The Application Of Fuzzy K-Nearest Neighbour Methods for A Student Graduation Rate

Imam Ahmad, Heni Sulistiani, Hendrik Saputra

Abstract


The absence of prediction system that can provide prediction analysis on the graduation rate of students becomes the reason for the research on the prediction of the level of graduation rate of students. Determining predictions of graduation rates of students in large numbers is not possible to do manually because it takes a long time. For that we need an algorithm that can categorize predictions of students' graduation rates in computing. The Fuzzy Method and KNN or K-Nearest Neighbor Methods are selected as the algorithm for the prediction process. In this study using 10 criteria as a material to predict students' graduation rate consisting of: NPM, Student Name, Semester 1 achievement index, Semester 2 achievement index, Semester 3 achievement index, Semester 4 achievement index, SPMB, origin SMA, Gender , and Study Period. Fuzzyfication process aims to change the value of the first semester achievement index until the fourth semester achievement index into three sets of fuzzy values are satisfactory, very satisfying, and cum laude. Make predictions to improve the quality of students and implement KNN method into prediction, where there are some attributes that have preprocess data so that obtained a value, and the value is compared with training data, so as to produce predictions of graduating students will be on time and graduating students will be late. This study produces a prediction of student pass rate and accuracy.

Full Text:

PDF

References


Agus Wantoro, Adhie Thyo Priandika., 2017. Komparasi Perhitungan Pemilihan Mahasiswa Terbaik Menggunakan Metode Statistik Klasik Dengan Logika Fuzzy (Tsukamoto Dan Mamdani) Studi Kasus STMIK Teknokrat, Sistem Informasi STMIK Teknokrat.Vol 15 No. 1 2018

Ernawati Iin, 2008, Perbandingan algoritma C4.5 dan K-Nearest Neighbor untuk Prediksi Status Keaktifan Studi Mahasiswa.

Gorunescu, F. 2011, Data Mining Concepts Models and Techniques. Craiova: Springer.

Hastie Trevor, Tibshirani Robert, Jerome Friedman, 2008, The Elements of Statistical Learning Data Mining, Inference, and Prediction. California: Springer.

Ahmad I, Hermadi I, Arkeman Y, 2015. Financial Feasibility Study Of Waste Cooking Oil Utilization for Biodiesel Production Using ANFIS. TELKOMNIKA: Vol.13 No 3 Maret 2015.

Karamouiz, Vrettos, 2009, Sensitivy Analysis of Neural Network for Identifying the Factors For College Students Success.

Larose, Daniel.T. 2005. Discovering Knowledge in Data. New Jersey : John Willey & Sons, Inc.

Mustakim, Giantika Oktaviani F,2016, Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa, Sistem Informasi Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim, Riau.

Ndaumanu Imanuel Ricky, Kusrini, M. Rudyanto Arief , 2014, Analisis Prediksi Tingkat Pengunduran Diri Mahasiswa STIKOM UYELINDO dengan Metode K-Nearest Neighbor, Kupang: Magister Teknik Informatika.

Qudri, Kalyankar, 2010, Drop Out Feature of Student Data for Academic Performance Using Decision Tree techniques.

Pandie, Emerensye S.Y. 2012, Implementasi Algoritma Data Mining K-Nearest Neighbour (KNN) Dalam Pengambilan Keputusan Pengajuan Kredit, Jurusan Ilmu Komputer, Fakultas Sains dan Teknik, Universitas Nusa Cendana:Kupang.

Suhartina, Ernastuti, 2010, Graduation Prediction of Gunadarma University Students Using Algorithm and Naïve Bayes C4.5 Algorithm.

Wu X. 2009,The Top Ten Algorithms in Data Mining. New York:CRC Press.




DOI: http://dx.doi.org/10.24014/ijaidm.v1i1.5654

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone./ Hp.: +62 852-7535-9942/ +62 852-6370-8907


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | Journal Factor | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA

IJAIDM Stats