Alternative Frequency Selection of Long Term Evolution (LTE) Technology in Indonesia

Uke Kurniawan Usman, Galuh Prihatmoko Faculty of Electrical Engineering and Communication Telkom Institute of Technology Jl. Telecommunications No.1 Bojongsoang Bandung 40257 e-mail: <u>uku@ittelkom.ac.id</u>, <u>galuh@mobilecommlab.or.id</u>

Abstract

Frequency is a limited resource that is indispensable for cellular telecommunications. Frequency allocation needs to be done from the beginning that there was no interference between cellular technology. Frequency allocation policy is of Long one factor inhibiting adoption Term Evolution technology in Indonesia. Based on standard ITU-R, 3GPP, APAC conference, as well as the frequency of the condition in Indonesia. There are several candidate frequency can be allocated to LTE technology, namely: 700MHz,2.1GHz,2.3 GHz and 2.6GHz frecuency. After review of the analysis produced a recommendation for LTE frequency allocation in Indonesia, is result 700MHz of 700 MHz frequency has frecuency. However, if the 700MHz frecuency use constraint is currently still used for TV broadcast frecuency. So using 700MHz frequency can be implemented for LTE technology is carried out after the TV broadcast frequency has been refarming to digital TV.

Keywords: LTE, Frequency, 3GPP.

1. Introduction

LTE technology is designed to separate downlink and uplink spectrum in two different pipes. Downlink speeds can be more than 300 Mbps, while the uplink speeds over 80 Mbps. Its uplink based on a technology called SC-FDMA or Single Carrier Frequency Division Multiple Access. While the downlink OFDM-based (Orthogonal Frequency Division Multiplexing). With this technology, the handset battery will last longer even be used for data connections.

LTE, together with a SAE (service architecture evolution), is the core work of 3GPP Release 8. The essence or core LTE called EPC (evolved packet core). EPC is an all-IP (all IP, and IP only), and easy interconnection with other IP network, including WiFi, WiMAX, and xDSL. LTE is also expected to support personal broadband network, by integrating mobile and fixed services. Users do not have to wait for a more stable network, for example, to upload a video file. LTE should be ready in a technical (and economic) to accommodate dynamic traffic from Web 2.0, cloud computing, to a wide range of gadgets. ABI Research projects that devices such as cameras, MP3 players, video, etc. equipped with network capability will be close to number half a billion units in 2012. High traffic and dynamic that requires replacement of return transmission system. From TDMA in 2G and 3G CDMA, 4G technologies will use OFDMA, which again will increase the efficiency of spectrum. Average speed ranges at 15 Mbps with 15 ms delay, although the maximum value expected to reach over 200 Mbps in 20MHz bandwidth. LTE can operate at 1.4 to 20 MHz bandwidth. Access will be based on the use of radio channels together at 300 Mbps on the way down and 75 Mbps on the rise. If the 2G/3G, the radio access will be connected to the circuit-switched domain, the E-UTRAN LTE will only be connected to the EPC.

SAE, unlike the previous system, only two nodes in the user plane: base station (called eNodeB) and gateways. The number and type of signaling is minimized. RNC (radio network controller) is included as a function in the eNodeB, which makes the handover process is managed entirely by eNodeB - similar to the 3G UTRAN.

2. Research Method

This research was using literature study method. First of all, policies of ITU-R studies serve as first step and then refer to 3GPP standard that Indonesian celuler technology used. APAC conference also considered the results to support this research. From all of ITU-R studies, 3GPP, and APAC, were concluded several frequencies candidate. The candidates were analyzed and matched with the condition of existing frequencies in Indonesia.

The analysis covers the advantages and disadvantages of implementing a particular frequency. Results of the analysis has been got a strong candidate for the implementation of LTE in Indonesia. This will be used as a recommendation to the government to quickly determine the frequency policy for LTE deployment in Indonesia.

3. History LTE

Radio Access Network of 3GPP LTE or also called Evolved-UTRAN (E-UTRAN) began to be discussed at RAN Evolution Workshop November 2004. At the workshop have identification some outline requirements (high level requirement) from LTE, namely:

- Reducing the cost per bit.
- Improving the provision of services (service provisioning) more and more services with a small cost and a better user experience.
- Flexibility in frequency band new operator and existing.
- Simplifying the architecture, open interface
- Power consumption at a reasonable terminal.

