IoT-based Architecture for Automatic Detection of Fall Incident using Accelerometer Data

I Wayan Wiprayoga Wisesa, Genggam Mahardika


Fall is an unintentional incident that could happened in our daily life. For the elderly, fatal fall incident might increase the risk of death. There is a need to quickly do the first aid after fall incident occur. IoT based architecture made it possible to monitor fall incident remotely. The monitoring device records the activity and object movement using tri-axial accelerometer sensor attached to user’s waist. The system implemented simple thresholding technique based on total acceleration recorded over time. Various scenarios were performed in order to test the system including normal daily activities and fall incident. Using sensitivity and specificity measurement to evaluate the system, the proposed system achieved the value of 98% and 96% respectively.


Fall detection; Accelerometer; IoT; Wemos D1-R; MPU60502;

Full Text:



Badan Pengembangan dan Pembinaan Bahasa Kementerian Pendidikan dan Kebudayaan Republik Indonesia, "Hasil Pencarian - KBBI Daring," 2016. [Online]. Available: [Accessed April 2020].

R. S. Maryam, M. F. Ekasari, Rosidawati, A. Jubaedi and I. Batubara, Mengenal Usia Lanjut dan Perawatannya, Jakarta: Salemba Medika, 2008.

A. Shumway-cook, M. Ciol, J. Hoffman, B. Dudgeon, Y. K and L. Chan, "Falls in the Medicare population: incidence, associated factors, and impact on health care," Physical therapy, vol. 89, no. 4, pp. 324-332, 2009.

A. Z. Rakhman, L. E. Nugroho and K. Widyawan, "Fall Detection System Using Accelerometer and Gyroscope Based on Smartphone," in 1st International Conference on Information Technology, Computer and Electrical Engineering, 2014.

M. Hardijanto, M. A. Rony and G. S. Trengginas, "Deteksi jatuh pada lansia dengan menggunakan akselerometer pada smartphone," SENTIA, vol. 8, no. 1, 2016.

S. Norhabibah, K. Andhyka and D. Risqiwati, "Rancang Bangun Sistem Monitoring Deteksi Jatuh untuk Manula dengan Menggunakan Accelerometer," JOINCS (Journal of Informatics, Network, and Computer Science), vol. 1, no. 1, pp. 43-52, 2016.

F. Hussain, M. Umair, M. Ehatisham-ul-Haq, I. Pires, T. Valente, N. Garcia and N. Pombo, "An Efficient Machine Learning-based Elderly Fall Detection Algorithm," in arXiv preprint, 2019.

P. Vallabh, R. Malekian, N. Ye and D. Bogatinoska, "Fall Detection Using Machine Learning Algorithms," in International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2016.

M. Liandana, I. Mustika and Selo, "Pengembangan Sistem Deteksi Jatuh pada Lanjut Usia Menggunakan Sensor Accelerometer pada Smartphone Android," in Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA), Yogyakarta, 2014.

I. W. W. Wisesa and G. Mahardika, "Fall detection algorithm based on accelerometer and gyroscope sensor data using Recurrent Neural Networks," in IOP Conference Series: Earth and Environmental Science, 2019.

E. Casilari, J. A. Santoyo-Ramón and J. M. and Cano-García, "UMAFall: A multisensor dataset for the research on automatic fall detection," Procedia Computer Science, vol. 110, pp. 32-39, 2017.



  • There are currently no refbacks.

Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Phone./ Hp.: +62 852-7535-9942

Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | Journal Factor | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA