ALGORITMA K-NEAREST NEIGHBOR CLASSIFICATION SEBAGAI SISTEM PREDIKSI PREDIKAT PRESTASI MAHASISWA

Mustakim Mustakim, Giantika Oktaviani

Abstract


Students college predicate is a form of achievement during the academic activity at college. This research is intended  to make predictions toward predicate students college achievement that will be acquired in the future. The process of predictions by using K-Nearest Neighbor Method (KNN). The attributes that are used in process predictions was gender, kind of stay, age, semester credit unit, and also grade point average. Therefore by applying Al-goritma KNN, the predictions based on the closeness from history of data training  to data testing can be done. To determined of this  attributes based on the result of previous researches that have similarities of case that validated by academic of Faculty Sains and Technology. The process of predictions toward students information system of 2014/2015 as a sample of data testing. The number of the data was 50. And based on the data of students information system of 2012/2013 as a sample of data training, the number of the data was 165 which produce the accuracy testing was 82%. The result of calculation algoritma KNN is implemented toward Early Morning System (EWS). The output of sytem built to serve as a guide for students to improve the achievement and predicate in the future.


Keywords


Early Warning System (EWS), K-Nearest Neighbor (KNN), Prediksi Predikat Mahasiswa

Full Text:

PDF

References


Hidayat, Amir Syarif. Panduan dan Informasi Akademik 2012/ 2013 UIN Suska Riau. Pekanbaru.

Han J and Kamber M. Data Mining:Concept and Techniques. New York:Morgan Kaufmann Publisher ;2006.

Jayanti, Ririn Dwi. Aplikasi Metode K-Nearest Neighbor Dan Analisa Diskriminan Untuk Analisa Resiko Kredit Pada Koperasi Simpan Pinjam Di Kopinkra Sumber Rejeki. Prosiding Seminar Nasional Aplikasi Sains dan Teknologi (SNAST). Yogyakarta. 2014

Leidiyana. Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bemotor. Jurnal Penelitian Ilmu Komputer, System Embedded & Logic, Vol : 1. STMIK Nusa Mandiri. 2010

Mustafa. Perancangan Aplikasi Prediksi Kelulusan Tepat Waktu Bagi Mahasiswa Baru Dengan Teknik Data Mining (Studi Kasus : Data Akademik Mahasiswa STMIL Dipanedgara Makassar). Citec Jurnal Vol : 1. STMIK Dipanegara. 2014

Mustakim. Pemetaan Digital dan Pengelompokan Lahan Hijau di Wilayah Provinsi Riau Berdasarkan Knowledge Discovery in Database (KDD) dengan Teknik K-Means Mining. Seminar Nasional Teknologi Informasi,Komunikasi dan Industri (SNTIKI) 4, Pekanbaru, 3 Oktober 2012

Turban, E dkk . Decicion support systems and intelligent system. Yogyakarta: andi Offset. 2005

Riduwan. (2008). Metode dan Teknik Menyusun Tesis. Bandung: Alfabeta.




DOI: http://dx.doi.org/10.24014/sitekin.v13i2.1688

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Sains dan Teknologi Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Editorial Address:
FAKULTAS SAINS DAN TEKNOLOGI
UIN SULTAN SYARIF KASIM RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sitekin@uin-suska.ac.id
© 2015 SITEKIN, ISSN 2407-0939

SITEKIN Journal Indexing:

Google Scholar | Garuda | Moraref | IndexCopernicus | SINTA


Creative Commons License
SITEKIN by http://ejournal.uin-suska.ac.id/index.php