Feasibility study on E-UTRA and E-UTRAN began in December 2004 with the main objective is to build a framework as the evolution of the 3GPP radio access technology to obtain high data-rate, low-latency and optimization of radio access technology for packet-switched domain. Details of the needs of the E-UTRAN formulated in the Technical Report (TR) 25 913 "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)" which includes among others:

- Peak data rate of 100 Mbps for the downlink with a 20 MHz downlink spectrum allocation (5bps/Hz) and 50 Mbps (2.5 bps / Hz) for the uplink.
- Reduced latency in the Control-plane and user-Plane.
- Data throughput increased by 3 to 4 times to down link of HSDPA Rel-6 and 2 to 3 times for the uplink from Rel-6 HSUPA.
- Eficiency spectrum with a fixed transmitter can use a location that has been used in the UTRAN / GERAN.
- Use a flexible spectrum.
- The ability of a user mobility that still get service with high performance at speeds up to 350 km / hour.
- Coverage area (coverage) with a radius of up to 5 km in order to achieve the above mentioned performance and maximum range of 100 km.
- Enhanced MBMS (Multimedia Broadcast / Multicast Service).
- Maintain 3GPP RAT (Radio Access Technology) which already exist and supports interworking with him.
- Single packet-based architecture, interface minimization and simplification.
- Reduction of complexity.

At a meeting in June 2005, 3GGP RAN WG1 begin to evaluate the several new technologies of water-interface that will be used as E-UTRA physical layer. 6 types of physical layer based on WCDMA, SCDMA and OFDMA are evaluated and the results can be seen in the TR 25 814 "Physical layer aspect for evolved UTRA." In 2005 the 3GPP RAN WG2 also responsible for the specification of Radio Access Layer 2 and Layer 3 discusses the requirements / agreements for water-interface protocol based on several assumptions for defining the protocol is highly dependent on air-interface technology that is used. Until the end of the meeting, finally give a conclusion about the specification capabilities / requirements of LTE technology which is comprised of 3GPP.

4. LTE Specification

LTE, together with a SAE (service architecture evolution), is the core work of 3GPP Release 8. The essence or core LTE called EPC (evolved packet core). EPC is an all-IP (all IP, and IP only), and easy interconnection with other IP network, including WiFi, WiMAX, and xDSL. LTE is also expected to support personal broadband network, by integrating mobile and fixed services. Users do not have to wait for a more stable network, for example, to upload a video file, LTE should be ready in a technical (and economic) to accommodate dynamic traffic from Web 2.0, cloud computing, to a wide range of gadgets. ABI Research projects that devices such as cameras, MP3 players, video, etc. equipped with network capability will be close to number half a billion units in 2012. High traffic and dynamic that requires replacement of return transmission system. From TDMA in 2G and 3G CDMA, 4G technologies will use OFDMA, which again will increase the efficiency of spectrum. Average speed ranges at 15 Mbps with 15 ms delay, although the maximum value expected to reach over 200 Mbps in 20MHz bandwidth. LTE can operate at 1.4 to 20 MHz bandwidth. Access will be based on the use of radio channels together at 300 Mbps on the way down and 75 Mbps on the rise. If the 2G/3G, the radio access will be connected to the circuit-switched domain, the E-UTRAN LTE will only be connected to the EPC. Optimal using radio access for IP traffic.

SAE, unlike the previous system, only two nodes in the user plane: base station (called eNodeB) and gateways. The number and type of signaling is minimized. RNC (radio network controller) is included as a function in the eNodeB, which makes the handover process is managed entirely by eNodeB - similar to the 3G UTRAN. LTE will be deployed on a wide band spectrum. It is expected that the new 2.6 GHz band can be used, because of its capacity allows for the provision of the band up to 20MHz. But LTE could also be held in the former band GSM at 900MHz and 1800MHz. 3GPP LTE standards for frequency 3GPP working group [7] to formulate some frequency bandwidth for each channel on LTE technology.

5. Frequency Spectrum Usage in Indonesia.

On the frequency of 450 MHz to 467 MHz, currently used for cellular communications which are fixed wireless, by the operator Ceria. As for the 478-978 MHz frequency, used for broadcast TV. At frequency 800 MHz to 960 MHz, has been solid occupied by several operators, both GSM and CDMA operators.

While in the 1700-1880 MHz frequency, has been inhabited by GSM operators, namely SingTel, Indosat, Excelcomindo, and Hutchinson (Tri). For 3G networks, some operators using the frequency spectrum 1900 MHz to 2100 MHz. One of the opportunities for LTE technology implementation in the frequency of 2500 MHz to 2670 MHz, which has been used to channel Indovision.

6. Results and Analysis

LTE will be deployed on a wide band spectrum. It is expected that the new 2.6 GHz band can be used, because of its capacity allows for the provision of the band up to 20MHz. But LTE could also be held in the former band GSM at 900MHz and 1800MHz. 3GPP LTE standards for frequency 3GPP working group [7] to formulate some frequency bandwidth for each channel on LTE technology. Here are the details:

Uplink (UL) operating band	Downlink (DL) operating band	Duplex Mode	
BS receive	BS transmit		
FUL_low - FUL_high	FDL_low - FDL_high		
1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD	
1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD	
1710 MHz – 1755 MHz	2110 MHz – 2155 MHz	FDD	
824 MHz – 849 MHz	869 MHz – 894MHz	FDD	

Table 1. 1,4 MHz and 3 MHz

880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
698 MHz – 716 MHz	728 MHz – 746 MHz	FDD
1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	TDD
1930 MHz – 1990 MHz	1930 MHz – 1990 MHz	TDD

Uplink (UL) operating band	Downlink (DL) operating band				
BS receive	BS transmit	Duplex			
UE transmit	UE receive	Mode			
$F_{UL_{low}} - F_{UL_{high}}$	FDL_low - FDL_high				
1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD			
1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD			
1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD			
1710 MHz – 1755 MHz	2110 MHz – 2155 MHz	FDD			
824 MHz – 849 MHz	869 MHz – 894MHz	FDD			
830 MHz – 840 MHz	875 MHz – 885 MHz	FDD			
2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD			
880 MHz – 915 MHz	925 MHz – 960 MHz	FDD			
1749.9 MHz – 1784.9 MHz		FDD			
1710 MHz – 1770 MHz	2110 MHz – 2170 MHz	FDD			
1427.9 MHz – 1447.9 MHz		FDD			
698 MHz – 716 MHz	728 MHz – 746 MHz	FDD			
777 MHz – 787 MHz	726 MHz – 746 MHz 746 MHz – 756 MHz	FDD			
777 MHz – 787 MHz 788 MHz – 798 MHz	746 MHz – 756 MHz 758 MHz – 768 MHz	FDD			
706 MHz – 796 MHz 704 MHz – 716 MHz	734 MHz – 746 MHz	FDD			
815 MHz – 830 MHz	860 MHz – 875 MHz	FDD			
830 MHz – 845 MHz	875 MHz – 890 MHz	FDD			
832 MHz – 862 MHz	791 MHz – 821 MHz	FDD			
1447.9 MHz – 1462.9 MHz		FDD			
1900 MHz – 1920 MHz	1900 MHz – 1920 MHz	TDD			
2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD			
1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	TDD			
1930 MHz – 1990 MHz	1930 MHz – 1990 MHz	TDD			
1910 MHz – 1930 MHz	1910 MHz – 1930 MHz	TDD			
2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD			
1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD			
2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD			

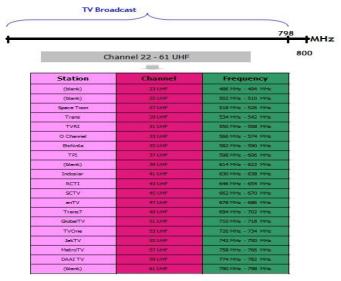
Table 2. 5 MHz and 10 MHz

Table 3. 15 MHz

Uplink (UL)	Downlink (DL)			
operating band	operating band			
BS receive	BS transmit	Duplex Mode		
UE transmit	UE receive			
Ful_low - Ful_high	$F_{DL_low} - F_{DL_high}$			
1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD		
1850 MHz - 1910 MHz	1930 MHz – 1990 MHz	FDD		

1805 MHz – 1880 MHz	FDD
2110 MHz – 2155 MHz	FDD
2620 MHz – 2690 MHz	FDD
1844.9 MHz – 1879.9 MHz	FDD
2110 MHz - 2170 MHz	FDD
860 MHz – 875 MHz	FDD
875 MHz – 890 MHz	FDD
791 MHz – 821 MHz	FDD
1495.9 MHz – 1510.9 MHz	FDD
1900 MHz – 1920 MHz	TDD
2010 MHz – 2025 MHz	TDD
1850 MHz - 1910 MHz	TDD
1930 MHz – 1990 MHz	TDD
1910 MHz – 1930 MHz	TDD
2570 MHz – 2620 MHz	TDD
1880 MHz – 1920 MHz	TDD
2300 MHz – 2400 MHz	TDD
	2110 MHz – 2155 MHz 2620 MHz – 2690 MHz 1844.9 MHz – 1879.9 MHz 2110 MHz - 2170 MHz 860 MHz – 875 MHz 875 MHz – 890 MHz 791 MHz – 821 MHz 1495.9 MHz – 1510.9 MHz 1900 MHz – 1920 MHz 2010 MHz – 2025 MHz 1850 MHz - 1910 MHz 1930 MHz – 1930 MHz 2570 MHz – 2620 MHz 1880 MHz – 1920 MHz

	Table 4. 20 MHz	
Uplink (UL)	Downlink (DL)	
operating band	operating band	Dumlay
BS receive	BS transmit	Duplex Mode
UE transmit	UE receive	woue
FUL_low - FUL_high	F _{DL_low} – F _{DL_high}	
1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
1710 MHz – 1755 MHz	2110 MHz – 2155 MHz	FDD
2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
1749.9 MHz – 1784.9 MHz	1844.9 MHz – 1879.9 MHz	FDD
1710 MHz – 1770 MHz	2110 MHz – 2170 MHz	FDD
832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
1900 MHz – 1920 MHz	1900 MHz – 1920 MHz	TDD
1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	TDD
1930 MHz – 1990 MHz	1930 MHz – 1990 MHz	TDD
1910 MHz – 1930 MHz	1910 MHz – 1930 MHz	TDD
2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD

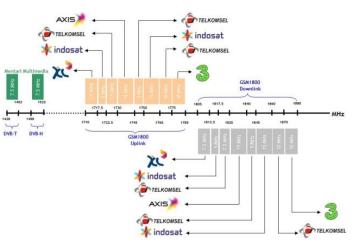

Table 5. 3GPP LTE Frequency Standards

234

defined in the 3GPP (May 2009)								
Operating band	3GPP name	Total spectrum	Uplink [MHz]	Downlink [MHz]	Operating	3GPP name	Total	Uplink and
Band 1	2100	2x60 MHz	1920-1980	2110-2170	band	SGFF liame	spectrum	downlink [MHz]
Band 2	1900	2x60 MHz	1850-1910	1930-1990			·	
Band 3	1800	2x75 MHz	1710-1785	1805-1880	Band 33	UMTS TDD1	1x20 MHz	1900-1920
Band 4	1700/2100	2x45 MHz	1710-1755	2110-2155				
Band 5	850	2x25 MHz	824-849	869-894	Band 34	UMTS TDD2	1x15 MHz	2010-2025
Band 6	800	2x10 MHz	830-840	875-885				
Band 7	2600	2x70 MHz	2500-2570	2620-2690	Band 35	US1900 UL	1x60 MHz	1850-1910
Band 8	900	2x35 MHz	880-915	925-960				
Band 9	1700	2x35 MHz	1750-1785	1845-1880	Band 36	US1900 DL	1x60 MHz	1930-1990
Band 10	1700/2100	2x60 MHz	1710-1770	2110-2170				
Band 11	1500	2x25 MHz	1427.9-1452.9	1475.9-1500.9	Band 37	US1900	1x20 MHz	1910-1930
Band 12	US700	2x18 MHz	698-716	728-746				
Band 13	US700	2x10 MHz	777-787	746-756	Band 38	2600	1x50 MHz	2570-2620
Band 14	US700	2x10 MHz	788-798	758-768				
Band 17	US700	2x10 MHz	704-716	734-746	Band 39	UMTS TDD	1x40 MHz	1880-1920
Band 18	Japan800	2x30 MHz	815-830	860-875				
Band 19	Japan800	2x30 MHz	830-845	\$75-890	Band 40	2300	1x50 MHz	2300-2400

FDD (left) and TDD (right) frequency bands

6.1 Alternative 1 using Spectrum Frequncy on 700 MHz [8]



For the frequency of 700 MHz, currently used for TV broadcast service. The service is great demand by users in Indonesia.

