ADDITIONAL MENU
Modeling Statistical Downscaling for Prediction Precipitation Dry Season in Bireuen District Province Aceh
Abstract
The Asian-Australian monsoon circulation specifically causes the Indonesian region to go through climate changebility that impacts on rainfall variability in different Indonesia’s zone. Local climate conditions such as rainfall data are commonly simulated using GCM time series data. This study tries to model the statistical downscaling of GCM in the form of 7x7 matrix using Support Vector Regression (SVR) for rainfall forecasting during drought in Bireuen Regency, Aceh. The output yields optimal result using certain parameter i.e. C = 0.5, γ = 0.8, d = 1, and ↋= 0.01. The duration of computation during training and testing are ± 45 seconds for linear kernels and ± 2 minutes for polynomials. The correlation degree and RMSE values of GCM and the actually observed data at Gandapura wheather station are 0.672 and 21.106. The RSME value obtained in that region is the lowest compared to the Juli station which is equal to 31,428. However, the Juli station has the highest correlation value that is 0.677. On the other hand, the polynomial kernel has a correlation degree and RMSE value equal to 0.577 and 29,895 respectively. To summary, the best GCM using SVR kernel is the one at Gandapura weather station in consideration of having the lowest RMSE value with a high correlation degree.
Full Text:
PDFReferences
Analisis Musim Hujan 2013/2014 dan Prakiraan Musim Kemarau. Badan Meteorologi Klimatologi dan Geofisika Stasiun Klimatologi Klas II Pondok Betung, 2014.
Evana L, Effendy S, Hermawan E, “Pengembangan Model Prediksi Madden Julian Oscillation (MJO) Berbasis pada Hasil Analisis Data Real Time Multivariate MJO (RMM1 dan RMM2),” J. Agromet 22 (2): 144. Bogor Agricultural University, 2008.
http://aceh.tribunnews.com/2018/07/26/451-hektare-padi-se-aceh-kekeringan.
Tisseuil C, Vrac M, Lek S, Wade AJ, “Statistical downscaling of river flows,” J of Hydrology. 385: 279–291. ScienceDirect, 2010.
Salvi K, Kannan S, Ghosh, “Statistical Downscaling and Bias Correction for Projections of Indian Rainfall and Temperature in Climate Change Studies,” International Conference on Environmental and Computer Science IPCBEE vol.19. IACSIT Press, Singapore, 2011
Ghosh S, Mujamdar PP, “Future rainfall scenario over Orissa with GCM projections by statistical downscaling,” J Current Science. 90(3). India, 2006
Zhang P, Karori AM, “Downscaling NCC CGCM output for Seasonal precipitation prediction over Islam abad – pakistan,” Pakistan Journal of Meteorology, Vol. 4 Issue 8, 2008
Buono, A. et al, “A Neural Network Architecture for Statistical Downscaling Technique: A Case Study in Indramayu District,” Dipublikasi dalam International Conference,The Quality Information for Competitive Agricultural Based Production System and Commerce (AFITA). http://repository.ipb.ac.id/handle/123456789/41728, 2010.
Wilby RL, Wigley TM, “Precipitation Predictors For Downscaling: Observed and General Circulation Model Relationships,” International Journal Of Climatology. Int. J. Climatol. 20: 641 – 661, 2000.
Aksornsingchai A, Srinilta C, “Statistical Downscaling for Rainfall and Temperature Prediction in Thailand,” Proseedings of the International MultiConference of Engineers and Computer scientists, ISSN 2078-0966. Hong Kong, 2011
Devak M, Dhanya CT, “Downscaling of Precipitation in Mahanadi Basin,” India. J International of Civil Engineering. 5(2); 111-120. India, 2014
Haryoko, U. “Pendekatan Reduksi Dimensi Luaran GCM untuk Penyusunan Model Statistical Downscaling”. [Tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor, 2004.
Wigena HA, “Pemodelan statistical downscaling dengan regression projection persuit untuk peramalan curah hujan (kasus curah hujan bulanan di Indramayu),” [Disertasi]. Institur Pertanian Bogor. Bogor, 2006
Agmalaro AM 201, “Pemodelan statistical downscaling data GCM menggunakan support vector regression untuk memprediksi curah hujan bulanan Indramayu”. [Tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor, 2011.
Santosa B, “Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis,” Graha Ilmu. Yogyakarta, 2007.
Smola A, Schölkopf, B, “A Tutorial on Support Vector Regression,” NeuroCOLT, Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 2003.
Xu Z, Hou Z, Han Y, Guo W, “A diagram for evaluating multiple aspects of model performance in simulating vector fields,” Vol. 9, 4365–4380. Geosci. Model Dev, 2016.
M Mustakim, A Buono, I Hermadi. "Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production". Jurnal Ilmu Komputer dan Informasi 9 (1). 1-8. 2016.
DOI: http://dx.doi.org/10.24014/ijaidm.v2i2.7518
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats