter tuning problems. 

In the Sparse MinMax K-means algorithm for high dimensional clustering, all the datasets used with 

this technique possess a number of features that is greater than the number of instances. The evaluation scores 

on this technique with these datasets is an indication that this technique is a state of the art in the k-

hyperparameter tuning of the high-dimensional datasets. However, mechanisms need to be put in place to 

assist in managing the challenges of noisy variables and redundant features in a high dimensional dataset. 

Using multiple kernels to handle such challenges could offer solution into this problem. 

In the fast hybrid technique based on the feature selection on correlation guided clustering and 

particle swarm tuning, it is evident that the run times are proportional to the number of features in a dataset. 

For this reason, it is proposed that the adoption of an efficient data dimensionality reduction method with this 

technique has a significant effect on its performance. Choosing the most suitable data dimensionality reduction 

method for such high-dimensional datasets is therefore of paramount importance to data scientists. An 

empirical study of this technique with varied high-dimensional datasets and data dimensionality reduction 

methods will inform the data scientists of the best data dimensionality method for a particular variety of high-

dimensional dataset while using this k-hyperparameter tuning technique. 

In the sentiment analysis on micro blogging technique with k-means and artificial bee colony, the use 

of silhouette index only in the determination of the k-hyperparameter demonstrated limitations. This is 

because, inconsistencies may occur where the silhouette index generates the best score at a different optimal k-

value than the one generated by a different internal validation index like Dunn index or Davies Bouldin index. 

In such a case, we recommend the use of an ensemble internal validation index, via boasting or bagging, 

whose components exercise equal sensitivity to the varied conditions within a high dimensional dataset. The 

optimal k-value generated through such an ensemble would be a achieved through the voting scheme i.e. the 

one that is returned by most of the internal validation indexes. 
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In the robust and sparse K-means clustering for high dimensional data, having to repeat the process of 

applying weighting functions and updating the variable weights iteratively until stabilization is attained would 

be computationally expensive for datasets with extremely high dimensionality. The evaluation results on this 

algorithm demonstrate a challenge in determining the sparsity parameter s for contaminated datasets of high 

dimensionality. An automated method of determining the sparse parameter value s in such high dimensionality 

datasets is critical to building effective high-dimensional K-means models using this technique. 

In the “lasso weighted K-means” technique, the results show that the t-distributed stochastic 

neighbour and embedding (t-SNE) and principal component analysis (PCA) generate different qualities of 

clusters with the leukemia dataset. It is therefore important to perform further experiments on a number of 

other high dimensional datasets with an aim of establishing the best set of data dimensionality reduction 

methods for a specific variety of high dimensional dataset. At the same time, applying weights on dataset with 

relatively high dimensionality is challenging when using this technique. The use of automated fuzzy in giving 

probabilistic interpretation of the weights of features could be worth investigating in the future research work 

focusing on solving this kind of tuning problem. Lastly, it is a concern that the computations of some metrics 

in the table of results are missing. For example, the Normal Mutual Information for Cleveland dataset and 

SuCancer datasets are missing. It is important that all the metrics proposed in the methodology have their 

results computed in the table of results so that the discussion and conclusion process if fair.  

In the GBK means algorithm, we note that the dimensionalities of all the 10 datasets used in the 

experimentation process are of relatively lower dimensionality as opposed to the datasets used with the other 

k—hyperparameter tuning techniques. It is important to undertake an empirical study using datasets of 

relatively higher dimensionality and analyze the results in order to have a clearer understanding of the 

performance of this technique. 

In k-means based co-clustering algorithm for sparse high dimensional data, its running time shows 

that it increases when the number of clusters are large as is the case with the M10 and Cora datasets. To solve 

this challenge, developing parallel systems could significantly improve on the running time on the datasets 

with large number of clusters. These parallel systems would share the processing workload and subsequently 

improve on the running times. At the same time, this algorithm performs relatively lower particularly when the 

dataset is not well separated. For example, with the M2 and M5 datasets, the accuracy values of this algorithm 

is relatively lower, with other techniques performing significantly much better as compared to this technique. 

From the experimental results, the techniques that adopted the k-Means++ initialization strategy performed 

relatively better as compared to those that applied random initialization strategy. For this reason, it is important 

for future researchers focusing on this tuning problem to ensure that the initialization strategies adopted are 

oriented to finding the most approximate initial centers as opposed to doing this randomly. 

In the kernel spherical k-means and support vector based clustering method for acute sinusitis, we 

note that the tuning of the kernel parameters using grid search is not efficient when dealing with dataset of 

relatively high dimensionality. For this reason, we propose the application of more efficient search methods 

and strategies that are able to handle high-dimensional spaces. Lastly, in all the k-hyperparameter tuning 

techniques, the correct approximation of the right cluster center goes along way with improving the general 

clustering performance. 

 

5. CONCLUSION AND RECOMMENDATIONS 

This review study presents a number of k-hyperparameter tuning techniques in high-dimensional 

space, data dimensionality reduction methods used with these techniques, their strengths and limitations, 

performance and statistical metrics as well as the names and nature of the high-dimensional datasets used 

with these techniques. From this study, it is evident that there is no single k-hyperparameter tuning technique 

that is universally able to return the optimal k-hyperparameter across all varieties of the high-dimensional 

datasets. Their performance is relative to the specific nature and variety of a high-dimensional dataset. This 

observation is in line with the “no-free-lunch” theorem in machine learning where an algorithm may perform 

well in one application area and not the other. The results of this study makes it efficient for data scientists 

and researchers to undertake empirical studies which subsequently aids in coming up with a solution to the k-

hyperparameter tuning problem. In the future, we propose an in-depth empirical study and analysis on the 

best performing state-of-the art k-hyperparameter tuning techniques using a similar set of standard 

performance and statistical metrics, data dimensionality reduction methods as well as high-dimensional 

datasets. Such results will aid in the development of a data scientists’ tool box that shows the most 

appropriate set of data dimensionality reduction method and k-hyperparameter tuning technique for a specific 

high-dimensional dataset. The results can also form the basis for improving an existing k-hyperparameter 

tuning technique or the development of a completely new and enhanced k-hyperparameter tuning technique 

extremely well in one application area and not the other. The results of this study makes it efficient for data 

scientists and researchers to undertake empirical studies which subsequently aids in coming up with a 
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solution to the k-hyperparameter tuning problem. In the future, we propose an in-depth empirical study and 

analysis on the best performing state-of-the art k-hyperparameter tuning techniques using a similar set of 

standard performance and statistical metrics, data dimensionality reduction methods as well as high-

dimensional datasets. Such results will aid in the development of a data scientists’ tool box that shows the 

most appropriate set of data dimensionality reduction method and k-hyperparameter tuning technique for a 

specific high-dimensional dataset. The results can also form the basis for improving an existing k-

hyperparameter tuning technique or the development of a completely new and enhanced k-hyperparameter 

tuning technique. 
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