But on the other hand, in many countries, a broadcast TV service is becoming obsolete, even for developed countries, are not allowed anymore to broadcast the service. They have begun to enter the era of digital TV, which in transmission using packet data network. Surely the technology in our country will soon adopt digital TV. The impact of the use of digital TV technology, one of which is no longer used 700 MHz frequency spectrum.

Along with the development of Indonesian telecommunication, digital TV era is estimated to be entered when the LTE began to be implemented. This frequency can be used to implement LTE in the future. For the working frequency is 700 MHz, suitable for implementation of LTE in suburban and rural areas, due to low frequency, coverage will be wider when compared with the use of high frequency.

The ability to cover large areas is very suitable for suburban and rural areas, where the number of users are still rare.

6.2 Alternative 2 using Spectrum Frequncy on 1800 MHz [8]

Figure 2. Spectrum Frequency on 1800 MHz

1800 MHz frequency spectrum usage right now is for the GSM technology. Appropriate standards 3GPP, LTE may work on this frequency band, thus become candidates for the implementation of LTE technology.

However, its use can only be started if the GSM will be direfarming to another frequency, or reduced the amount of bandwidth usage frequency.

6.3 Alternative 3 using Spectrum Frequncy on 2,3 GHz [8]

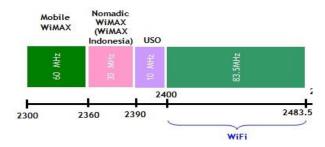


Figure 3. Spectrum Frequency on 2,3 GHz

Scenario usage frequency is 2.3 GHz for mobile WiMAX, but the presence of this technology in Indonesia will still doubt, will be even less with the mobility that is owned by the LTE. This makes the frequency of became the candidate of the LTE technology implementation.

6.4 Alternative 1 using Spectrum Frequncy on 2,6 GHz [8]

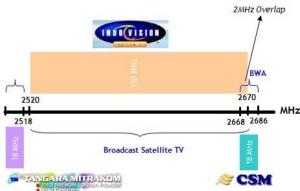


Figure 4. Spectrum Frequency on 2,6 GHz

At 2.6 Ghz frequency, it is still used for Indovision channel. But in the future, this frequency will be used for the deployment of LTE at high frequencies.

LTE network performance at these frequencies is very good. The negative impact of the use of high frequency is higher the damping value to be gained during the communication process, so the coverage area will be more narrow.

Use of these frequencies for LTE deployment is suitable for urban areas or what we call urban and dense urban.

7. Conclusion

From the above, can disumpulkan that the strongest candidates for frequency allocations for LTE is on the 700 MHz frequency band. However, its implementation should be started when the new television channel in Indonesia have been digitized. For that, there needs to be comprehensive migration from broadcast TV to the digital TV. So the chances of implementation of LTE at this frequency will be realized when the migration to digital TV has been fulfilled.

References

- [1] Bradley de Souza, LTE (Long Term Evolution, 4G), 2008
- [2] Departemen Komunikasi Informasi Republik Indonesia. Dokumen White Paper Study Group Alokasi Pita Frekuensi Radio Untuk Komunikasi Radio Teknologi Keempat (4G), Jakarta, Indonesia, 2010.
- [3] Denny Setiawan. Prinsip Perencanaan Frekuensi TV Siaran di Indonesia. Rapat koordinasi Nasional KPI, Hotel Preanger, Bandung, 2004.
- [4] Ericsson. LTE an Introduction, 2009.
- [5] Holma Harri dan Toskala Antti. LTE For UMTS OFDMA and SC-FDMA Based Radio Access, England, John Wiley & Sons, Ltd, 2009.
- [6] Jeang Songsong, LTE Technology i-Wireless Innovations, Indosat, 2010.
- [7] Kuncoro. LTE: Long Term Evolution. Magazine Mobile Guide Issue 21, 2 -29 January 2009, Bandung, 2009
- [8] Uke Kurniawan Usman, Introduce Technology Long Term Evolution (LTE), Journal of Electronics and Telecommunication Engineering LIPI Volume 10 Number 1 Year 2010.
- [9] 3GPP TS 36.101 V9.4.0, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) radio transmission and Reception.
- [10] [3GPP TR 25.913 V8.0.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) (Release 8)
- [11] 20101004_Indonesia_Cellular_Broadcast_Spectrum_ED09. Alcatel-Lucent, Jakarta, September 2010