Local Binary Pattern and Learning Vector Quantization for Classification of Principal Line of Palm-Hand

Suwanto Sanjaya, Ulfah Adzkia, Lestari Handayani, Febi Yanto


Biometrics such as DNA, face, fingerprints, and iris still had disadvantages. The principal line of palm-hand biometric was expected to cover the weakness of the other biometric. This research was used dataset amounted to 150 images of palms-hand of the left-hand side. The dataset sourced 15 people who captured 10 times. The cropping technique that has used is the Region of Interest (ROI). Local Binary Pattern (LBP) was used to feature extraction. The feature extraction consists of the five parameters statistical. They were mean, variance, skewness, kurtosis, and entropy. Learning Vector Quantization (LVQ) was used to train the weight to produce optimal weight. The Confusion matrix method was used to evaluate the accuracy of the classification. The experiment was used the learning rates 0.01; 0.05; 0.1; 0.5; and 0.7. Based on testing and the experimental results, the highest accuracy obtained was on the learning rate value 0.5 which achieve 80%. In future work, we can explore with added the second-order statistics feature for better result.


Classification; LVQ; LBP; ROI; Palm-hand

Full Text:



K. G. D. Putra, “Sistem Verifikasi Biometrika Telapak Tangan Dengan Metode Dimensi Fraktal Dan Lacunarity,” Maj. Ilm. Teknol. Elektro, vol. 8, no. 2, pp. 1–6, 2009.

I. Istiqamah, F. Yanuar, A. D. Wibawa, and S. Sumpeno, “Line Hand Feature-based Palm-print Identification System Using Learning Vector Quantization,” in International Seminar on Application for Technology of Information and Communication (ISemantic), 2016, pp. 253–260.

H. C. Salave and S. D. Pable, “Improved Palmprint Identification System,” Int. J. Sci. Technol. Res., vol. 4, no. 3, pp. 180–185, 2015.

F. M. D. et al. Febriana, “Pengenalan Garis Utama Telapak Tangan dengan Ekstraksi Ciri Matriks Kookurensi Aras Keabuan menggunakan Jarak Euclidean,” TRANSIEN, vol. 4, pp. 2–6, 2015.

Y. Wang, Q. Ruan, and X. Pan, “Palmprint recognition method using dual-tree complex wavelet transform and local binary pattern histogram,” 2007, doi: 10.1109/ISPACS.2007.4445970.

A. Ghosh, M. Biehl, and B. Hammer, “Performance analysis of LVQ algorithms: A statistical physics approach,” Neural Networks, 2006, doi: 10.1016/j.neunet.2006.05.010.

R. Abdillah, S. Sanjaya, and I. Afrianty, “The effect of class imbalance against LVQ classification,” 2018, doi: 10.1109/ICon-EEI.2018.8784330.

W. Burger and M. J. Burge, Principles of Digital Image Processing. London: Springer, 2009.

M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest regions with local binary patterns,” Pattern Recognit., vol. 42, no. 3, pp. 425–436, 2009.

Y. Permadi, “Aplikasi Pengolahan Citra untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik,” J. Inform., vol. 9, no. 1, pp. 1028–1038, 2015.

E. Budianita and W. Prijodiprodjo, “Penerapan Learning Vector Quantization (LVQ) untuk Klasifikasi Status Gizi Anak,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 2, pp. 155–166, 2013.

L. Fausset, Fundamental of Neural Network : Architectures, Algorithms, and Application. New Jersey: Prentice Hall Inc., 1994.

T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp. 1464–1480, 1990, doi: 10.1109/5.58325.

S. Sanjaya, “Penerapan Learning Vector Quantization Pada Pengelompokan Tingkat Kematangan Buah Tomat Berdasarkan Warna Buah,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 5, no. 2, pp. 49–55, 2019, doi: 10.24014/coreit.v5i2.8199.

F. Gorunescu, Data Mining: Concepts, Models and Techniques. 2011.

DOI: http://dx.doi.org/10.24014/ijaidm.v3i2.10236


  • There are currently no refbacks.

Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone./ Hp.: +62 852-7535-9942

Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | Journal Factor | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA